CUER / Mbed 2 deprecated BMS_BMUCore_Max

Dependencies:   CUER_CAN CUER_DS1820 LTC2943 LTC6804 mbed PowerControl

Committer:
DasSidG
Date:
Sun Jul 23 10:33:53 2017 +0000
Revision:
47:62ba8c071a0f
Parent:
46:ac7065d52d6e
Child:
48:5c3f42c44036
Child:
49:419985e0b2b1
Removed unnecessary include of SPI_parser from main.cpp

Who changed what in which revision?

UserRevisionLine numberNew contents of line
lcockerton62 0:0a5f554d2a16 1 #include "mbed.h"
lcockerton62 0:0a5f554d2a16 2 #include "CANParserBMU.h"
lcockerton62 0:0a5f554d2a16 3 #include "Data_Types_BMU.h"
lcockerton62 0:0a5f554d2a16 4 #include "CAN_Data.h"
lcockerton62 0:0a5f554d2a16 5 #include "CAN_IDs.h"
lcockerton62 1:51477fe4851b 6 #include "EEPROM_I2C.h"
lcockerton62 1:51477fe4851b 7 #include "Temperature.h"
DasSidG 4:9050c5d6925e 8 #include "LTC2943_Read.h"
maxv008 10:1079f8e52d65 9 #include "Cell_Voltage.h"
maxv008 25:1fe8a42f8a6d 10 #include "LTC2943.h"
DasSidG 41:9183c5616281 11 #include "PowerControl/PowerControl.h"
DasSidG 41:9183c5616281 12 #include "PowerControl/EthernetPowerControl.h"
lcockerton62 0:0a5f554d2a16 13
DasSidG 47:62ba8c071a0f 14 #define DEBUG 0
maxv008 45:c288d7cbdb4a 15 #define ACTIVE 0
maxv008 45:c288d7cbdb4a 16 #define INACTIVE 1
maxv008 45:c288d7cbdb4a 17 #define TRANSMIT_MODE 1 //Useful to allow testing CAN read on BCU. Leave as 1 for BMS (and CAN write) 0 for BCU read-mode
msharma97 9:82ba050a7e13 18
lcockerton62 0:0a5f554d2a16 19 using namespace CAN_IDs;
lcockerton62 0:0a5f554d2a16 20
lcockerton62 0:0a5f554d2a16 21 // Function definitions
lcockerton62 1:51477fe4851b 22 void transmit_data(BMU_data measurements,uint32_t status);
lcockerton62 1:51477fe4851b 23 void read_temperature_sensors(BMU_data &measurements);
lcockerton62 0:0a5f554d2a16 24 void update_SOC();
lcockerton62 0:0a5f554d2a16 25 void init();
maxv008 14:e0e88a009f4c 26 void interruptHandler();
maxv008 14:e0e88a009f4c 27 void CANDataSentCallback();
lcockerton62 1:51477fe4851b 28 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address);
lcockerton62 1:51477fe4851b 29 uint16_t read_EEPROM_startup(BMU_data &measurements);
maxv008 32:5b82679b2e6f 30 void reset_EEPROM(float init_SOC, float init_SOC_Percent);
lcockerton62 1:51477fe4851b 31 uint32_t check_measurements(BMU_data &measurements);
maxv008 23:a1af4439c1fc 32 uint32_t take_measurements(BMU_data &measurements);
maxv008 14:e0e88a009f4c 33 void test_read_CAN_buffer();
DasSidG 12:fa9b1a459e47 34 bool test_read_voltage_CAN(uint16_t readings[], int can_ids[]);
maxv008 10:1079f8e52d65 35 void test_CAN_send();
maxv008 10:1079f8e52d65 36 void test_CAN_read();
maxv008 35:be07fef5db72 37 bool check_EEPROM_PEC(char start_address_array[], char SOC_out[]);
maxv008 45:c288d7cbdb4a 38 int ivta_init(void);
maxv008 45:c288d7cbdb4a 39 int ivta_transfer(int * txrx);
maxv008 45:c288d7cbdb4a 40 int ivta_get_current(int measurements[]);
maxv008 45:c288d7cbdb4a 41 //IVTA stuff (sorry for the mess)
maxv008 45:c288d7cbdb4a 42 DigitalOut IVTA_SS(p11);
maxv008 45:c288d7cbdb4a 43 Serial pc(USBTX, USBRX);
maxv008 45:c288d7cbdb4a 44 SPI spi_ivta(p5, p6, p7); // mosi, miso, sclk
lcockerton62 0:0a5f554d2a16 45
lcockerton62 0:0a5f554d2a16 46 CAN can(CAN_READ_PIN, CAN_WRITE_PIN); //Create a CAN object to handle CAN comms
maxv008 14:e0e88a009f4c 47 CANMessage buffer[CAN_BUFFER_SIZE]; //CAN receive buffer
maxv008 14:e0e88a009f4c 48 bool safe_to_write[CAN_BUFFER_SIZE]; //Semaphore bit indicating that it's safe to write to the software buffer
maxv008 14:e0e88a009f4c 49 bool CAN_data_sent = false;
maxv008 14:e0e88a009f4c 50
maxv008 20:a1a1bfc938da 51 //Global array to store most recently obtained voltage and temp measurement:
maxv008 17:94dd9a0d3870 52 CMU_voltage voltage_readings[NO_CMUS];
maxv008 20:a1a1bfc938da 53 individual_temperature templist[NO_TEMPERATURE_SENSORS];
maxv008 28:f1f882bd1653 54 uint32_t status;
DasSidG 38:b1f5bfe38d70 55 int temperature_counter = TEMPERATURE_MEASUREMENT_FREQ;
DasSidG 38:b1f5bfe38d70 56
maxv008 17:94dd9a0d3870 57
DasSidG 4:9050c5d6925e 58 uint16_t eeprom_start_address; //the initial address where we store/read SoC values
lcockerton62 0:0a5f554d2a16 59
lcockerton62 1:51477fe4851b 60 Timeout loop_delay;
lcockerton62 1:51477fe4851b 61 bool delay_finished = false;
lcockerton62 2:94716229ecc3 62
DasSidG 39:34be1b8f46be 63 void loop_delay_callback(void) {
DasSidG 39:34be1b8f46be 64 delay_finished = true;
DasSidG 39:34be1b8f46be 65 }
DasSidG 39:34be1b8f46be 66
maxv008 28:f1f882bd1653 67 //The following is to initialize reading tests, can be removed when needed
maxv008 28:f1f882bd1653 68 float packSOC;
maxv008 28:f1f882bd1653 69 float packSOCPercentage;
maxv008 28:f1f882bd1653 70 pack_voltage_extremes minVolt;
maxv008 28:f1f882bd1653 71 pack_voltage_extremes maxVolt;
maxv008 28:f1f882bd1653 72 pack_temperature_extremes minTemp;
maxv008 28:f1f882bd1653 73 pack_temperature_extremes maxTemp;
maxv008 31:888b2602aab2 74 float batteryCurrent; uint32_t batteryVoltage;
maxv008 14:e0e88a009f4c 75
lcockerton62 0:0a5f554d2a16 76 int main()
DasSidG 11:cf2db05cfa56 77 {
lcockerton62 1:51477fe4851b 78 BMU_data measurements;
lcockerton62 1:51477fe4851b 79 uint16_t current_EEPROM_address;
DasSidG 46:ac7065d52d6e 80 //uint16_t volt_readings[36];
DasSidG 46:ac7065d52d6e 81 //int can_ids[9];
maxv008 10:1079f8e52d65 82
lcockerton62 0:0a5f554d2a16 83 init();
maxv008 10:1079f8e52d65 84
maxv008 35:be07fef5db72 85 //current_EEPROM_address = 0x0040; //reset has no way of setting the current address for rest of code.
maxv008 35:be07fef5db72 86 //reset_EEPROM(1,100); //Used to completely initialize EEPROM as if it has never been touched
maxv008 35:be07fef5db72 87 current_EEPROM_address = read_EEPROM_startup(measurements); // Read from the eeprom at startup to fill in the values of SoC
DasSidG 36:1b23c0692f54 88 if (DEBUG) printf("Current EEPROM Address %d \r\n", current_EEPROM_address);
DasSidG 36:1b23c0692f54 89 if (DEBUG) printf("SOC is %f and SOC Percentage is %f \r\n", measurements.SOC, measurements.percentage_SOC);
maxv008 35:be07fef5db72 90 ltc2943.accumulatedCharge(measurements.percentage_SOC); // Initialise the LTC2943 with the current state of charge
DasSidG 4:9050c5d6925e 91
lcockerton62 1:51477fe4851b 92 while (true) {
DasSidG 11:cf2db05cfa56 93
maxv008 35:be07fef5db72 94 Timer t;
maxv008 35:be07fef5db72 95 t.start();
maxv008 35:be07fef5db72 96
maxv008 45:c288d7cbdb4a 97 if(TRANSMIT_MODE) status = take_measurements(measurements);
maxv008 35:be07fef5db72 98 // Dont want to read the temperature sensors during each iteration of the loop
lcockerton62 0:0a5f554d2a16 99
lcockerton62 1:51477fe4851b 100 //Store data in the eeprom
maxv008 45:c288d7cbdb4a 101 if(TRANSMIT_MODE) write_SOC_EEPROM(measurements, current_EEPROM_address);
maxv008 35:be07fef5db72 102
lcockerton62 5:793afeef45dc 103 // CAN bus
maxv008 14:e0e88a009f4c 104 CAN_data_sent = false;//Currently does nothing, adding this line in more places then using
maxv008 14:e0e88a009f4c 105 //while(!CAN_data_sent); in order to ensure sending completes
maxv008 45:c288d7cbdb4a 106 if(TRANSMIT_MODE)
maxv008 45:c288d7cbdb4a 107 transmit_data(measurements,status);
maxv008 45:c288d7cbdb4a 108 else
maxv008 45:c288d7cbdb4a 109 test_read_CAN_buffer();
DasSidG 11:cf2db05cfa56 110
DasSidG 39:34be1b8f46be 111
lcockerton62 0:0a5f554d2a16 112 // Conserve power - enter a low powered mode
lcockerton62 2:94716229ecc3 113 delay_finished = false;
lcockerton62 1:51477fe4851b 114 loop_delay.attach(loop_delay_callback, LOOP_DELAY_S);
DasSidG 40:0753cbb8bc6a 115 //while (!delay_finished) sleep();
DasSidG 39:34be1b8f46be 116
DasSidG 40:0753cbb8bc6a 117 wait(1);
DasSidG 46:ac7065d52d6e 118 if (DEBUG) printf("Loop time is %d \r\n", t.read_ms());
maxv008 10:1079f8e52d65 119 }
lcockerton62 0:0a5f554d2a16 120 }
lcockerton62 0:0a5f554d2a16 121
lcockerton62 1:51477fe4851b 122 void transmit_data(BMU_data measurements, uint32_t status)
lcockerton62 0:0a5f554d2a16 123 {
msharma97 9:82ba050a7e13 124 CANMessage msg;
lcockerton62 0:0a5f554d2a16 125 /*
lcockerton62 0:0a5f554d2a16 126 Place all of the collected data onto the CAN bus
lcockerton62 0:0a5f554d2a16 127 */
lcockerton62 5:793afeef45dc 128 // Send cell voltages
maxv008 13:7b42af989cd1 129 //voltages sent in sets of 4 + one cmu data set
msharma97 9:82ba050a7e13 130 int repeating_unit_length = NO_READINGS_PER_CMU /4 + 1;
maxv008 10:1079f8e52d65 131 for(uint16_t i= 0; i < NO_CMUS; i++) {
msharma97 9:82ba050a7e13 132 //input id is offset, data structure is info, voltage, voltage, ......
maxv008 10:1079f8e52d65 133 //This is a slightly modified version of the Tritium BMS datasheet, to add an extra voltage reading set.
maxv008 10:1079f8e52d65 134 msg = createVoltageTelemetry(repeating_unit_length*i+2, measurements.cell_voltages[i].voltages);
msharma97 9:82ba050a7e13 135 can.write(msg);
DasSidG 36:1b23c0692f54 136 if (DEBUG) printf("Voltage Message id: %d \r\n", msg.id);
maxv008 17:94dd9a0d3870 137 //+4 - 4 cell voltages sent per measurement, simple pointer arithmetic
maxv008 10:1079f8e52d65 138 msg = createVoltageTelemetry(repeating_unit_length*i+3, measurements.cell_voltages[i].voltages + 4);
msharma97 9:82ba050a7e13 139 can.write(msg);
DasSidG 36:1b23c0692f54 140 if (DEBUG) printf("Voltage Message id: %d \r\n", msg.id);
maxv008 10:1079f8e52d65 141 msg = createVoltageTelemetry(repeating_unit_length*i+4, measurements.cell_voltages[i].voltages + 8);
msharma97 9:82ba050a7e13 142 can.write(msg);
DasSidG 36:1b23c0692f54 143 if (DEBUG) printf("Voltage Message id: %d \r\n", msg.id);
lcockerton62 1:51477fe4851b 144 }
maxv008 13:7b42af989cd1 145
maxv008 13:7b42af989cd1 146 //Transmitting all of the individual probes:
DasSidG 38:b1f5bfe38d70 147
DasSidG 38:b1f5bfe38d70 148 if (temperature_counter == TEMPERATURE_MEASUREMENT_FREQ) {
DasSidG 38:b1f5bfe38d70 149 for(uint8_t i = 0; i < devices_found; i++)
DasSidG 38:b1f5bfe38d70 150 {
DasSidG 38:b1f5bfe38d70 151 individual_temperature tempreading = measurements.temperature_measurements[i];
DasSidG 38:b1f5bfe38d70 152 msg = createTemperatureTelemetry(i, &tempreading.ROMID[0], tempreading.measurement);
DasSidG 38:b1f5bfe38d70 153 individual_temperature testOut = decodeTemperatureTelemetry(msg);
DasSidG 38:b1f5bfe38d70 154 if (DEBUG) printf("Temperature reading sent (CAN ID = %d): (%f,%d) \r\n", msg.id, testOut.measurement, testOut.ID);
DasSidG 38:b1f5bfe38d70 155 if(can.write(msg));
DasSidG 38:b1f5bfe38d70 156 else
DasSidG 38:b1f5bfe38d70 157 if (DEBUG) printf("Sending Temperature Failed for some reason \r\n");
DasSidG 38:b1f5bfe38d70 158 }
maxv008 13:7b42af989cd1 159 }
lcockerton62 1:51477fe4851b 160
lcockerton62 1:51477fe4851b 161 // Create SOC CAN message
maxv008 23:a1af4439c1fc 162 msg = createPackSOC(measurements.SOC, measurements.percentage_SOC);
maxv008 23:a1af4439c1fc 163 can.write(msg);
DasSidG 36:1b23c0692f54 164 if (DEBUG) printf("SOC is %f and percentage SOC is %f and id is %d \r\n", measurements.SOC, measurements.percentage_SOC, msg.id);
maxv008 23:a1af4439c1fc 165
lcockerton62 1:51477fe4851b 166 // Min/max cell voltages
maxv008 23:a1af4439c1fc 167 msg = createCellVoltageMAXMIN(measurements.max_cell_voltage, measurements.min_cell_voltage);
maxv008 23:a1af4439c1fc 168 can.write(msg);
maxv008 23:a1af4439c1fc 169
maxv008 23:a1af4439c1fc 170 // Min/Max cell temperatures
maxv008 23:a1af4439c1fc 171 msg = createCellTemperatureMAXMIN(measurements.min_cell_temp, true);
maxv008 23:a1af4439c1fc 172 can.write(msg);
maxv008 23:a1af4439c1fc 173 msg = createCellTemperatureMAXMIN(measurements.max_cell_temp, false);
maxv008 23:a1af4439c1fc 174 can.write(msg);
maxv008 31:888b2602aab2 175 wait(0.1); //WAITS ABSOLUTELY NECESSARY! values may be changed. Limit to how fast msg can be sent
lcockerton62 2:94716229ecc3 176 // Battery voltage and current
maxv008 23:a1af4439c1fc 177 msg = createBatteryVI(measurements.battery_voltage,measurements.battery_current);
maxv008 31:888b2602aab2 178 can.write(msg);
DasSidG 36:1b23c0692f54 179 if (DEBUG) printf("Sent Battery voltage %d and current %f with id %d \r\n",decodeBatteryVoltage(msg),decodeBatteryCurrent(msg),msg.id);
maxv008 23:a1af4439c1fc 180
lcockerton62 1:51477fe4851b 181 //Extended battery pack status
maxv008 23:a1af4439c1fc 182 msg = createExtendedBatteryPackStatus(status);
maxv008 23:a1af4439c1fc 183 can.write(msg);
maxv008 31:888b2602aab2 184
DasSidG 36:1b23c0692f54 185 if (DEBUG) printf("Sent battery pack status with value %d \r\n", status);
DasSidG 36:1b23c0692f54 186
maxv008 31:888b2602aab2 187 msg = createBMSHeartbeat(0, 0);
maxv008 31:888b2602aab2 188 can.write(msg);
maxv008 45:c288d7cbdb4a 189
maxv008 45:c288d7cbdb4a 190 msg = createIVTACurrent(measurements.ivta_current);
maxv008 45:c288d7cbdb4a 191 can.write(msg);
lcockerton62 0:0a5f554d2a16 192 }
lcockerton62 0:0a5f554d2a16 193
maxv008 10:1079f8e52d65 194
lcockerton62 1:51477fe4851b 195 uint16_t read_EEPROM_startup(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 196 {
lcockerton62 1:51477fe4851b 197 /* The first page of the EEPROM, specifically the first 2 addresses store a
lcockerton62 1:51477fe4851b 198 pointer of the first memory location of measurement data. The EEPROM only has a finite number of
lcockerton62 1:51477fe4851b 199 read/write cycles which is why we aren't writing to the same location throughout
lcockerton62 1:51477fe4851b 200 */
lcockerton62 30:d90895e96226 201 uint16_t start_address1;
lcockerton62 30:d90895e96226 202 uint16_t start_address2;
maxv008 35:be07fef5db72 203 char start_address_array1[4];
maxv008 35:be07fef5db72 204 char start_address_array2[4];
lcockerton62 22:2df45c818786 205 char SOC_out[10]; // 4 bytes for the 2 floats one is SOC and the other % charge
lcockerton62 30:d90895e96226 206 bool is_first_read_true = 0;
lcockerton62 30:d90895e96226 207 bool is_second_read_true = 0;
maxv008 35:be07fef5db72 208
maxv008 35:be07fef5db72 209 union float2bytes { float f; char b[sizeof(float)]; };
maxv008 35:be07fef5db72 210 float2bytes SOC_union;
maxv008 35:be07fef5db72 211 float2bytes SOC_Percent_union;
lcockerton62 30:d90895e96226 212
lcockerton62 30:d90895e96226 213 // Get a pointer to the start address for the data stored in the eeprom
maxv008 35:be07fef5db72 214 i2c_page_read(0x0000, 4, start_address_array1);
DasSidG 36:1b23c0692f54 215 if (DEBUG) printf("\r\n\ Start address (%d,%d) \r\n \r\n", start_address_array1[0], start_address_array1[1]);
maxv008 35:be07fef5db72 216 i2c_page_read(0x0004, 4, start_address_array2);
lcockerton62 30:d90895e96226 217
maxv008 35:be07fef5db72 218 is_first_read_true = check_EEPROM_PEC(start_address_array1, SOC_out);
lcockerton62 30:d90895e96226 219
lcockerton62 30:d90895e96226 220 if(is_first_read_true){
maxv008 35:be07fef5db72 221 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 222 SOC_union.b[i] = SOC_out[i];
maxv008 35:be07fef5db72 223 }
maxv008 35:be07fef5db72 224
maxv008 35:be07fef5db72 225 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 226 SOC_Percent_union.b[i] = SOC_out[i + sizeof(float)];
maxv008 35:be07fef5db72 227 }
maxv008 35:be07fef5db72 228 measurements.SOC = SOC_union.f;
maxv008 35:be07fef5db72 229 measurements.percentage_SOC = SOC_Percent_union.f;
lcockerton62 30:d90895e96226 230 }
lcockerton62 30:d90895e96226 231 else{
maxv008 35:be07fef5db72 232 is_second_read_true = check_EEPROM_PEC(start_address_array2, SOC_out);
lcockerton62 30:d90895e96226 233
lcockerton62 30:d90895e96226 234 if(is_second_read_true){
maxv008 35:be07fef5db72 235 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 236 SOC_union.b[i] = SOC_out[i];
maxv008 35:be07fef5db72 237 }
maxv008 35:be07fef5db72 238
maxv008 35:be07fef5db72 239 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 240 SOC_Percent_union.b[i] = SOC_out[i + sizeof(float)];
maxv008 35:be07fef5db72 241 }
maxv008 35:be07fef5db72 242 measurements.SOC = SOC_union.f;
maxv008 35:be07fef5db72 243 measurements.percentage_SOC = SOC_Percent_union.f;
lcockerton62 30:d90895e96226 244 }
lcockerton62 30:d90895e96226 245 }
lcockerton62 30:d90895e96226 246
lcockerton62 30:d90895e96226 247 if(is_second_read_true || is_first_read_true){
lcockerton62 30:d90895e96226 248 // Select the next address to write to
maxv008 35:be07fef5db72 249 start_address1 = (start_address_array1[1] << 8) | (start_address_array1[0]);
maxv008 35:be07fef5db72 250 start_address2 = (start_address_array2[1] << 8) | (start_address_array2[0]);
maxv008 35:be07fef5db72 251 start_address1 += 0x0040;
maxv008 32:5b82679b2e6f 252 start_address2 += 0x0040; //Also each SOC is taking 0xA space, so 0x15 should be sufficient offset
maxv008 35:be07fef5db72 253 if(start_address2 > MAX_WRITE_ADDRESS) { //Check second start address since it is the larger value.
DasSidG 36:1b23c0692f54 254 if (DEBUG) printf("Resetting start_address \r\n");
lcockerton62 30:d90895e96226 255 start_address1 = START_WRITE_ADDRESS; // Loop to the start of the eeprom
lcockerton62 30:d90895e96226 256 start_address2 = START_WRITE_ADDRESS + SECOND_ADDRESS_OFFSET; // Write this data SECOND_ADDRESS_OFFSET memory locations later than the first set // (this was chosen since only 10 bytes are written to memory
lcockerton62 30:d90895e96226 257 }
maxv008 35:be07fef5db72 258 start_address_array1[0] = start_address1 & 0x00FF;
maxv008 35:be07fef5db72 259 start_address_array1[1] = start_address1 >> 8;
maxv008 35:be07fef5db72 260 start_address_array2[0] = start_address2 & 0x00FF;
maxv008 32:5b82679b2e6f 261 start_address_array2[1] = start_address2 >> 8;
maxv008 35:be07fef5db72 262 //PEC for new address
maxv008 35:be07fef5db72 263 uint16_t pec_address1 = pec15_calc(2, (uint8_t*)start_address_array1);
maxv008 35:be07fef5db72 264 uint16_t pec_address2 = pec15_calc(2, (uint8_t*)start_address_array2);
maxv008 35:be07fef5db72 265 start_address_array1[2] = (char) (pec_address1 >> 8);
maxv008 35:be07fef5db72 266 start_address_array1[3] = (char) (pec_address1);
maxv008 35:be07fef5db72 267 start_address_array2[2] = (char) (pec_address2 >> 8);
maxv008 35:be07fef5db72 268 start_address_array2[3] = (char) (pec_address2);
lcockerton62 30:d90895e96226 269
lcockerton62 30:d90895e96226 270 // Write the new location of the address to memory
maxv008 35:be07fef5db72 271 wait_ms(10);
maxv008 35:be07fef5db72 272 i2c_page_write(0x0000, 4, start_address_array1);
maxv008 33:44b241c7b2c1 273 wait_ms(10);
maxv008 35:be07fef5db72 274 i2c_page_write(0x0004, 4, start_address_array2);
lcockerton62 30:d90895e96226 275
maxv008 35:be07fef5db72 276 write_SOC_EEPROM(measurements, start_address1); //Initializes new memory location to avoid PEC if reset without taking measurements.
lcockerton62 30:d90895e96226 277 return start_address1;
lcockerton62 30:d90895e96226 278 }
lcockerton62 30:d90895e96226 279 else{
DasSidG 46:ac7065d52d6e 280 if (DEBUG) printf("EEPROM PEC error \r\n"); //@TODO an error flag should be raised since both values have failed
maxv008 32:5b82679b2e6f 281
lcockerton62 30:d90895e96226 282 }
maxv008 32:5b82679b2e6f 283 return -1; //Will end up as maximum integer, just indicating an error.
maxv008 32:5b82679b2e6f 284 }
maxv008 32:5b82679b2e6f 285
maxv008 32:5b82679b2e6f 286 void reset_EEPROM(float init_SOC, float init_SOC_Percent)
maxv008 32:5b82679b2e6f 287 {
maxv008 32:5b82679b2e6f 288 char start_address_array1[2]; //Purely for testing
DasSidG 34:65fd6a72106f 289 char start_address_array2[2]; //Purely for testing
maxv008 33:44b241c7b2c1 290 char test_float_array[10];
maxv008 32:5b82679b2e6f 291 //Very first addresses to use
maxv008 35:be07fef5db72 292 char first_address[4] = {0x40,0,0,0}; //Address 0x0040, PEC section left blank to start
maxv008 35:be07fef5db72 293 char second_address[4] = {first_address[0] + SECOND_ADDRESS_OFFSET,0,0,0};
maxv008 32:5b82679b2e6f 294 uint16_t address1 = (first_address[1] << 8) | first_address[0];
maxv008 32:5b82679b2e6f 295 uint16_t address2 = (second_address[1] << 8) | second_address[0];
maxv008 35:be07fef5db72 296
maxv008 35:be07fef5db72 297 //PEC stuff for the addresses
maxv008 35:be07fef5db72 298 uint16_t pec_address1 = pec15_calc(2, (uint8_t*)first_address);
maxv008 35:be07fef5db72 299 uint16_t pec_address2 = pec15_calc(2, (uint8_t*)second_address);
maxv008 35:be07fef5db72 300 first_address[2] = (char) (pec_address1 >> 8);
maxv008 35:be07fef5db72 301 first_address[3] = (char) (pec_address1);
maxv008 35:be07fef5db72 302 second_address[2] = (char) (pec_address2 >> 8);
maxv008 35:be07fef5db72 303 second_address[3] = (char) (pec_address2);
maxv008 32:5b82679b2e6f 304
maxv008 35:be07fef5db72 305 i2c_page_write(0x0000, 4, first_address);
maxv008 33:44b241c7b2c1 306 wait_ms(10);
maxv008 35:be07fef5db72 307 i2c_page_write(0x0004, 4, second_address); //This initializes addresses
maxv008 32:5b82679b2e6f 308 //Next segment is for putting initial SOC in:
maxv008 33:44b241c7b2c1 309 wait_ms(10);
maxv008 32:5b82679b2e6f 310
maxv008 32:5b82679b2e6f 311 char data_out[10];
maxv008 32:5b82679b2e6f 312 uint16_t data_pec;
DasSidG 34:65fd6a72106f 313
DasSidG 34:65fd6a72106f 314 union float2bytes { float f; char b[sizeof(float)]; };
DasSidG 34:65fd6a72106f 315
DasSidG 34:65fd6a72106f 316 float2bytes init_SOC_union;
DasSidG 34:65fd6a72106f 317 float2bytes init_SOC_Percent_union;
DasSidG 34:65fd6a72106f 318
DasSidG 34:65fd6a72106f 319 init_SOC_union.f = init_SOC;
DasSidG 34:65fd6a72106f 320 for ( int i=0; i < sizeof(float); i++ ) {
DasSidG 34:65fd6a72106f 321 data_out[i] = init_SOC_union.b[i];
DasSidG 34:65fd6a72106f 322 }
DasSidG 34:65fd6a72106f 323
DasSidG 34:65fd6a72106f 324 init_SOC_Percent_union.f = init_SOC_Percent;
DasSidG 34:65fd6a72106f 325 for ( int i=0; i < sizeof(float); i++ ) {
DasSidG 34:65fd6a72106f 326 data_out[i+sizeof(float)] = init_SOC_Percent_union.b[i];
DasSidG 34:65fd6a72106f 327 }
maxv008 32:5b82679b2e6f 328
maxv008 32:5b82679b2e6f 329 data_pec = pec15_calc(8, ((uint8_t*)data_out)); // Calculate the pec and then write it to memory
maxv008 32:5b82679b2e6f 330 data_out[8] = (char)(data_pec >> 8);
maxv008 32:5b82679b2e6f 331 data_out[9] = (char)(data_pec);
DasSidG 34:65fd6a72106f 332
maxv008 32:5b82679b2e6f 333 i2c_page_write(address1, 10,data_out);
maxv008 33:44b241c7b2c1 334 wait_ms(10);
maxv008 32:5b82679b2e6f 335 i2c_page_write(address2, 10,data_out);
DasSidG 34:65fd6a72106f 336 wait_ms(10);
maxv008 35:be07fef5db72 337 i2c_page_read(0x0000,4,start_address_array1);
DasSidG 34:65fd6a72106f 338 wait_ms(10);
maxv008 35:be07fef5db72 339 i2c_page_read(0x0004,4,start_address_array2);
DasSidG 36:1b23c0692f54 340 if (DEBUG) printf("Start address 1 is (%x,%x) \r\n \r\n", start_address_array1[0], start_address_array1[1]);
DasSidG 36:1b23c0692f54 341 if (DEBUG) printf("Start address 2 is (%x,%x) \r\n \r\n", start_address_array2[0], start_address_array2[1]);
maxv008 33:44b241c7b2c1 342 wait_ms(10);
DasSidG 34:65fd6a72106f 343 i2c_page_read(address1,10,test_float_array);
maxv008 35:be07fef5db72 344 /*for (int i = 0; i < 10; ++i) {
DasSidG 34:65fd6a72106f 345 printf("test_float array %d is %d \r\n", i, test_float_array[i]);
maxv008 35:be07fef5db72 346 }*/
DasSidG 34:65fd6a72106f 347
DasSidG 34:65fd6a72106f 348 float2bytes rec_init_SOC_union;
DasSidG 34:65fd6a72106f 349 float2bytes rec_init_SOC_Percentage_union;
DasSidG 34:65fd6a72106f 350
DasSidG 34:65fd6a72106f 351
DasSidG 34:65fd6a72106f 352 for ( int i=0; i < sizeof(float); i++ ) {
DasSidG 34:65fd6a72106f 353 rec_init_SOC_union.b[i] = test_float_array[i];
DasSidG 34:65fd6a72106f 354 }
DasSidG 34:65fd6a72106f 355 float rec_init_SOC = rec_init_SOC_union.f;
DasSidG 34:65fd6a72106f 356
DasSidG 34:65fd6a72106f 357 for ( int i=0; i < sizeof(float); i++ ) {
DasSidG 34:65fd6a72106f 358 rec_init_SOC_Percentage_union.b[i] = test_float_array[i+4];
DasSidG 34:65fd6a72106f 359 }
DasSidG 34:65fd6a72106f 360 float rec_init_SOC_Percentage = rec_init_SOC_Percentage_union.f;
DasSidG 34:65fd6a72106f 361
DasSidG 36:1b23c0692f54 362 if (DEBUG) printf("init SOC %f \r\n \r\n", rec_init_SOC);
DasSidG 36:1b23c0692f54 363 if (DEBUG) printf("percentage SOC %f \r\n \r\n", rec_init_SOC_Percentage);
lcockerton62 30:d90895e96226 364 }
lcockerton62 30:d90895e96226 365
maxv008 35:be07fef5db72 366 bool check_EEPROM_PEC(char start_address_array[], char SOC_out[]){
lcockerton62 30:d90895e96226 367 // Helper method to check the PEC, returns 0 if the pec is wrong and 1 if the pec is correct
maxv008 35:be07fef5db72 368 uint16_t adr_recieved_pec;
maxv008 35:be07fef5db72 369 uint16_t adr_data_pec;
lcockerton62 22:2df45c818786 370 uint16_t received_pec;
lcockerton62 22:2df45c818786 371 uint16_t data_pec;
lcockerton62 30:d90895e96226 372
maxv008 35:be07fef5db72 373 //Check the PEC of the address itself
maxv008 35:be07fef5db72 374 adr_recieved_pec = (uint16_t)(start_address_array[2] << 8) + (uint16_t)start_address_array[3];
maxv008 35:be07fef5db72 375 adr_data_pec = pec15_calc(2, (uint8_t*)start_address_array);
maxv008 35:be07fef5db72 376 if(adr_recieved_pec != adr_data_pec){
DasSidG 36:1b23c0692f54 377 if (DEBUG) printf("PEC Error in address \r\n");
maxv008 35:be07fef5db72 378 return 0; //If they are equal, continue on to checking the data
maxv008 35:be07fef5db72 379 }
maxv008 35:be07fef5db72 380
lcockerton62 1:51477fe4851b 381 // Read the data from this address
maxv008 35:be07fef5db72 382 uint16_t start_address = (start_address_array[1]<< 8) | start_address_array[0]; // mbed little endian follow this convention
lcockerton62 22:2df45c818786 383 i2c_page_read(start_address, 10,SOC_out); // Reading will aquire 2 floats and a PEC for the data
lcockerton62 0:0a5f554d2a16 384
lcockerton62 22:2df45c818786 385 // Convert the SOC_out values back into floats and deal with the pec
lcockerton62 22:2df45c818786 386 received_pec = (uint16_t)(SOC_out[8]<<8) + (uint16_t)SOC_out[9];
lcockerton62 22:2df45c818786 387 data_pec = pec15_calc(8, (uint8_t*)SOC_out);
lcockerton62 22:2df45c818786 388 if(received_pec != data_pec) {
lcockerton62 30:d90895e96226 389 return 0;
lcockerton62 22:2df45c818786 390 }
lcockerton62 30:d90895e96226 391 else
lcockerton62 30:d90895e96226 392 return 1;
lcockerton62 0:0a5f554d2a16 393 }
lcockerton62 0:0a5f554d2a16 394
maxv008 35:be07fef5db72 395 //Note, this function does not check PEC of address, assumes correctness!
lcockerton62 1:51477fe4851b 396 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address)
lcockerton62 0:0a5f554d2a16 397 {
lcockerton62 22:2df45c818786 398 char data_out[10];
maxv008 35:be07fef5db72 399 //float *fp1,*fp2;
lcockerton62 22:2df45c818786 400 uint16_t data_pec;
maxv008 35:be07fef5db72 401 union float2bytes { float f; char b[sizeof(float)]; };
maxv008 35:be07fef5db72 402 float2bytes SOC_union;
maxv008 35:be07fef5db72 403 float2bytes SOC_Percent_union;
lcockerton62 0:0a5f554d2a16 404
maxv008 35:be07fef5db72 405
maxv008 35:be07fef5db72 406 SOC_union.f = measurements.SOC;
maxv008 35:be07fef5db72 407 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 408 data_out[i] = SOC_union.b[i];
lcockerton62 1:51477fe4851b 409 }
maxv008 35:be07fef5db72 410
maxv008 35:be07fef5db72 411 SOC_Percent_union.f = measurements.percentage_SOC;
maxv008 35:be07fef5db72 412 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 413 data_out[i+sizeof(float)] = SOC_Percent_union.b[i];
lcockerton62 1:51477fe4851b 414 }
maxv008 35:be07fef5db72 415
lcockerton62 22:2df45c818786 416 data_pec = pec15_calc(8, ((uint8_t*)data_out)); // Calculate the pec and then write it to memory
lcockerton62 22:2df45c818786 417 data_out[8] = (char)(data_pec >> 8);
lcockerton62 22:2df45c818786 418 data_out[9] = (char)(data_pec);
maxv008 35:be07fef5db72 419 wait_ms(10); //Just in case function calling it doesnt put a wait before hand
lcockerton62 30:d90895e96226 420 i2c_page_write(start_address, 10,data_out);
maxv008 35:be07fef5db72 421 wait_ms(10);
lcockerton62 30:d90895e96226 422 i2c_page_write((start_address+SECOND_ADDRESS_OFFSET), 10,data_out); // Write the data to the backup memory location, SECOND_ADDRESS_OFFSET memory locations later
lcockerton62 0:0a5f554d2a16 423 }
lcockerton62 0:0a5f554d2a16 424
maxv008 45:c288d7cbdb4a 425 int ivta_transfer(int * txrx)
maxv008 45:c288d7cbdb4a 426 {
maxv008 45:c288d7cbdb4a 427 char i;// j;
maxv008 45:c288d7cbdb4a 428 uint16_t crc;
maxv008 45:c288d7cbdb4a 429
maxv008 45:c288d7cbdb4a 430 //pc.printf("*** Into a transfer*** \r \n");
maxv008 45:c288d7cbdb4a 431
maxv008 45:c288d7cbdb4a 432 // Activate IVT-A and send packet.
maxv008 45:c288d7cbdb4a 433 IVTA_SS = ACTIVE;
maxv008 45:c288d7cbdb4a 434 //pc.printf("Data sent");
maxv008 45:c288d7cbdb4a 435 wait_us(3);
maxv008 45:c288d7cbdb4a 436 for(i = 0; i < 9; i++)
maxv008 45:c288d7cbdb4a 437 {
maxv008 45:c288d7cbdb4a 438 spi_ivta.write(txrx[i]);
maxv008 45:c288d7cbdb4a 439 wait_us(3);
maxv008 45:c288d7cbdb4a 440 }
maxv008 45:c288d7cbdb4a 441 wait_us(3);
maxv008 45:c288d7cbdb4a 442 IVTA_SS = INACTIVE;
maxv008 45:c288d7cbdb4a 443 /*
maxv008 45:c288d7cbdb4a 444 Note: we ignore the packet sent by the IVT-A
maxv008 45:c288d7cbdb4a 445 during this communication phase. Similarly,
maxv008 45:c288d7cbdb4a 446 we only receive data in the next phase. Essentially
maxv008 45:c288d7cbdb4a 447 we run the IVT-A in half-duplex mode.
maxv008 45:c288d7cbdb4a 448 */
maxv008 45:c288d7cbdb4a 449
maxv008 45:c288d7cbdb4a 450 wait_us(500); // Wait between packets
maxv008 45:c288d7cbdb4a 451 IVTA_SS = ACTIVE; // Activate IVT-A and receive packet.
maxv008 45:c288d7cbdb4a 452 wait_us(3);
maxv008 45:c288d7cbdb4a 453 for(i = 0; i < 9; i++)
maxv008 45:c288d7cbdb4a 454 {
maxv008 45:c288d7cbdb4a 455 txrx[i] = spi_ivta.write(0x00); // Write some dummy data(half duplex)
maxv008 45:c288d7cbdb4a 456 wait_us(3);
maxv008 45:c288d7cbdb4a 457 }
maxv008 45:c288d7cbdb4a 458 wait_us(3);
maxv008 45:c288d7cbdb4a 459 IVTA_SS = INACTIVE;
maxv008 45:c288d7cbdb4a 460
maxv008 45:c288d7cbdb4a 461 return 0;
maxv008 45:c288d7cbdb4a 462 }
maxv008 45:c288d7cbdb4a 463
maxv008 45:c288d7cbdb4a 464 /*
maxv008 45:c288d7cbdb4a 465 Initialise IVT-A.
maxv008 45:c288d7cbdb4a 466 Write configuration:
maxv008 45:c288d7cbdb4a 467 + Current in 300A range measured on channel A.
maxv008 45:c288d7cbdb4a 468 + Temperature measured on channel B (currently unused).
maxv008 45:c288d7cbdb4a 469 + Average data over 10 samples.
maxv008 45:c288d7cbdb4a 470 */
maxv008 45:c288d7cbdb4a 471 int ivta_init(void)
maxv008 45:c288d7cbdb4a 472 {
maxv008 45:c288d7cbdb4a 473 spi_ivta.format(8,0); // The format works for 0 or 1, most of testing done with 0
maxv008 45:c288d7cbdb4a 474 spi_ivta.frequency(500000);
maxv008 45:c288d7cbdb4a 475 /* The last 2 bytes of the package are the CRC check, upper 4 bits in the
maxv008 45:c288d7cbdb4a 476 command are the command code */
maxv008 45:c288d7cbdb4a 477 int transfer;
maxv008 45:c288d7cbdb4a 478 int packet[9] = {0x90,1,5,200,0,0,0,0x78,0xB8};
maxv008 45:c288d7cbdb4a 479 transfer = ivta_transfer(packet);
maxv008 45:c288d7cbdb4a 480 return transfer;
maxv008 45:c288d7cbdb4a 481 }
maxv008 45:c288d7cbdb4a 482
maxv008 45:c288d7cbdb4a 483 /*
maxv008 45:c288d7cbdb4a 484 Fetch current from IVT-A. Return error codes
maxv008 45:c288d7cbdb4a 485 as defined in ivta.h. Supplied current pointer
maxv008 45:c288d7cbdb4a 486 must point to 3 chars.
maxv008 45:c288d7cbdb4a 487 */
maxv008 45:c288d7cbdb4a 488 int ivta_get_current(int measurements[])
maxv008 45:c288d7cbdb4a 489 {
maxv008 45:c288d7cbdb4a 490 //printf("In get current \r \n");
maxv008 45:c288d7cbdb4a 491 //int r_val;
maxv008 45:c288d7cbdb4a 492 int packet[9] = {0x10,1,0,0,0,0,0,0x0B,0x10}; // Command code 1.
maxv008 45:c288d7cbdb4a 493 //printf("In get current \r \n");
maxv008 45:c288d7cbdb4a 494 int r_val = ivta_transfer(packet);
maxv008 45:c288d7cbdb4a 495
maxv008 45:c288d7cbdb4a 496 /* printf("Packet1 : %d \r", packet[1]);
maxv008 45:c288d7cbdb4a 497 printf("Packet1 : %d \r", packet[2]);
maxv008 45:c288d7cbdb4a 498 printf("Packet1 : %d \r", packet[3]);
maxv008 45:c288d7cbdb4a 499 printf("Packet1 : %d \r", packet[4]);*/
maxv008 45:c288d7cbdb4a 500
maxv008 45:c288d7cbdb4a 501 measurements[0] = packet[1]; // Must shift the index of the packet
maxv008 45:c288d7cbdb4a 502 measurements[1] = packet[2];
maxv008 45:c288d7cbdb4a 503 measurements[2] = packet[3];
maxv008 45:c288d7cbdb4a 504 measurements[3] = packet[4];
maxv008 45:c288d7cbdb4a 505 measurements[4] = packet[5];
maxv008 45:c288d7cbdb4a 506 measurements[5] = packet[6];
maxv008 45:c288d7cbdb4a 507
maxv008 45:c288d7cbdb4a 508 return 0;
maxv008 45:c288d7cbdb4a 509 }
maxv008 45:c288d7cbdb4a 510
maxv008 45:c288d7cbdb4a 511
lcockerton62 1:51477fe4851b 512 void read_temperature_sensors(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 513 {
lcockerton62 1:51477fe4851b 514 float min_temperature;
maxv008 23:a1af4439c1fc 515 char min_id[8];
lcockerton62 1:51477fe4851b 516 float max_temperature;
maxv008 23:a1af4439c1fc 517 char max_id[8];
DasSidG 21:d461d58e70fc 518 isotherm_12V_pin = 1;
lcockerton62 1:51477fe4851b 519 probe[0]->convert_temperature(DS1820::all_devices);
DasSidG 21:d461d58e70fc 520
lcockerton62 1:51477fe4851b 521 min_temperature = probe[0]->temperature('C');
maxv008 23:a1af4439c1fc 522 std::memcpy(min_id, probe[0]->ROM, sizeof(char)*8); //invalid shallow copy: min_id = probe[0]->ROM;
lcockerton62 1:51477fe4851b 523 max_temperature = min_temperature; // Initially set the max and min temperature equal
maxv008 23:a1af4439c1fc 524 std::memcpy(max_id, probe[0]->ROM, sizeof(char)*8);
DasSidG 16:b2ef68c9a4fd 525 for (int i=0; i<devices_found; i++) {
maxv008 14:e0e88a009f4c 526 for(int j = 0; j < 7; j++)
maxv008 14:e0e88a009f4c 527 measurements.temperature_measurements[i].ROMID[j] = probe[i]->ROM[j];
lcockerton62 1:51477fe4851b 528 measurements.temperature_measurements[i].measurement = probe[i] ->temperature('C');
maxv008 14:e0e88a009f4c 529
lcockerton62 1:51477fe4851b 530 if(measurements.temperature_measurements[i].measurement > max_temperature) {
lcockerton62 1:51477fe4851b 531 max_temperature = measurements.temperature_measurements[i].measurement;
maxv008 23:a1af4439c1fc 532 std::memcpy(max_id, measurements.temperature_measurements[i].ROMID, sizeof(char)*8);
lcockerton62 2:94716229ecc3 533 } else if (measurements.temperature_measurements[i].measurement < min_temperature) {
lcockerton62 1:51477fe4851b 534 min_temperature = measurements.temperature_measurements[i].measurement;
maxv008 23:a1af4439c1fc 535 std::memcpy(min_id, measurements.temperature_measurements[i].ROMID, sizeof(char)*8);
lcockerton62 1:51477fe4851b 536 }
DasSidG 12:fa9b1a459e47 537
maxv008 18:521ffdd724f3 538 //printf("Device %d temperature is %3.3f degrees Celcius.\r\n",i+1 ,probe[i]->temperature('C'));
lcockerton62 1:51477fe4851b 539 }
DasSidG 21:d461d58e70fc 540 isotherm_12V_pin = 0;
maxv008 13:7b42af989cd1 541 //There is also a CMU # component of this struct, currently unfilled, perhaps not needed at all.
lcockerton62 1:51477fe4851b 542 measurements.max_cell_temp.temperature = max_temperature;
maxv008 23:a1af4439c1fc 543 std::memcpy(measurements.max_cell_temp.ROMID, max_id, sizeof(char)*8);
lcockerton62 1:51477fe4851b 544 measurements.min_cell_temp.temperature = min_temperature;
maxv008 28:f1f882bd1653 545 std::memcpy(measurements.min_cell_temp.ROMID, min_id, sizeof(char)*8);
maxv008 28:f1f882bd1653 546 delete max_id;
maxv008 28:f1f882bd1653 547 delete min_id;
lcockerton62 0:0a5f554d2a16 548 }
lcockerton62 0:0a5f554d2a16 549
lcockerton62 0:0a5f554d2a16 550 void update_SOC()
lcockerton62 0:0a5f554d2a16 551 {
lcockerton62 1:51477fe4851b 552 // Update the SOC value
maxv008 25:1fe8a42f8a6d 553 ltc2943.readAll();
lcockerton62 0:0a5f554d2a16 554 }
lcockerton62 0:0a5f554d2a16 555
lcockerton62 0:0a5f554d2a16 556
lcockerton62 1:51477fe4851b 557 uint32_t check_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 558 {
DasSidG 46:ac7065d52d6e 559 uint32_t status = 0;
lcockerton62 2:94716229ecc3 560
lcockerton62 2:94716229ecc3 561 if(measurements.max_cell_voltage.voltage > MAX_CELL_VOLTAGE) {
lcockerton62 2:94716229ecc3 562 status = status | CELL_OVER_VOLTAGE;
lcockerton62 2:94716229ecc3 563 } else if (measurements.min_cell_voltage.voltage < MIN_CELL_VOLTAGE) {
lcockerton62 1:51477fe4851b 564 status = status | CELL_UNDER_VOLTAGE;
lcockerton62 2:94716229ecc3 565 } else if (measurements.max_cell_temp.temperature > MAX_CELL_TEMPERATURE) {
lcockerton62 1:51477fe4851b 566 status = status | CELL_OVER_TEMPERATURE;
lcockerton62 1:51477fe4851b 567 }
lcockerton62 2:94716229ecc3 568
lcockerton62 1:51477fe4851b 569 /*
lcockerton62 1:51477fe4851b 570 @TODO also include errors for:
lcockerton62 1:51477fe4851b 571 *untrusted measurement
lcockerton62 1:51477fe4851b 572 *CMU timeout
lcockerton62 1:51477fe4851b 573 *SOC not valid
lcockerton62 1:51477fe4851b 574 */
lcockerton62 1:51477fe4851b 575 return status;
lcockerton62 1:51477fe4851b 576 }
lcockerton62 1:51477fe4851b 577
maxv008 23:a1af4439c1fc 578 //Returns the status variable
maxv008 23:a1af4439c1fc 579 uint32_t take_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 580 {
maxv008 6:b567fcb604aa 581 uint16_t cellvoltages[NO_CMUS][12];
DasSidG 16:b2ef68c9a4fd 582 //Use LTC6804_acquireVoltage to fill this array, and then properly format
maxv008 6:b567fcb604aa 583 //it to be sent over CAN
maxv008 6:b567fcb604aa 584
DasSidG 46:ac7065d52d6e 585 LTC6804_acquireVoltage(cellvoltages);
maxv008 23:a1af4439c1fc 586 pack_voltage_extremes min_voltage;
DasSidG 37:fae62a2773a1 587 pack_voltage_extremes max_voltage;
maxv008 23:a1af4439c1fc 588 min_voltage.voltage = 65535; //largest 16 bit unsigned int
maxv008 23:a1af4439c1fc 589 max_voltage.voltage = 0;
maxv008 23:a1af4439c1fc 590
DasSidG 37:fae62a2773a1 591 bool last_CMU = false;
maxv008 23:a1af4439c1fc 592 //Sets voltage readings as well as max/min voltage values.
maxv008 10:1079f8e52d65 593 for(int i=0; i<NO_CMUS; i++){
DasSidG 37:fae62a2773a1 594 if (i == (NO_CMUS - 1)) last_CMU = true;
maxv008 17:94dd9a0d3870 595 for(int j=0; j < NO_READINGS_PER_CMU; j++){
DasSidG 16:b2ef68c9a4fd 596 measurements.cell_voltages[i].voltages[j] = cellvoltages[i][j]/ 10; //To get units of mV
maxv008 17:94dd9a0d3870 597 measurements.cell_voltages[i].CMU_number = i;
DasSidG 37:fae62a2773a1 598
DasSidG 37:fae62a2773a1 599 if(!(last_CMU && j >(NO_READINGS_PER_CMU - (NUM_MISSING_CELLS + 1))))
DasSidG 37:fae62a2773a1 600 //the condition above is to account for the missing cells (not a complete set of 12) on the top CMU
maxv008 23:a1af4439c1fc 601 {
DasSidG 37:fae62a2773a1 602 if(measurements.cell_voltages[i].voltages[j] < min_voltage.voltage)
DasSidG 37:fae62a2773a1 603 {
DasSidG 37:fae62a2773a1 604 min_voltage.voltage = measurements.cell_voltages[i].voltages[j];
DasSidG 37:fae62a2773a1 605 min_voltage.CMU_number = i;
DasSidG 37:fae62a2773a1 606 min_voltage.cell_number = j;
DasSidG 37:fae62a2773a1 607 }
DasSidG 37:fae62a2773a1 608 else if(measurements.cell_voltages[i].voltages[j] > max_voltage.voltage)
DasSidG 37:fae62a2773a1 609 {
DasSidG 37:fae62a2773a1 610 max_voltage.voltage = measurements.cell_voltages[i].voltages[j];
DasSidG 37:fae62a2773a1 611 max_voltage.CMU_number = i;
DasSidG 37:fae62a2773a1 612 max_voltage.cell_number = j;
DasSidG 37:fae62a2773a1 613 }
DasSidG 37:fae62a2773a1 614 }
maxv008 10:1079f8e52d65 615 }
maxv008 23:a1af4439c1fc 616 }
maxv008 23:a1af4439c1fc 617 measurements.max_cell_voltage = max_voltage;
DasSidG 36:1b23c0692f54 618 if (DEBUG) printf("Max Voltage is %d \r\n", max_voltage.voltage);
maxv008 23:a1af4439c1fc 619 measurements.min_cell_voltage = min_voltage;
DasSidG 36:1b23c0692f54 620 if (DEBUG) printf("Min Voltage is %d \r\n", min_voltage.voltage);
DasSidG 4:9050c5d6925e 621
DasSidG 38:b1f5bfe38d70 622 //Code to take all temperature measurements and add it to measurements struct.
DasSidG 38:b1f5bfe38d70 623 //Don't need to take temperature measurements every loop though
DasSidG 38:b1f5bfe38d70 624
DasSidG 38:b1f5bfe38d70 625 if (temperature_counter ==TEMPERATURE_MEASUREMENT_FREQ) {
DasSidG 38:b1f5bfe38d70 626 read_temperature_sensors(measurements);
DasSidG 38:b1f5bfe38d70 627 temperature_counter = 0;
DasSidG 38:b1f5bfe38d70 628 }
DasSidG 38:b1f5bfe38d70 629 temperature_counter++;
DasSidG 38:b1f5bfe38d70 630
maxv008 23:a1af4439c1fc 631 // Update the SOC and take relevant measurements
maxv008 23:a1af4439c1fc 632 update_SOC();
maxv008 31:888b2602aab2 633 measurements.battery_voltage = 0;
maxv008 31:888b2602aab2 634 for(int i = 0; i < NO_CMUS; i++)
maxv008 31:888b2602aab2 635 {
maxv008 31:888b2602aab2 636 for(int j = 0; j < NO_READINGS_PER_CMU; j++)
maxv008 31:888b2602aab2 637 {
maxv008 31:888b2602aab2 638 measurements.battery_voltage += measurements.cell_voltages[i].voltages[j];
maxv008 31:888b2602aab2 639 }
maxv008 31:888b2602aab2 640 }
maxv008 31:888b2602aab2 641 measurements.battery_current =ltc2943.current() * 1000; //*1000 to convert to mA
DasSidG 4:9050c5d6925e 642 measurements.percentage_SOC = ltc2943.accumulatedCharge();
DasSidG 4:9050c5d6925e 643 measurements.SOC = (measurements.percentage_SOC /100) * BATTERY_CAPACITY;
maxv008 23:a1af4439c1fc 644
maxv008 45:c288d7cbdb4a 645 //The following takes IVT-A measurement
maxv008 45:c288d7cbdb4a 646 IVTA_SS = 1;
maxv008 45:c288d7cbdb4a 647 int ivta_measurements[6];
maxv008 45:c288d7cbdb4a 648 uint32_t unsigned_current;
maxv008 45:c288d7cbdb4a 649 ivta_init();
maxv008 45:c288d7cbdb4a 650
maxv008 45:c288d7cbdb4a 651 ivta_get_current(ivta_measurements);
maxv008 45:c288d7cbdb4a 652 unsigned_current = ((uint32_t)ivta_measurements[0]);
maxv008 45:c288d7cbdb4a 653 unsigned_current = unsigned_current | (((uint32_t)ivta_measurements[1]<<8));
maxv008 45:c288d7cbdb4a 654 unsigned_current = unsigned_current | (((uint32_t)ivta_measurements[2]<<16));
maxv008 45:c288d7cbdb4a 655
maxv008 45:c288d7cbdb4a 656 if(ivta_measurements[2] & 0x80){ //For some reason converting using 2's complement ¯\_(ツ)_/¯
maxv008 45:c288d7cbdb4a 657 uint32_t convertedData = ((~unsigned_current) + 1) & 0x00FFFFFF;
maxv008 45:c288d7cbdb4a 658 int32_t convertedData2 = (~convertedData)+1;
maxv008 45:c288d7cbdb4a 659 measurements.ivta_current = convertedData2;
maxv008 45:c288d7cbdb4a 660 if(DEBUG) printf("*** Current measurement value: %d *** \r \n",convertedData2);
maxv008 45:c288d7cbdb4a 661 }
maxv008 45:c288d7cbdb4a 662 else{
maxv008 45:c288d7cbdb4a 663 measurements.ivta_current = unsigned_current;
maxv008 45:c288d7cbdb4a 664 if(DEBUG) pc.printf("*** Current measurement value: %d *** \r \n", (int32_t)unsigned_current);
maxv008 45:c288d7cbdb4a 665 }
maxv008 23:a1af4439c1fc 666 // Check data for errors
maxv008 23:a1af4439c1fc 667 return check_measurements(measurements);
lcockerton62 1:51477fe4851b 668 }
lcockerton62 1:51477fe4851b 669
lcockerton62 0:0a5f554d2a16 670 void init()
lcockerton62 0:0a5f554d2a16 671 {
DasSidG 41:9183c5616281 672 PHY_PowerDown();
DasSidG 41:9183c5616281 673
maxv008 45:c288d7cbdb4a 674 if(TRANSMIT_MODE)
maxv008 45:c288d7cbdb4a 675 {
maxv008 45:c288d7cbdb4a 676 temperature_init(); // Initialise the temperature sensors
maxv008 45:c288d7cbdb4a 677 LTC2943_initialise(); //Initialises the fixed parameters of the LTC2943
maxv008 45:c288d7cbdb4a 678 LTC6804_init(MD_FAST, DCP_DISABLED, CELL_CH_ALL, AUX_CH_VREF2); //Initialises the LTC6804s
maxv008 31:888b2602aab2 679
maxv008 45:c288d7cbdb4a 680 ivta_init();
maxv008 45:c288d7cbdb4a 681 }
maxv008 14:e0e88a009f4c 682 for(int i=0; i<CAN_BUFFER_SIZE; i++)
maxv008 14:e0e88a009f4c 683 {
maxv008 14:e0e88a009f4c 684 buffer[i].id = BLANK_ID;
maxv008 14:e0e88a009f4c 685 safe_to_write[i]= true;
maxv008 14:e0e88a009f4c 686 }
maxv008 14:e0e88a009f4c 687
maxv008 14:e0e88a009f4c 688 //Initialise CAN stuff, attach CAN interrupt handlers
maxv008 14:e0e88a009f4c 689 can.frequency(CAN_BIT_RATE); //set transmission rate to agreed bit rate (ELEC-006)
maxv008 14:e0e88a009f4c 690 can.reset(); // (FUNC-018)
maxv008 14:e0e88a009f4c 691 can.attach(&interruptHandler, CAN::RxIrq); //receive interrupt handler
maxv008 14:e0e88a009f4c 692 can.attach(&CANDataSentCallback, CAN::TxIrq); //send interrupt handler
maxv008 17:94dd9a0d3870 693
maxv008 17:94dd9a0d3870 694 //Initialize voltage array
maxv008 17:94dd9a0d3870 695 for(int i = 0; i < NO_CMUS; i++)
maxv008 17:94dd9a0d3870 696 {
maxv008 17:94dd9a0d3870 697 for(int j = 0; j < NO_READINGS_PER_CMU; j++)
maxv008 17:94dd9a0d3870 698 {
maxv008 17:94dd9a0d3870 699 voltage_readings[i].voltages[j] = 0;
maxv008 17:94dd9a0d3870 700 }
maxv008 17:94dd9a0d3870 701 }
maxv008 20:a1a1bfc938da 702 //Initialize Temperature Array
maxv008 20:a1a1bfc938da 703 for(int i = 0; i < NO_TEMPERATURE_SENSORS; i++)
maxv008 20:a1a1bfc938da 704 {
maxv008 28:f1f882bd1653 705 templist[i].measurement = INFINITY;
maxv008 20:a1a1bfc938da 706 templist[i].ID = 0;
maxv008 20:a1a1bfc938da 707 }
maxv008 28:f1f882bd1653 708 //initialize stuff used in reading test:
maxv008 28:f1f882bd1653 709 packSOC = INFINITY;
maxv008 28:f1f882bd1653 710 packSOCPercentage = INFINITY;
maxv008 28:f1f882bd1653 711
maxv008 28:f1f882bd1653 712 minVolt.voltage = 0;
maxv008 28:f1f882bd1653 713 maxVolt.voltage = 0;
maxv008 28:f1f882bd1653 714
maxv008 28:f1f882bd1653 715 minTemp.temperature = 0; minTemp.ID = 0;
maxv008 28:f1f882bd1653 716 maxTemp.temperature = 0; maxTemp.ID = 0;
maxv008 31:888b2602aab2 717
maxv008 31:888b2602aab2 718 batteryCurrent = INFINITY; batteryVoltage = 0;
maxv008 14:e0e88a009f4c 719 }
maxv008 14:e0e88a009f4c 720
maxv008 14:e0e88a009f4c 721 void CANDataSentCallback(void) {
maxv008 14:e0e88a009f4c 722 CAN_data_sent = true;
lcockerton62 0:0a5f554d2a16 723 }
lcockerton62 0:0a5f554d2a16 724
maxv008 14:e0e88a009f4c 725 void interruptHandler()
maxv008 14:e0e88a009f4c 726 {
maxv008 14:e0e88a009f4c 727 CANMessage msg;
DasSidG 16:b2ef68c9a4fd 728 can.read(msg);
maxv008 14:e0e88a009f4c 729 for(int i=0; i<CAN_BUFFER_SIZE; i++) {
maxv008 14:e0e88a009f4c 730 if((buffer[i].id == msg.id || buffer[i].id==BLANK_ID) && safe_to_write[i]) {
maxv008 14:e0e88a009f4c 731 //("id %d added to buffer \r\n", msg.id);
maxv008 14:e0e88a009f4c 732 buffer[i] = msg;
maxv008 14:e0e88a009f4c 733 //return required so that only first blank buffer entry is converted to incoming message ID each time new message ID is encountered
maxv008 14:e0e88a009f4c 734 return;
maxv008 14:e0e88a009f4c 735 }
maxv008 14:e0e88a009f4c 736 }
maxv008 14:e0e88a009f4c 737 }
maxv008 14:e0e88a009f4c 738
maxv008 14:e0e88a009f4c 739 void test_read_CAN_buffer()
maxv008 14:e0e88a009f4c 740 {
maxv008 14:e0e88a009f4c 741 //Import the data from the buffer into a non-volatile, more usable format
maxv008 14:e0e88a009f4c 742 CAN_Data can_data[CAN_BUFFER_SIZE]; //container for all of the raw data
maxv008 17:94dd9a0d3870 743 CANMessage msgArray[CAN_BUFFER_SIZE]; //Same as above but some functions take message as their parameter
maxv008 14:e0e88a009f4c 744 int received_CAN_IDs[CAN_BUFFER_SIZE]; //needed to keep track of which IDs we've received so far
maxv008 14:e0e88a009f4c 745 for (int i = 0; i<CAN_BUFFER_SIZE; ++i)
maxv008 14:e0e88a009f4c 746 {
maxv008 14:e0e88a009f4c 747 safe_to_write[i] = false;
maxv008 14:e0e88a009f4c 748 can_data[i].importCANData(buffer[i]);
maxv008 14:e0e88a009f4c 749 received_CAN_IDs[i] = buffer[i].id;
maxv008 17:94dd9a0d3870 750 msgArray[i] = buffer[i];
maxv008 14:e0e88a009f4c 751 safe_to_write[i] = true;
maxv008 31:888b2602aab2 752 //printf("Id recieved %d \r\n", buffer[i].id);
maxv008 14:e0e88a009f4c 753 }
maxv008 17:94dd9a0d3870 754
maxv008 23:a1af4439c1fc 755 //voltage and Temp and SOC readings:
maxv008 18:521ffdd724f3 756 for(int i = 0; i < CAN_BUFFER_SIZE; i++)
maxv008 18:521ffdd724f3 757 {
maxv008 18:521ffdd724f3 758 //voltage
maxv008 28:f1f882bd1653 759 if(decodeVoltageTelemetry(msgArray[i], voltage_readings))
ItsJustZi 29:44924d2b1293 760 continue;
maxv008 28:f1f882bd1653 761 //temperature
maxv008 20:a1a1bfc938da 762 if(msgArray[i].id >= 0x700)
maxv008 18:521ffdd724f3 763 {
maxv008 20:a1a1bfc938da 764 individual_temperature dataPoint = decodeTemperatureTelemetry(msgArray[i]);
maxv008 20:a1a1bfc938da 765 for(int j = 0; j < NO_TEMPERATURE_SENSORS; j++)
maxv008 20:a1a1bfc938da 766 {
maxv008 20:a1a1bfc938da 767 if(dataPoint.ID == templist[j].ID)
maxv008 20:a1a1bfc938da 768 {
maxv008 20:a1a1bfc938da 769 templist[j] = dataPoint;
maxv008 20:a1a1bfc938da 770 break;
maxv008 20:a1a1bfc938da 771 }
maxv008 20:a1a1bfc938da 772 else if(templist[j].ID == 0)
maxv008 20:a1a1bfc938da 773 {
maxv008 20:a1a1bfc938da 774 templist[j] = dataPoint;
maxv008 20:a1a1bfc938da 775 break;
maxv008 20:a1a1bfc938da 776 }
maxv008 20:a1a1bfc938da 777 }
maxv008 20:a1a1bfc938da 778
maxv008 23:a1af4439c1fc 779 }
maxv008 23:a1af4439c1fc 780 //SOC
maxv008 23:a1af4439c1fc 781 if(msgArray[i].id == 0x6F4)
maxv008 23:a1af4439c1fc 782 {
maxv008 23:a1af4439c1fc 783 packSOC = decodePackSOC(msgArray[i]);
maxv008 23:a1af4439c1fc 784 packSOCPercentage = decodePackSOCPercentage(msgArray[i]);
maxv008 28:f1f882bd1653 785 }
maxv008 23:a1af4439c1fc 786
maxv008 23:a1af4439c1fc 787 if(msgArray[i].id == BMS_BASE_ID + MIN_TEMPERATURE)
maxv008 23:a1af4439c1fc 788 minTemp = decodeCellTemperatureMAXMIN(msgArray[i]);
maxv008 23:a1af4439c1fc 789 if(msgArray[i].id == BMS_BASE_ID + MAX_TEMPERATURE)
maxv008 23:a1af4439c1fc 790 maxTemp = decodeCellTemperatureMAXMIN(msgArray[i]);
maxv008 28:f1f882bd1653 791
maxv008 23:a1af4439c1fc 792 if(msgArray[i].id == BMS_BASE_ID + MAX_MIN_VOLTAGE)
maxv008 23:a1af4439c1fc 793 {
maxv008 23:a1af4439c1fc 794 decodeCellVoltageMAXMIN(msgArray[i], minVolt, maxVolt);
maxv008 23:a1af4439c1fc 795 }
maxv008 23:a1af4439c1fc 796
maxv008 31:888b2602aab2 797 if(msgArray[i].id == BMS_BASE_ID + BATTERY_VI_ID)
maxv008 31:888b2602aab2 798 {
maxv008 31:888b2602aab2 799 batteryVoltage = decodeBatteryVoltage(msgArray[i]);
maxv008 31:888b2602aab2 800 batteryCurrent = decodeBatteryCurrent(msgArray[i]);
maxv008 31:888b2602aab2 801 }
maxv008 31:888b2602aab2 802
maxv008 23:a1af4439c1fc 803 if(msgArray[i].id == BMS_BASE_ID + BATTERY_STATUS_ID)
maxv008 28:f1f882bd1653 804 status = decodeExtendedBatteryPackStatus(msgArray[i]);
maxv008 31:888b2602aab2 805
maxv008 31:888b2602aab2 806 if(msgArray[i].id == BMS_BASE_ID)
DasSidG 36:1b23c0692f54 807 if (DEBUG) printf("BMS Heartbeat Recieved \r\n");
maxv008 45:c288d7cbdb4a 808
maxv008 45:c288d7cbdb4a 809 if(msgArray[i].id == BMS_BASE_ID + IVTA_ID)
maxv008 45:c288d7cbdb4a 810 if (DEBUG) printf("IVTA Current is %d \r\n", decodeIVTACurrent(msgArray[i]));
maxv008 28:f1f882bd1653 811 }
maxv008 18:521ffdd724f3 812 //Print obtained Readings:
maxv008 18:521ffdd724f3 813 for(int i = 0; i < NO_CMUS; i++)
maxv008 18:521ffdd724f3 814 for(int j = 0; j < 12; j++)
DasSidG 36:1b23c0692f54 815 if (DEBUG) printf("Voltage number %d for CMU %d is %d \r\n", j, i, voltage_readings[i].voltages[j]);
maxv008 17:94dd9a0d3870 816
maxv008 18:521ffdd724f3 817 for(int i = 0; i < NO_TEMPERATURE_SENSORS; i++)
DasSidG 36:1b23c0692f54 818 if (DEBUG) printf("Temperature of Sensor with ID %d is %f \r\n", templist[i].ID, templist[i].measurement);
maxv008 23:a1af4439c1fc 819
DasSidG 36:1b23c0692f54 820 if (DEBUG) printf("SOC is %f and SOC Percentage is %f \r\n", packSOC, packSOCPercentage);
maxv008 23:a1af4439c1fc 821
DasSidG 36:1b23c0692f54 822 if (DEBUG) printf("Battery Current is %f and Battery Voltage is %d \r\n", batteryCurrent, batteryVoltage);
maxv008 31:888b2602aab2 823
DasSidG 36:1b23c0692f54 824 if (DEBUG) printf("Voltage (Max,Min),(Max_CMU,Max_num) = (%d,%d),(%d,%d) \r\n", maxVolt.voltage, minVolt.voltage, maxVolt.CMU_number, maxVolt.cell_number);
maxv008 23:a1af4439c1fc 825
DasSidG 36:1b23c0692f54 826 if (DEBUG) printf("(Temperature, ID): Minimum = (%d,%d). Maximum = (%d,%d) \r\n",
maxv008 23:a1af4439c1fc 827 minTemp.temperature,minTemp.ID,maxTemp.temperature,maxTemp.ID);
maxv008 23:a1af4439c1fc 828
DasSidG 36:1b23c0692f54 829 if (DEBUG) printf("Status value is: %d \r\n", status);
maxv008 14:e0e88a009f4c 830 }
maxv008 23:a1af4439c1fc 831
maxv008 10:1079f8e52d65 832 void test_CAN_send()
maxv008 10:1079f8e52d65 833 {
maxv008 10:1079f8e52d65 834 CANMessage msg;
DasSidG 11:cf2db05cfa56 835 char value = 142;
maxv008 10:1079f8e52d65 836 msg = CANMessage(1, &value,1);
maxv008 10:1079f8e52d65 837 if(can.write(msg))
DasSidG 36:1b23c0692f54 838 if (DEBUG) printf("Succesfully sent %d \r\n", value);
maxv008 10:1079f8e52d65 839 else
DasSidG 36:1b23c0692f54 840 if (DEBUG) printf("Sending Failed \r\n");
maxv008 10:1079f8e52d65 841 }
maxv008 10:1079f8e52d65 842
maxv008 10:1079f8e52d65 843 void test_CAN_read()
maxv008 10:1079f8e52d65 844 {
maxv008 10:1079f8e52d65 845 CANMessage msg;
maxv008 10:1079f8e52d65 846 if(can.read(msg))
DasSidG 36:1b23c0692f54 847 if (DEBUG) printf("Successfully recieved %d \r\n", msg.data[0]);
maxv008 10:1079f8e52d65 848 else
DasSidG 36:1b23c0692f54 849 if (DEBUG) printf("Reading Failed \r\n");
maxv008 10:1079f8e52d65 850 }