Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of OmniWheels by
mbed-os/targets/TARGET_NXP/TARGET_LPC15XX/can_api.c
- Committer:
- gustavatmel
- Date:
- 2018-05-01
- Revision:
- 1:9c5af431a1f1
File content as of revision 1:9c5af431a1f1:
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "can_api.h"
#include "cmsis.h"
#include "mbed_error.h"
#include <math.h>
#include <string.h>
/* Handy defines */
#define RX_MSG_OBJ_COUNT 31
#define TX_MSG_OBJ_COUNT 1
#define DLC_MAX 8
#define ID_STD_MASK 0x07FF
#define ID_EXT_MASK 0x1FFFFFFF
#define DLC_MASK 0x0F
#define CANIFn_ARB2_DIR (1UL << 13)
#define CANIFn_ARB2_XTD (1UL << 14)
#define CANIFn_ARB2_MSGVAL (1UL << 15)
#define CANIFn_MSK2_MXTD (1UL << 15)
#define CANIFn_MSK2_MDIR (1UL << 14)
#define CANIFn_MCTRL_EOB (1UL << 7)
#define CANIFn_MCTRL_TXRQST (1UL << 8)
#define CANIFn_MCTRL_RMTEN (1UL << 9)
#define CANIFn_MCTRL_RXIE (1UL << 10)
#define CANIFn_MCTRL_TXIE (1UL << 11)
#define CANIFn_MCTRL_UMASK (1UL << 12)
#define CANIFn_MCTRL_INTPND (1UL << 13)
#define CANIFn_MCTRL_MSGLST (1UL << 14)
#define CANIFn_MCTRL_NEWDAT (1UL << 15)
#define CANIFn_CMDMSK_DATA_B (1UL << 0)
#define CANIFn_CMDMSK_DATA_A (1UL << 1)
#define CANIFn_CMDMSK_TXRQST (1UL << 2)
#define CANIFn_CMDMSK_NEWDAT (1UL << 2)
#define CANIFn_CMDMSK_CLRINTPND (1UL << 3)
#define CANIFn_CMDMSK_CTRL (1UL << 4)
#define CANIFn_CMDMSK_ARB (1UL << 5)
#define CANIFn_CMDMSK_MASK (1UL << 6)
#define CANIFn_CMDMSK_WR (1UL << 7)
#define CANIFn_CMDMSK_RD (0UL << 7)
#define CANIFn_CMDREQ_BUSY (1UL << 15)
#define CANSTAT_TXOK (1 << 3) // Transmitted a message successfully This bit must be reset by the CPU. It is never reset by the CAN controller.
#define CANSTAT_RXOK (1 << 4) // Received a message successfully This bit must be reset by the CPU. It is never reset by the CAN controller.
#define CANSTAT_EPASS (1 << 5) // Error passive
#define CANSTAT_EWARN (1 << 6) // Warning status
#define CANSTAT_BOFF (1 << 7) // Busoff status
#define CANCNTL_INIT (1 << 0) // Initialization
#define CANCNTL_IE (1 << 1) // Module interrupt enable
#define CANCNTL_SIE (1 << 2) // Status change interrupt enable
#define CANCNTL_EIE (1 << 3) // Error interrupt enable
#define CANCNTL_DAR (1 << 5) // Disable automatic retransmission
#define CANCNTL_CCE (1 << 6) // Configuration change enable
#define CANCNTL_TEST (1 << 7) // Test mode enable
#define CANTEST_BASIC (1 << 2) // Basic mode
#define CANTEST_SILENT (1 << 3) // Silent mode
#define CANTEST_LBACK (1 << 4) // Loop back mode
#define CANTEST_TX_MASK 0x0060 // Control of CAN_TXD pins
#define CANTEST_TX_SHIFT 5
#define CANTEST_RX (1 << 7) // Monitors the actual value of the CAN_RXD pin.
static uint32_t can_irq_id = 0;
static can_irq_handler irq_handler;
#define IRQ_ENABLE_TX (1 << 0)
#define IRQ_ENABLE_RX (1 << 1)
#define IRQ_ENABLE_EW (1 << 2)
#define IRQ_ENABLE_EP (1 << 3)
#define IRQ_ENABLE_BE (1 << 4)
#define IRQ_ENABLE_STATUS (IRQ_ENABLE_TX | IRQ_ENABLE_RX)
#define IRQ_ENABLE_ERROR (IRQ_ENABLE_EW | IRQ_ENABLE_EP | IRQ_ENABLE_BE)
#define IRQ_ENABLE_ANY (IRQ_ENABLE_STATUS | IRQ_ENABLE_ERROR)
static uint32_t enabled_irqs = 0;
static inline void can_disable(can_t *obj) {
LPC_C_CAN0->CANCNTL |= 0x1;
}
static inline void can_enable(can_t *obj) {
if (LPC_C_CAN0->CANCNTL & 0x1) {
LPC_C_CAN0->CANCNTL &= ~(0x1);
}
}
int can_mode(can_t *obj, CanMode mode) {
int success = 0;
switch (mode) {
case MODE_RESET:
LPC_C_CAN0->CANCNTL &=~CANCNTL_TEST;
can_disable(obj);
success = 1;
break;
case MODE_NORMAL:
LPC_C_CAN0->CANCNTL &=~CANCNTL_TEST;
can_enable(obj);
success = 1;
break;
case MODE_SILENT:
LPC_C_CAN0->CANCNTL |= CANCNTL_TEST;
LPC_C_CAN0->CANTEST |= CANTEST_SILENT;
LPC_C_CAN0->CANTEST &=~ CANTEST_LBACK;
success = 1;
break;
case MODE_TEST_LOCAL:
LPC_C_CAN0->CANCNTL |= CANCNTL_TEST;
LPC_C_CAN0->CANTEST &=~CANTEST_SILENT;
LPC_C_CAN0->CANTEST |= CANTEST_LBACK;
success = 1;
break;
case MODE_TEST_SILENT:
LPC_C_CAN0->CANCNTL |= CANCNTL_TEST;
LPC_C_CAN0->CANTEST |= (CANTEST_LBACK | CANTEST_SILENT);
success = 1;
break;
case MODE_TEST_GLOBAL:
default:
success = 0;
break;
}
return success;
}
int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) {
uint16_t i;
// Find first free message object
if (handle == 0) {
uint32_t msgval = LPC_C_CAN0->CANMSGV1 | (LPC_C_CAN0->CANMSGV2 << 16);
// Find first free messagebox
for (i = 0; i < 32; i++) {
if ((msgval & (1 << i)) == 0) {
handle = i+1;
break;
}
}
}
if (handle > 0 && handle <= 32) {
if (format == CANExtended) {
// Mark message valid, Direction = TX, Extended Frame, Set Identifier and mask everything
LPC_C_CAN0->CANIF1_ARB1 = (id & 0xFFFF);
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_XTD | ((id >> 16) & 0x1FFF);
LPC_C_CAN0->CANIF1_MSK1 = (mask & 0xFFFF);
LPC_C_CAN0->CANIF1_MSK2 = CANIFn_MSK2_MXTD /*| CANIFn_MSK2_MDIR*/ | ((mask >> 16) & 0x1FFF);
} else {
// Mark message valid, Direction = TX, Set Identifier and mask everything
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_MSGVAL | ((id << 2) & 0x1FFF);
LPC_C_CAN0->CANIF1_MSK2 = /*CANIFn_MSK2_MDIR |*/ ((mask << 2) & 0x1FFF);
}
// Use mask, single message object and set DLC
LPC_C_CAN0->CANIF1_MCTRL = CANIFn_MCTRL_UMASK | CANIFn_MCTRL_EOB | (DLC_MAX & 0xF);
// Transfer all fields to message object
LPC_C_CAN0->CANIF1_CMDMSK_W = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL;
// Start Transfer to given message number
LPC_C_CAN0->CANIF1_CMDREQ = (handle & 0x3F);
// Wait until transfer to message ram complete - TODO: maybe not block??
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
}
return handle;
}
static inline void can_irq() {
uint32_t intid = LPC_C_CAN0->CANINT & 0xFFFF;
if (intid == 0x8000) {
uint32_t status = LPC_C_CAN0->CANSTAT;
// Note that since it's impossible to tell which specific status caused
// the interrupt to fire, this just fires them all.
// In particular, EWARN is not mutually exclusive with the others and
// may fire multiple times with other status transitions, including
// transmit and receive completion (if enabled). Ignoring EWARN with a
// priority system (i.e. blocking EWARN interrupts if EPASS or BOFF is
// set) may discard some EWARN interrupts.
if (status & CANSTAT_BOFF) {
if (enabled_irqs & IRQ_ENABLE_BE) {
irq_handler(can_irq_id, IRQ_BUS);
}
}
if (status & CANSTAT_EPASS) {
if (enabled_irqs & IRQ_ENABLE_EP) {
irq_handler(can_irq_id, IRQ_PASSIVE);
}
}
if (status & CANSTAT_EWARN) {
if (enabled_irqs & IRQ_ENABLE_EW) {
irq_handler(can_irq_id, IRQ_ERROR);
}
}
if ((status & CANSTAT_RXOK) != 0) {
LPC_C_CAN0->CANSTAT &= ~CANSTAT_RXOK;
irq_handler(can_irq_id, IRQ_RX);
}
if ((status & CANSTAT_TXOK) != 0) {
LPC_C_CAN0->CANSTAT &= ~CANSTAT_TXOK;
irq_handler(can_irq_id, IRQ_TX);
}
}
}
// Register CAN object's irq handler
void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) {
irq_handler = handler;
can_irq_id = id;
}
// Unregister CAN object's irq handler
void can_irq_free(can_t *obj) {
LPC_C_CAN0->CANCNTL &= ~(1UL << 1); // Disable Interrupts :)
can_irq_id = 0;
NVIC_DisableIRQ(C_CAN0_IRQn);
}
// Clear or set a irq
void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) {
uint32_t mask_enable;
switch (type) {
case IRQ_RX:
mask_enable = IRQ_ENABLE_RX;
break;
case IRQ_TX:
mask_enable = IRQ_ENABLE_TX;
break;
case IRQ_BUS:
mask_enable = IRQ_ENABLE_BE;
break;
case IRQ_PASSIVE:
mask_enable = IRQ_ENABLE_EP;
break;
case IRQ_ERROR:
mask_enable = IRQ_ENABLE_EW;
break;
default:
return;
}
if (enable) {
enabled_irqs = enabled_irqs | mask_enable;
} else {
enabled_irqs = enabled_irqs & ~mask_enable;
}
// Put CAN in Reset Mode and enable interrupt
can_disable(obj);
if (!(enabled_irqs & IRQ_ENABLE_ANY)) {
LPC_C_CAN0->CANCNTL &= ~(1UL << 1 | 1UL << 2 | 1UL << 3);
} else {
LPC_C_CAN0->CANCNTL |= 1UL << 1;
// Use status interrupts instead of message interrupts to avoid
// stomping over potential filter configurations.
if (enabled_irqs & IRQ_ENABLE_STATUS) {
LPC_C_CAN0->CANCNTL |= 1UL << 2;
} else {
LPC_C_CAN0->CANCNTL &= ~(1UL << 2);
}
if (enabled_irqs & IRQ_ENABLE_ERROR) {
LPC_C_CAN0->CANCNTL |= 1UL << 3;
} else {
LPC_C_CAN0->CANCNTL &= ~(1UL << 3);
}
}
// Take it out of reset...
can_enable(obj);
// Enable NVIC if at least 1 interrupt is active
NVIC_SetVector(C_CAN0_IRQn, (uint32_t) &can_irq);
NVIC_EnableIRQ(C_CAN0_IRQn);
}
// This table has the sampling points as close to 75% as possible. The first
// value is TSEG1, the second TSEG2.
static const int timing_pts[23][2] = {
{0x0, 0x0}, // 2, 50%
{0x1, 0x0}, // 3, 67%
{0x2, 0x0}, // 4, 75%
{0x3, 0x0}, // 5, 80%
{0x3, 0x1}, // 6, 67%
{0x4, 0x1}, // 7, 71%
{0x5, 0x1}, // 8, 75%
{0x6, 0x1}, // 9, 78%
{0x6, 0x2}, // 10, 70%
{0x7, 0x2}, // 11, 73%
{0x8, 0x2}, // 12, 75%
{0x9, 0x2}, // 13, 77%
{0x9, 0x3}, // 14, 71%
{0xA, 0x3}, // 15, 73%
{0xB, 0x3}, // 16, 75%
{0xC, 0x3}, // 17, 76%
{0xD, 0x3}, // 18, 78%
{0xD, 0x4}, // 19, 74%
{0xE, 0x4}, // 20, 75%
{0xF, 0x4}, // 21, 76%
{0xF, 0x5}, // 22, 73%
{0xF, 0x6}, // 23, 70%
{0xF, 0x7}, // 24, 67%
};
static unsigned int can_speed(unsigned int sclk, unsigned int cclk, unsigned char psjw) {
uint32_t btr;
uint32_t clkdiv = 1;
uint16_t brp = 0;
uint32_t calcbit;
uint32_t bitwidth;
int hit = 0;
int bits = 0;
bitwidth = sclk / cclk;
brp = bitwidth / 0x18;
while ((!hit) && (brp < bitwidth / 4)) {
brp++;
for (bits = 22; bits > 0; bits--) {
calcbit = (bits + 3) * (brp + 1);
if (calcbit == bitwidth) {
hit = 1;
break;
}
}
}
clkdiv = clkdiv - 1;
if (hit) {
btr = (timing_pts[bits][1] & 0x7) << 12
| (timing_pts[bits][0] & 0xf) << 8
| (psjw & 0x3) << 6
| (brp & 0x3F);
btr = btr | (clkdiv << 16);
} else {
btr = 0;
}
return btr;
}
int can_config_rxmsgobj(can_t *obj) {
uint16_t i = 0;
// Make sure the interface is available
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
// Mark message valid, Direction = RX, Don't care about anything else
LPC_C_CAN0->CANIF1_ARB1 = 0;
LPC_C_CAN0->CANIF1_ARB2 = 0;
LPC_C_CAN0->CANIF1_MCTRL = 0;
for ( i = 1; i <= RX_MSG_OBJ_COUNT; i++ ) {
// Transfer arb and control fields to message object
LPC_C_CAN0->CANIF1_CMDMSK_W = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL;
// Start Transfer to given message number
LPC_C_CAN0->CANIF1_CMDREQ = (i & 0x3F);
// Wait until transfer to message ram complete - TODO: maybe not block??
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
}
// Accept all messages
can_filter(obj, 0, 0, CANStandard, 1);
return 1;
}
int can_config_txmsgobj(can_t *obj) {
uint16_t i = 0;
// Make sure the interface is available
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
// Mark message valid, Direction = TX, Don't care about anything else
LPC_C_CAN0->CANIF1_ARB1 = 0;
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_DIR;
LPC_C_CAN0->CANIF1_MCTRL = 0;
for ( i = RX_MSG_OBJ_COUNT + 1; i <= (TX_MSG_OBJ_COUNT + RX_MSG_OBJ_COUNT); i++ )
{
// Transfer arb and control fields to message object
LPC_C_CAN0->CANIF1_CMDMSK_W = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL;
// In a union with CANIF1_CMDMSK_R
// Start Transfer to given message number
LPC_C_CAN0->CANIF1_CMDREQ = i & 0x3F;
// Wait until transfer to message ram complete - TODO: maybe not block??
while( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
}
return 1;
}
void can_init_freq(can_t *obj, PinName rd, PinName td, int hz) {
// Enable power and clock
LPC_SYSCON->SYSAHBCLKCTRL1 |= (1UL << 7);
LPC_SYSCON->PRESETCTRL1 |= (1UL << 7);
LPC_SYSCON->PRESETCTRL1 &= ~(1UL << 7);
// Enable Initialization mode
if (!(LPC_C_CAN0->CANCNTL & (1UL << 0))) {
LPC_C_CAN0->CANCNTL |= (1UL << 0);
}
LPC_SWM->PINASSIGN[6] &= ~(0x00FFFF00L);
LPC_SWM->PINASSIGN[6] |= (rd << 16) | (td << 8);
can_frequency(obj, hz);
// Resume operation
LPC_C_CAN0->CANCNTL &= ~(1UL << 0);
while ( LPC_C_CAN0->CANCNTL & (1UL << 0) );
// Initialize RX message object
can_config_rxmsgobj(obj);
// Initialize TX message object
can_config_txmsgobj(obj);
}
void can_init(can_t *obj, PinName rd, PinName td) {
can_init_freq(obj, rd, td, 100000);
}
void can_free(can_t *obj) {
LPC_SYSCON->SYSAHBCLKCTRL1 &= ~(1UL << 7);
LPC_SYSCON->PRESETCTRL1 &= ~(1UL << 7);
}
int can_frequency(can_t *obj, int f) {
int btr = can_speed(SystemCoreClock, (unsigned int)f, 1);
int clkdiv = (btr >> 16) & 0x0F;
btr = btr & 0xFFFF;
if (btr > 0) {
// Set the bit clock
LPC_C_CAN0->CANCNTL |= (1UL << 6 | 1UL << 0); // set CCE and INIT
LPC_C_CAN0->CANCLKDIV = clkdiv;
LPC_C_CAN0->CANBT = btr;
LPC_C_CAN0->CANBRPE = 0x0000;
LPC_C_CAN0->CANCNTL &= ~(1UL << 6 | 1UL << 0); // clear CCE and INIT
return 1;
}
return 0;
}
int can_write(can_t *obj, CAN_Message msg, int cc) {
// Make sure controller is enabled
can_enable(obj);
// Find first message object that isn't pending to send
uint16_t msgnum = 0;
uint32_t txPending = (LPC_C_CAN0->CANTXREQ1 & 0xFF) | (LPC_C_CAN0->CANTXREQ2 << 16);
uint16_t i = 0;
for(i = RX_MSG_OBJ_COUNT; i < 32; i++) {
if ((txPending & (1 << i)) == 0) {
msgnum = i+1;
break;
}
}
// If no messageboxes are available, stop and return failure
if (msgnum == 0) {
return 0;
}
// Make sure the interface is available
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
// Set the direction bit based on the message type
uint32_t direction = 0;
if (msg.type == CANData) {
direction = CANIFn_ARB2_DIR;
}
if (msg.format == CANExtended) {
// Mark message valid, Extended Frame, Set Identifier and mask everything
LPC_C_CAN0->CANIF1_ARB1 = (msg.id & 0xFFFF);
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_XTD | direction | ((msg.id >> 16) & 0x1FFFF);
LPC_C_CAN0->CANIF1_MSK1 = (ID_EXT_MASK & 0xFFFF);
LPC_C_CAN0->CANIF1_MSK2 = CANIFn_MSK2_MXTD | CANIFn_MSK2_MDIR | ((ID_EXT_MASK >> 16) & 0x1FFF);
} else {
// Mark message valid, Set Identifier and mask everything
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_MSGVAL | direction | ((msg.id << 2) & 0x1FFF);
LPC_C_CAN0->CANIF1_MSK2 = CANIFn_MSK2_MDIR | ((ID_STD_MASK << 2) & 0x1FFF);
}
// Use mask, request transmission, single message object and set DLC
LPC_C_CAN0->CANIF1_MCTRL = CANIFn_MCTRL_UMASK | CANIFn_MCTRL_TXRQST | CANIFn_MCTRL_EOB | (msg.len & 0xF);
LPC_C_CAN0->CANIF1_DA1 = ((msg.data[1] & 0xFF) << 8) | (msg.data[0] & 0xFF);
LPC_C_CAN0->CANIF1_DA2 = ((msg.data[3] & 0xFF) << 8) | (msg.data[2] & 0xFF);
LPC_C_CAN0->CANIF1_DB1 = ((msg.data[5] & 0xFF) << 8) | (msg.data[4] & 0xFF);
LPC_C_CAN0->CANIF1_DB2 = ((msg.data[7] & 0xFF) << 8) | (msg.data[6] & 0xFF);
// Transfer all fields to message object
LPC_C_CAN0->CANIF1_CMDMSK_W = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_TXRQST | CANIFn_CMDMSK_DATA_A | CANIFn_CMDMSK_DATA_B;
// Start Transfer to given message number
LPC_C_CAN0->CANIF1_CMDREQ = (msgnum & 0x3F);
// Wait until transfer to message ram complete - TODO: maybe not block??
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY);
// Wait until TXOK is set, then clear it - TODO: maybe not block
//while ( !(LPC_C_CAN0->STAT & CANSTAT_TXOK) );
LPC_C_CAN0->CANSTAT &= ~(1UL << 3);
return 1;
}
int can_read(can_t *obj, CAN_Message *msg, int handle) {
uint16_t i;
// Make sure controller is enabled
can_enable(obj);
// Find first message object with new data
if (handle == 0) {
uint32_t newdata = LPC_C_CAN0->CANND1 | (LPC_C_CAN0->CANND2 << 16);
// Find first free messagebox
for (i = 0; i < RX_MSG_OBJ_COUNT; i++) {
if (newdata & (1 << i)) {
handle = i+1;
break;
}
}
}
if (handle > 0 && handle <= 32) {
// Wait until message interface is free
while ( LPC_C_CAN0->CANIF2_CMDREQ & CANIFn_CMDREQ_BUSY );
// Transfer all fields to message object
LPC_C_CAN0->CANIF2_CMDMSK_W = CANIFn_CMDMSK_RD | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_CLRINTPND | CANIFn_CMDMSK_TXRQST | CANIFn_CMDMSK_DATA_A | CANIFn_CMDMSK_DATA_B;
// Start Transfer from given message number
LPC_C_CAN0->CANIF2_CMDREQ = (handle & 0x3F);
// Wait until transfer to message ram complete
while ( LPC_C_CAN0->CANIF2_CMDREQ & CANIFn_CMDREQ_BUSY );
if (LPC_C_CAN0->CANIF2_ARB2 & CANIFn_ARB2_XTD) {
msg->format = CANExtended;
msg->id = (LPC_C_CAN0->CANIF2_ARB1 & 0x1FFF) << 16;
msg->id |= (LPC_C_CAN0->CANIF2_ARB2 & 0x1FFF);
} else {
msg->format = CANStandard;
msg->id = (LPC_C_CAN0->CANIF2_ARB2 & 0x1FFF) >> 2;
}
if (LPC_C_CAN0->CANIF2_ARB2 & CANIFn_ARB2_DIR) {
msg->type = CANRemote;
}
else {
msg->type = CANData;
}
msg->len = (LPC_C_CAN0->CANIF2_MCTRL & 0xF); // TODO: If > 8, len = 8
msg->data[0] = ((LPC_C_CAN0->CANIF2_DA1 >> 0) & 0xFF);
msg->data[1] = ((LPC_C_CAN0->CANIF2_DA1 >> 8) & 0xFF);
msg->data[2] = ((LPC_C_CAN0->CANIF2_DA2 >> 0) & 0xFF);
msg->data[3] = ((LPC_C_CAN0->CANIF2_DA2 >> 8) & 0xFF);
msg->data[4] = ((LPC_C_CAN0->CANIF2_DB1 >> 0) & 0xFF);
msg->data[5] = ((LPC_C_CAN0->CANIF2_DB1 >> 8) & 0xFF);
msg->data[6] = ((LPC_C_CAN0->CANIF2_DB2 >> 0) & 0xFF);
msg->data[7] = ((LPC_C_CAN0->CANIF2_DB2 >> 8) & 0xFF);
LPC_C_CAN0->CANSTAT &= ~(1UL << 4);
return 1;
}
return 0;
}
void can_reset(can_t *obj) {
LPC_SYSCON->PRESETCTRL1 &= ~(1UL << 7);
LPC_C_CAN0->CANSTAT = 0;
can_config_rxmsgobj(obj);
can_config_txmsgobj(obj);
can_enable(obj); // clears a bus-off condition if necessary
}
unsigned char can_rderror(can_t *obj) {
return ((LPC_C_CAN0->CANEC >> 8) & 0x7F);
}
unsigned char can_tderror(can_t *obj) {
return (LPC_C_CAN0->CANEC & 0xFF);
}
void can_monitor(can_t *obj, int silent) {
if (silent) {
LPC_C_CAN0->CANCNTL |= (1UL << 7);
LPC_C_CAN0->CANTEST |= (1UL << 3);
} else {
LPC_C_CAN0->CANCNTL &= ~(1UL << 7);
LPC_C_CAN0->CANTEST &= ~(1UL << 3);
}
if (!(LPC_C_CAN0->CANCNTL & (1UL << 0))) {
LPC_C_CAN0->CANCNTL |= (1UL << 0);
}
}
