Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of OmniWheels by
arm_std_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2014 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 19. March 2015 00005 * $Revision: V.1.4.5 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_std_q15.c 00009 * 00010 * Description: Standard deviation of an array of Q15 type. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupStats 00045 */ 00046 00047 /** 00048 * @addtogroup STD 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Standard deviation of the elements of a Q15 vector. 00054 * @param[in] *pSrc points to the input vector 00055 * @param[in] blockSize length of the input vector 00056 * @param[out] *pResult standard deviation value returned here 00057 * @return none. 00058 * 00059 * @details 00060 * <b>Scaling and Overflow Behavior:</b> 00061 * 00062 * \par 00063 * The function is implemented using a 64-bit internal accumulator. 00064 * The input is represented in 1.15 format. 00065 * Intermediate multiplication yields a 2.30 format, and this 00066 * result is added without saturation to a 64-bit accumulator in 34.30 format. 00067 * With 33 guard bits in the accumulator, there is no risk of overflow, and the 00068 * full precision of the intermediate multiplication is preserved. 00069 * Finally, the 34.30 result is truncated to 34.15 format by discarding the lower 00070 * 15 bits, and then saturated to yield a result in 1.15 format. 00071 */ 00072 00073 void arm_std_q15( 00074 q15_t * pSrc, 00075 uint32_t blockSize, 00076 q15_t * pResult) 00077 { 00078 q31_t sum = 0; /* Accumulator */ 00079 q31_t meanOfSquares, squareOfMean; /* square of mean and mean of square */ 00080 uint32_t blkCnt; /* loop counter */ 00081 q63_t sumOfSquares = 0; /* Accumulator */ 00082 00083 #ifndef ARM_MATH_CM0_FAMILY 00084 00085 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00086 00087 q31_t in; /* input value */ 00088 q15_t in1; /* input value */ 00089 00090 if(blockSize == 1) 00091 { 00092 *pResult = 0; 00093 return; 00094 } 00095 00096 /*loop Unrolling */ 00097 blkCnt = blockSize >> 2u; 00098 00099 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00100 ** a second loop below computes the remaining 1 to 3 samples. */ 00101 while(blkCnt > 0u) 00102 { 00103 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00104 /* Compute Sum of squares of the input samples 00105 * and then store the result in a temporary variable, sum. */ 00106 in = *__SIMD32(pSrc)++; 00107 sum += ((in << 16) >> 16); 00108 sum += (in >> 16); 00109 sumOfSquares = __SMLALD(in, in, sumOfSquares); 00110 in = *__SIMD32(pSrc)++; 00111 sum += ((in << 16) >> 16); 00112 sum += (in >> 16); 00113 sumOfSquares = __SMLALD(in, in, sumOfSquares); 00114 00115 /* Decrement the loop counter */ 00116 blkCnt--; 00117 } 00118 00119 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00120 ** No loop unrolling is used. */ 00121 blkCnt = blockSize % 0x4u; 00122 00123 while(blkCnt > 0u) 00124 { 00125 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00126 /* Compute Sum of squares of the input samples 00127 * and then store the result in a temporary variable, sum. */ 00128 in1 = *pSrc++; 00129 sumOfSquares = __SMLALD(in1, in1, sumOfSquares); 00130 sum += in1; 00131 00132 /* Decrement the loop counter */ 00133 blkCnt--; 00134 } 00135 00136 /* Compute Mean of squares of the input samples 00137 * and then store the result in a temporary variable, meanOfSquares. */ 00138 meanOfSquares = (q31_t)(sumOfSquares / (q63_t)(blockSize - 1)); 00139 00140 /* Compute square of mean */ 00141 squareOfMean = (q31_t) ((q63_t)sum * sum / (q63_t)(blockSize * (blockSize - 1))); 00142 00143 /* mean of the squares minus the square of the mean. */ 00144 /* Compute standard deviation and store the result to the destination */ 00145 arm_sqrt_q15(__SSAT((meanOfSquares - squareOfMean) >> 15, 16u), pResult); 00146 00147 #else 00148 00149 /* Run the below code for Cortex-M0 */ 00150 q15_t in; /* input value */ 00151 00152 if(blockSize == 1) 00153 { 00154 *pResult = 0; 00155 return; 00156 } 00157 00158 /* Loop over blockSize number of values */ 00159 blkCnt = blockSize; 00160 00161 while(blkCnt > 0u) 00162 { 00163 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00164 /* Compute Sum of squares of the input samples 00165 * and then store the result in a temporary variable, sumOfSquares. */ 00166 in = *pSrc++; 00167 sumOfSquares += (in * in); 00168 00169 /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */ 00170 /* Compute sum of all input values and then store the result in a temporary variable, sum. */ 00171 sum += in; 00172 00173 /* Decrement the loop counter */ 00174 blkCnt--; 00175 } 00176 00177 /* Compute Mean of squares of the input samples 00178 * and then store the result in a temporary variable, meanOfSquares. */ 00179 meanOfSquares = (q31_t)(sumOfSquares / (q63_t)(blockSize - 1)); 00180 00181 /* Compute square of mean */ 00182 squareOfMean = (q31_t) ((q63_t)sum * sum / (q63_t)(blockSize * (blockSize - 1))); 00183 00184 /* mean of the squares minus the square of the mean. */ 00185 /* Compute standard deviation and store the result to the destination */ 00186 arm_sqrt_q15(__SSAT((meanOfSquares - squareOfMean) >> 15, 16u), pResult); 00187 00188 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00189 00190 00191 } 00192 00193 /** 00194 * @} end of STD group 00195 */
Generated on Fri Jul 22 2022 04:53:44 by
1.7.2
