BA / Mbed OS BaBoRo1
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers lwip_snmp_mib2_ip.c Source File

lwip_snmp_mib2_ip.c

Go to the documentation of this file.
00001 /**
00002  * @file
00003  * Management Information Base II (RFC1213) IP objects and functions.
00004  */
00005 
00006 /*
00007  * Copyright (c) 2006 Axon Digital Design B.V., The Netherlands.
00008  * All rights reserved.
00009  *
00010  * Redistribution and use in source and binary forms, with or without modification,
00011  * are permitted provided that the following conditions are met:
00012  *
00013  * 1. Redistributions of source code must retain the above copyright notice,
00014  *    this list of conditions and the following disclaimer.
00015  * 2. Redistributions in binary form must reproduce the above copyright notice,
00016  *    this list of conditions and the following disclaimer in the documentation
00017  *    and/or other materials provided with the distribution.
00018  * 3. The name of the author may not be used to endorse or promote products
00019  *    derived from this software without specific prior written permission.
00020  *
00021  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
00022  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
00023  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
00024  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00025  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
00026  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00027  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00028  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
00029  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
00030  * OF SUCH DAMAGE.
00031  *
00032  * Author: Dirk Ziegelmeier <dziegel@gmx.de>
00033  *         Christiaan Simons <christiaan.simons@axon.tv>
00034  */
00035 
00036 #include "lwip/snmp.h"
00037 #include "lwip/apps/snmp.h"
00038 #include "lwip/apps/snmp_core.h"
00039 #include "lwip/apps/snmp_mib2.h"
00040 #include "lwip/apps/snmp_table.h"
00041 #include "lwip/apps/snmp_scalar.h"
00042 #include "lwip/stats.h"
00043 #include "lwip/netif.h"
00044 #include "lwip/ip.h"
00045 #include "lwip/etharp.h"
00046 
00047 #if LWIP_SNMP && SNMP_LWIP_MIB2
00048 
00049 #if SNMP_USE_NETCONN
00050 #define SYNC_NODE_NAME(node_name) node_name ## _synced
00051 #define CREATE_LWIP_SYNC_NODE(oid, node_name) \
00052    static const struct snmp_threadsync_node node_name ## _synced = SNMP_CREATE_THREAD_SYNC_NODE(oid, &node_name.node, &snmp_mib2_lwip_locks);
00053 #else
00054 #define SYNC_NODE_NAME(node_name) node_name
00055 #define CREATE_LWIP_SYNC_NODE(oid, node_name)
00056 #endif
00057 
00058 #if LWIP_IPV4
00059 /* --- ip .1.3.6.1.2.1.4 ----------------------------------------------------- */
00060 
00061 static s16_t
00062 ip_get_value(struct snmp_node_instance* instance, void* value)
00063 {
00064   s32_t* sint_ptr = (s32_t*)value;
00065   u32_t* uint_ptr = (u32_t*)value;
00066 
00067   switch (instance->node->oid) {
00068   case 1: /* ipForwarding */
00069 #if IP_FORWARD
00070     /* forwarding */
00071     *sint_ptr = 1;
00072 #else
00073     /* not-forwarding */
00074     *sint_ptr = 2;
00075 #endif
00076     return sizeof(*sint_ptr);
00077   case 2: /* ipDefaultTTL */
00078     *sint_ptr = IP_DEFAULT_TTL;
00079     return sizeof(*sint_ptr);
00080   case 3: /* ipInReceives */
00081     *uint_ptr = STATS_GET(mib2.ipinreceives);
00082     return sizeof(*uint_ptr);
00083   case 4: /* ipInHdrErrors */
00084     *uint_ptr = STATS_GET(mib2.ipinhdrerrors);
00085     return sizeof(*uint_ptr);
00086   case 5: /* ipInAddrErrors */
00087     *uint_ptr = STATS_GET(mib2.ipinaddrerrors);
00088     return sizeof(*uint_ptr);
00089   case 6: /* ipForwDatagrams */
00090     *uint_ptr = STATS_GET(mib2.ipforwdatagrams);
00091     return sizeof(*uint_ptr);
00092   case 7: /* ipInUnknownProtos */
00093     *uint_ptr = STATS_GET(mib2.ipinunknownprotos);
00094     return sizeof(*uint_ptr);
00095   case 8: /* ipInDiscards */
00096     *uint_ptr = STATS_GET(mib2.ipindiscards);
00097     return sizeof(*uint_ptr);
00098   case 9: /* ipInDelivers */
00099     *uint_ptr = STATS_GET(mib2.ipindelivers);
00100     return sizeof(*uint_ptr);
00101   case 10: /* ipOutRequests */
00102     *uint_ptr = STATS_GET(mib2.ipoutrequests);
00103     return sizeof(*uint_ptr);
00104   case 11: /* ipOutDiscards */
00105     *uint_ptr = STATS_GET(mib2.ipoutdiscards);
00106     return sizeof(*uint_ptr);
00107   case 12: /* ipOutNoRoutes */
00108     *uint_ptr = STATS_GET(mib2.ipoutnoroutes);
00109     return sizeof(*uint_ptr);
00110   case 13: /* ipReasmTimeout */
00111 #if IP_REASSEMBLY
00112     *sint_ptr = IP_REASS_MAXAGE;
00113 #else
00114     *sint_ptr = 0;
00115 #endif
00116     return sizeof(*sint_ptr);
00117   case 14: /* ipReasmReqds */
00118     *uint_ptr = STATS_GET(mib2.ipreasmreqds);
00119     return sizeof(*uint_ptr);
00120   case 15: /* ipReasmOKs */
00121     *uint_ptr = STATS_GET(mib2.ipreasmoks);
00122     return sizeof(*uint_ptr);
00123   case 16: /* ipReasmFails */
00124     *uint_ptr = STATS_GET(mib2.ipreasmfails);
00125     return sizeof(*uint_ptr);
00126   case 17: /* ipFragOKs */
00127     *uint_ptr = STATS_GET(mib2.ipfragoks);
00128     return sizeof(*uint_ptr);
00129   case 18: /* ipFragFails */
00130     *uint_ptr = STATS_GET(mib2.ipfragfails);
00131     return sizeof(*uint_ptr);
00132   case 19: /* ipFragCreates */
00133     *uint_ptr = STATS_GET(mib2.ipfragcreates);
00134     return sizeof(*uint_ptr);
00135   case 23: /* ipRoutingDiscards: not supported -> always 0 */
00136     *uint_ptr = 0;
00137     return sizeof(*uint_ptr);
00138   default:
00139     LWIP_DEBUGF(SNMP_MIB_DEBUG,("ip_get_value(): unknown id: %"S32_F"\n", instance->node->oid));
00140     break;
00141   }
00142 
00143   return 0;
00144 }
00145 
00146 /**
00147  * Test ip object value before setting.
00148  *
00149  * @param instance node instance
00150  * @param len return value space (in bytes)
00151  * @param value points to (varbind) space to copy value from.
00152  *
00153  * @note we allow set if the value matches the hardwired value,
00154  *   otherwise return badvalue.
00155  */
00156 static snmp_err_t
00157 ip_set_test(struct snmp_node_instance* instance, u16_t len, void *value)
00158 {
00159   snmp_err_t ret = SNMP_ERR_WRONGVALUE;
00160   s32_t *sint_ptr = (s32_t*)value;
00161 
00162   LWIP_UNUSED_ARG(len);
00163   switch (instance->node->oid) {
00164   case 1: /* ipForwarding */
00165 #if IP_FORWARD
00166     /* forwarding */
00167     if (*sint_ptr == 1)
00168 #else
00169     /* not-forwarding */
00170     if (*sint_ptr == 2)
00171 #endif
00172     {
00173       ret = SNMP_ERR_NOERROR;
00174     }
00175     break;
00176   case 2: /* ipDefaultTTL */
00177     if (*sint_ptr == IP_DEFAULT_TTL) {
00178       ret = SNMP_ERR_NOERROR;
00179     }
00180     break;
00181   default:
00182     LWIP_DEBUGF(SNMP_MIB_DEBUG,("ip_set_test(): unknown id: %"S32_F"\n", instance->node->oid));
00183     break;
00184   }
00185 
00186   return ret;
00187 }
00188 
00189 static snmp_err_t
00190 ip_set_value(struct snmp_node_instance* instance, u16_t len, void *value)
00191 {
00192   LWIP_UNUSED_ARG(instance);
00193   LWIP_UNUSED_ARG(len);
00194   LWIP_UNUSED_ARG(value);
00195   /* nothing to do here because in set_test we only accept values being the same as our own stored value -> no need to store anything */
00196   return SNMP_ERR_NOERROR;
00197 }
00198 
00199 /* --- ipAddrTable --- */
00200 
00201 /* list of allowed value ranges for incoming OID */
00202 static const struct snmp_oid_range ip_AddrTable_oid_ranges[] = {
00203   { 0, 0xff }, /* IP A */
00204   { 0, 0xff }, /* IP B */
00205   { 0, 0xff }, /* IP C */
00206   { 0, 0xff }  /* IP D */
00207 };
00208 
00209 static snmp_err_t
00210 ip_AddrTable_get_cell_value_core (struct netif *netif, const u32_t* column, union snmp_variant_value* value, u32_t* value_len)
00211 {
00212   LWIP_UNUSED_ARG(value_len);
00213 
00214   switch (*column) {
00215   case 1: /* ipAdEntAddr */
00216     value->u32 = netif_ip4_addr(netif)->addr;
00217     break;
00218   case 2: /* ipAdEntIfIndex */
00219     value->u32 = netif_to_num(netif);
00220     break;
00221   case 3: /* ipAdEntNetMask */
00222     value->u32 = netif_ip4_netmask(netif)->addr;
00223     break;
00224   case 4: /* ipAdEntBcastAddr */
00225     /* lwIP oddity, there's no broadcast
00226        address in the netif we can rely on */
00227     value->u32 = IPADDR_BROADCAST & 1;
00228     break;
00229   case 5: /* ipAdEntReasmMaxSize */
00230 #if IP_REASSEMBLY
00231     /* @todo The theoretical maximum is IP_REASS_MAX_PBUFS * size of the pbufs,
00232      * but only if receiving one fragmented packet at a time.
00233      * The current solution is to calculate for 2 simultaneous packets...
00234      */
00235     value->u32 = (IP_HLEN + ((IP_REASS_MAX_PBUFS/2) *
00236         (PBUF_POOL_BUFSIZE - PBUF_LINK_ENCAPSULATION_HLEN - PBUF_LINK_HLEN - IP_HLEN)));
00237 #else
00238     /** @todo returning MTU would be a bad thing and
00239         returning a wild guess like '576' isn't good either */
00240     value->u32 = 0;
00241 #endif
00242     break;
00243   default:
00244     return SNMP_ERR_NOSUCHINSTANCE;
00245   }
00246 
00247   return SNMP_ERR_NOERROR;
00248 }
00249 
00250 static snmp_err_t
00251 ip_AddrTable_get_cell_value(const u32_t* column, const u32_t* row_oid, u8_t row_oid_len, union snmp_variant_value* value, u32_t* value_len)
00252 {
00253   ip4_addr_t ip;
00254   struct netif *netif;
00255 
00256   /* check if incoming OID length and if values are in plausible range */
00257   if (!snmp_oid_in_range(row_oid, row_oid_len, ip_AddrTable_oid_ranges, LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges))) {
00258     return SNMP_ERR_NOSUCHINSTANCE;
00259   }
00260 
00261   /* get IP from incoming OID */
00262   snmp_oid_to_ip4(&row_oid[0], &ip); /* we know it succeeds because of oid_in_range check above */
00263 
00264   /* find netif with requested ip */
00265   netif = netif_list;
00266   while (netif != NULL) {
00267     if (ip4_addr_cmp(&ip, netif_ip4_addr(netif))) {
00268       /* fill in object properties */
00269       return ip_AddrTable_get_cell_value_core (netif, column, value, value_len);
00270     }
00271 
00272     netif = netif->next;
00273   }
00274 
00275   /* not found */
00276   return SNMP_ERR_NOSUCHINSTANCE;
00277 }
00278 
00279 static snmp_err_t
00280 ip_AddrTable_get_next_cell_instance_and_value(const u32_t* column, struct snmp_obj_id* row_oid, union snmp_variant_value* value, u32_t* value_len)
00281 {
00282   struct netif *netif;
00283   struct snmp_next_oid_state state;
00284   u32_t result_temp[LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges)];
00285 
00286   /* init struct to search next oid */
00287   snmp_next_oid_init(&state, row_oid->id, row_oid->len, result_temp, LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges));
00288 
00289   /* iterate over all possible OIDs to find the next one */
00290   netif = netif_list;
00291   while (netif != NULL) {
00292     u32_t test_oid[LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges)];
00293     snmp_ip4_to_oid(netif_ip4_addr(netif), &test_oid[0]);
00294 
00295     /* check generated OID: is it a candidate for the next one? */
00296     snmp_next_oid_check(&state, test_oid, LWIP_ARRAYSIZE(ip_AddrTable_oid_ranges), netif);
00297 
00298     netif = netif->next;
00299   }
00300 
00301   /* did we find a next one? */
00302   if (state.status == SNMP_NEXT_OID_STATUS_SUCCESS) {
00303     snmp_oid_assign(row_oid, state.next_oid, state.next_oid_len);
00304     /* fill in object properties */
00305     return ip_AddrTable_get_cell_value_core ((struct netif*)state.reference, column, value, value_len);
00306   }
00307 
00308   /* not found */
00309   return SNMP_ERR_NOSUCHINSTANCE;
00310 }
00311 
00312 /* --- ipRouteTable --- */
00313 
00314 /* list of allowed value ranges for incoming OID */
00315 static const struct snmp_oid_range ip_RouteTable_oid_ranges[] = {
00316   { 0, 0xff }, /* IP A */
00317   { 0, 0xff }, /* IP B */
00318   { 0, 0xff }, /* IP C */
00319   { 0, 0xff }, /* IP D */
00320 };
00321 
00322 static snmp_err_t
00323 ip_RouteTable_get_cell_value_core(struct netif *netif, u8_t default_route, const u32_t* column, union snmp_variant_value* value, u32_t* value_len)
00324 {
00325   switch (*column) {
00326   case 1: /* ipRouteDest */
00327     if (default_route) {
00328        /* default rte has 0.0.0.0 dest */
00329       value->u32 = IP4_ADDR_ANY4->addr;
00330     } else {
00331       /* netifs have netaddress dest */
00332       ip4_addr_t tmp;
00333       ip4_addr_get_network(&tmp, netif_ip4_addr(netif), netif_ip4_netmask(netif));
00334       value->u32 = tmp.addr;
00335     }
00336     break;
00337   case 2: /* ipRouteIfIndex */
00338     value->u32 = netif_to_num(netif);
00339     break;
00340   case 3: /* ipRouteMetric1 */
00341     if (default_route) {
00342       value->s32 = 1; /* default */
00343     } else {
00344       value->s32 = 0; /* normal */
00345     }
00346     break;
00347   case 4: /* ipRouteMetric2 */
00348   case 5: /* ipRouteMetric3 */
00349   case 6: /* ipRouteMetric4 */
00350     value->s32 = -1; /* none */
00351     break;
00352   case 7: /* ipRouteNextHop */
00353     if (default_route) {
00354       /* default rte: gateway */
00355       value->u32 = netif_ip4_gw(netif)->addr;
00356     } else {
00357       /* other rtes: netif ip_addr  */
00358       value->u32 = netif_ip4_addr(netif)->addr;
00359     }
00360     break;
00361   case 8: /* ipRouteType */
00362     if (default_route) {
00363       /* default rte is indirect */
00364       value->u32 = 4; /* indirect */
00365     } else {
00366       /* other rtes are direct */
00367       value->u32 = 3; /* direct */
00368     }
00369     break;
00370   case 9: /* ipRouteProto */
00371     /* locally defined routes */
00372     value->u32 = 2; /* local */
00373     break;
00374   case 10: /* ipRouteAge */
00375     /* @todo (sysuptime - timestamp last change) / 100 */
00376     value->u32 = 0;
00377     break;
00378   case 11: /* ipRouteMask */
00379     if (default_route) {
00380       /* default rte use 0.0.0.0 mask */
00381       value->u32 = IP4_ADDR_ANY4->addr;
00382     } else {
00383       /* other rtes use netmask */
00384       value->u32 = netif_ip4_netmask(netif)->addr;
00385     }
00386     break;
00387   case 12: /* ipRouteMetric5 */
00388     value->s32 = -1; /* none */
00389     break;
00390   case 13: /* ipRouteInfo */
00391     value->const_ptr = snmp_zero_dot_zero.id;
00392     *value_len = snmp_zero_dot_zero.len * sizeof(u32_t);
00393     break;
00394   default:
00395     return SNMP_ERR_NOSUCHINSTANCE;
00396   }
00397 
00398   return SNMP_ERR_NOERROR;
00399 }
00400 
00401 static snmp_err_t
00402 ip_RouteTable_get_cell_value(const u32_t* column, const u32_t* row_oid, u8_t row_oid_len, union snmp_variant_value* value, u32_t* value_len)
00403 {
00404   ip4_addr_t test_ip;
00405   struct netif *netif;
00406 
00407   /* check if incoming OID length and if values are in plausible range */
00408   if (!snmp_oid_in_range(row_oid, row_oid_len, ip_RouteTable_oid_ranges, LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges))) {
00409     return SNMP_ERR_NOSUCHINSTANCE;
00410   }
00411 
00412   /* get IP and port from incoming OID */
00413   snmp_oid_to_ip4(&row_oid[0], &test_ip); /* we know it succeeds because of oid_in_range check above */
00414 
00415   /* default route is on default netif */
00416   if (ip4_addr_isany_val(test_ip) && (netif_default != NULL)) {
00417     /* fill in object properties */
00418     return ip_RouteTable_get_cell_value_core(netif_default, 1, column, value, value_len);
00419   }
00420 
00421   /* find netif with requested route */
00422   netif = netif_list;
00423   while (netif != NULL) {
00424     ip4_addr_t dst;
00425     ip4_addr_get_network(&dst, netif_ip4_addr(netif), netif_ip4_netmask(netif));
00426 
00427     if (ip4_addr_cmp(&dst, &test_ip)) {
00428       /* fill in object properties */
00429       return ip_RouteTable_get_cell_value_core(netif, 0, column, value, value_len);
00430     }
00431 
00432     netif = netif->next;
00433   }
00434 
00435   /* not found */
00436   return SNMP_ERR_NOSUCHINSTANCE;
00437 }
00438 
00439 static snmp_err_t
00440 ip_RouteTable_get_next_cell_instance_and_value(const u32_t* column, struct snmp_obj_id* row_oid, union snmp_variant_value* value, u32_t* value_len)
00441 {
00442   struct netif *netif;
00443   struct snmp_next_oid_state state;
00444   u32_t result_temp[LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges)];
00445   u32_t test_oid[LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges)];
00446 
00447   /* init struct to search next oid */
00448   snmp_next_oid_init(&state, row_oid->id, row_oid->len, result_temp, LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges));
00449 
00450   /* check default route */
00451   if (netif_default != NULL) {
00452     snmp_ip4_to_oid(IP4_ADDR_ANY4, &test_oid[0]);
00453     snmp_next_oid_check(&state, test_oid, LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges), netif_default);
00454   }
00455 
00456   /* iterate over all possible OIDs to find the next one */
00457   netif = netif_list;
00458   while (netif != NULL) {
00459     ip4_addr_t dst;
00460     ip4_addr_get_network(&dst, netif_ip4_addr(netif), netif_ip4_netmask(netif));
00461 
00462     /* check generated OID: is it a candidate for the next one? */
00463     if (!ip4_addr_isany_val(dst)) {
00464       snmp_ip4_to_oid(&dst, &test_oid[0]);
00465       snmp_next_oid_check(&state, test_oid, LWIP_ARRAYSIZE(ip_RouteTable_oid_ranges), netif);
00466     }
00467 
00468     netif = netif->next;
00469   }
00470 
00471   /* did we find a next one? */
00472   if (state.status == SNMP_NEXT_OID_STATUS_SUCCESS) {
00473     ip4_addr_t dst;
00474     snmp_oid_to_ip4(&result_temp[0], &dst);
00475     snmp_oid_assign(row_oid, state.next_oid, state.next_oid_len);
00476     /* fill in object properties */
00477     return ip_RouteTable_get_cell_value_core((struct netif*)state.reference, ip4_addr_isany_val(dst), column, value, value_len);
00478   } else {
00479     /* not found */
00480     return SNMP_ERR_NOSUCHINSTANCE;
00481   }
00482 }
00483 
00484 #if LWIP_ARP && LWIP_IPV4
00485 /* --- ipNetToMediaTable --- */
00486 
00487 /* list of allowed value ranges for incoming OID */
00488 static const struct snmp_oid_range ip_NetToMediaTable_oid_ranges[] = {
00489   { 1, 0xff }, /* IfIndex */
00490   { 0, 0xff }, /* IP A    */
00491   { 0, 0xff }, /* IP B    */
00492   { 0, 0xff }, /* IP C    */
00493   { 0, 0xff }  /* IP D    */
00494 };
00495 
00496 static snmp_err_t
00497 ip_NetToMediaTable_get_cell_value_core(u8_t arp_table_index, const u32_t* column, union snmp_variant_value* value, u32_t* value_len)
00498 {
00499   ip4_addr_t *ip;
00500   struct netif *netif;
00501   struct eth_addr *ethaddr;
00502 
00503   etharp_get_entry(arp_table_index, &ip, &netif, &ethaddr);
00504 
00505   /* value */
00506   switch (*column) {
00507   case 1: /* atIfIndex / ipNetToMediaIfIndex */
00508     value->u32 = netif_to_num(netif);
00509     break;
00510   case 2: /* atPhysAddress / ipNetToMediaPhysAddress */
00511     value->ptr = ethaddr;
00512     *value_len = sizeof(*ethaddr);
00513     break;
00514   case 3: /* atNetAddress / ipNetToMediaNetAddress */
00515     value->u32 = ip->addr;
00516     break;
00517   case 4: /* ipNetToMediaType */
00518     value->u32 = 3; /* dynamic*/
00519     break;
00520   default:
00521     return SNMP_ERR_NOSUCHINSTANCE;
00522   }
00523 
00524   return SNMP_ERR_NOERROR;
00525 }
00526 
00527 static snmp_err_t
00528 ip_NetToMediaTable_get_cell_value(const u32_t* column, const u32_t* row_oid, u8_t row_oid_len, union snmp_variant_value* value, u32_t* value_len)
00529 {
00530   ip4_addr_t ip_in;
00531   u8_t netif_index;
00532   u8_t i;
00533 
00534   /* check if incoming OID length and if values are in plausible range */
00535   if (!snmp_oid_in_range(row_oid, row_oid_len, ip_NetToMediaTable_oid_ranges, LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges))) {
00536     return SNMP_ERR_NOSUCHINSTANCE;
00537   }
00538 
00539   /* get IP from incoming OID */
00540   netif_index = (u8_t)row_oid[0];
00541   snmp_oid_to_ip4(&row_oid[1], &ip_in); /* we know it succeeds because of oid_in_range check above */
00542 
00543   /* find requested entry */
00544   for (i=0; i<ARP_TABLE_SIZE; i++) {
00545     ip4_addr_t *ip;
00546     struct netif *netif;
00547     struct eth_addr *ethaddr;
00548 
00549     if (etharp_get_entry(i, &ip, &netif, &ethaddr)) {
00550       if ((netif_index == netif_to_num(netif)) && ip4_addr_cmp(&ip_in, ip)) {
00551         /* fill in object properties */
00552         return ip_NetToMediaTable_get_cell_value_core(i, column, value, value_len);
00553       }
00554     }
00555   }
00556 
00557   /* not found */
00558   return SNMP_ERR_NOSUCHINSTANCE;
00559 }
00560 
00561 static snmp_err_t
00562 ip_NetToMediaTable_get_next_cell_instance_and_value(const u32_t* column, struct snmp_obj_id* row_oid, union snmp_variant_value* value, u32_t* value_len)
00563 {
00564   u8_t i;
00565   struct snmp_next_oid_state state;
00566   u32_t result_temp[LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges)];
00567 
00568   /* init struct to search next oid */
00569   snmp_next_oid_init(&state, row_oid->id, row_oid->len, result_temp, LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges));
00570 
00571   /* iterate over all possible OIDs to find the next one */
00572   for (i=0; i<ARP_TABLE_SIZE; i++) {
00573     ip4_addr_t *ip;
00574     struct netif *netif;
00575     struct eth_addr *ethaddr;
00576 
00577     if (etharp_get_entry(i, &ip, &netif, &ethaddr)) {
00578       u32_t test_oid[LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges)];
00579 
00580       test_oid[0] = netif_to_num(netif);
00581       snmp_ip4_to_oid(ip, &test_oid[1]);
00582 
00583       /* check generated OID: is it a candidate for the next one? */
00584       snmp_next_oid_check(&state, test_oid, LWIP_ARRAYSIZE(ip_NetToMediaTable_oid_ranges), LWIP_PTR_NUMERIC_CAST(void*, i));
00585     }
00586   }
00587 
00588   /* did we find a next one? */
00589   if (state.status == SNMP_NEXT_OID_STATUS_SUCCESS) {
00590     snmp_oid_assign(row_oid, state.next_oid, state.next_oid_len);
00591     /* fill in object properties */
00592     return ip_NetToMediaTable_get_cell_value_core(LWIP_PTR_NUMERIC_CAST(u8_t, state.reference), column, value, value_len);
00593   }
00594 
00595   /* not found */
00596   return SNMP_ERR_NOSUCHINSTANCE;
00597 }
00598 
00599 #endif /* LWIP_ARP && LWIP_IPV4 */
00600 
00601 static const struct snmp_scalar_node ip_Forwarding      = SNMP_SCALAR_CREATE_NODE(1, SNMP_NODE_INSTANCE_READ_WRITE, SNMP_ASN1_TYPE_INTEGER, ip_get_value, ip_set_test, ip_set_value);
00602 static const struct snmp_scalar_node ip_DefaultTTL      = SNMP_SCALAR_CREATE_NODE(2, SNMP_NODE_INSTANCE_READ_WRITE, SNMP_ASN1_TYPE_INTEGER, ip_get_value, ip_set_test, ip_set_value);
00603 static const struct snmp_scalar_node ip_InReceives      = SNMP_SCALAR_CREATE_NODE_READONLY(3, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00604 static const struct snmp_scalar_node ip_InHdrErrors     = SNMP_SCALAR_CREATE_NODE_READONLY(4, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00605 static const struct snmp_scalar_node ip_InAddrErrors    = SNMP_SCALAR_CREATE_NODE_READONLY(5, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00606 static const struct snmp_scalar_node ip_ForwDatagrams   = SNMP_SCALAR_CREATE_NODE_READONLY(6, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00607 static const struct snmp_scalar_node ip_InUnknownProtos = SNMP_SCALAR_CREATE_NODE_READONLY(7, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00608 static const struct snmp_scalar_node ip_InDiscards      = SNMP_SCALAR_CREATE_NODE_READONLY(8, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00609 static const struct snmp_scalar_node ip_InDelivers      = SNMP_SCALAR_CREATE_NODE_READONLY(9, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00610 static const struct snmp_scalar_node ip_OutRequests     = SNMP_SCALAR_CREATE_NODE_READONLY(10, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00611 static const struct snmp_scalar_node ip_OutDiscards     = SNMP_SCALAR_CREATE_NODE_READONLY(11, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00612 static const struct snmp_scalar_node ip_OutNoRoutes     = SNMP_SCALAR_CREATE_NODE_READONLY(12, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00613 static const struct snmp_scalar_node ip_ReasmTimeout    = SNMP_SCALAR_CREATE_NODE_READONLY(13, SNMP_ASN1_TYPE_INTEGER, ip_get_value);
00614 static const struct snmp_scalar_node ip_ReasmReqds      = SNMP_SCALAR_CREATE_NODE_READONLY(14, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00615 static const struct snmp_scalar_node ip_ReasmOKs        = SNMP_SCALAR_CREATE_NODE_READONLY(15, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00616 static const struct snmp_scalar_node ip_ReasmFails      = SNMP_SCALAR_CREATE_NODE_READONLY(16, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00617 static const struct snmp_scalar_node ip_FragOKs         = SNMP_SCALAR_CREATE_NODE_READONLY(17, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00618 static const struct snmp_scalar_node ip_FragFails       = SNMP_SCALAR_CREATE_NODE_READONLY(18, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00619 static const struct snmp_scalar_node ip_FragCreates     = SNMP_SCALAR_CREATE_NODE_READONLY(19, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00620 static const struct snmp_scalar_node ip_RoutingDiscards = SNMP_SCALAR_CREATE_NODE_READONLY(23, SNMP_ASN1_TYPE_COUNTER, ip_get_value);
00621 
00622 static const struct snmp_table_simple_col_def ip_AddrTable_columns[] = {
00623   { 1, SNMP_ASN1_TYPE_IPADDR,  SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipAdEntAddr */
00624   { 2, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipAdEntIfIndex */
00625   { 3, SNMP_ASN1_TYPE_IPADDR,  SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipAdEntNetMask */
00626   { 4, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipAdEntBcastAddr */
00627   { 5, SNMP_ASN1_TYPE_INTEGER, SNMP_VARIANT_VALUE_TYPE_U32 }  /* ipAdEntReasmMaxSize */
00628 };
00629 
00630 static const struct snmp_table_simple_node ip_AddrTable = SNMP_TABLE_CREATE_SIMPLE(20, ip_AddrTable_columns, ip_AddrTable_get_cell_value, ip_AddrTable_get_next_cell_instance_and_value);
00631 
00632 static const struct snmp_table_simple_col_def ip_RouteTable_columns[] = {
00633   {  1, SNMP_ASN1_TYPE_IPADDR,    SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteDest */
00634   {  2, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteIfIndex */
00635   {  3, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric1 */
00636   {  4, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric2 */
00637   {  5, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric3 */
00638   {  6, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric4 */
00639   {  7, SNMP_ASN1_TYPE_IPADDR,    SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteNextHop */
00640   {  8, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteType */
00641   {  9, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteProto */
00642   { 10, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteAge */
00643   { 11, SNMP_ASN1_TYPE_IPADDR,    SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipRouteMask */
00644   { 12, SNMP_ASN1_TYPE_INTEGER,   SNMP_VARIANT_VALUE_TYPE_S32 }, /* ipRouteMetric5 */
00645   { 13, SNMP_ASN1_TYPE_OBJECT_ID, SNMP_VARIANT_VALUE_TYPE_PTR }  /* ipRouteInfo */
00646 };
00647 
00648 static const struct snmp_table_simple_node ip_RouteTable = SNMP_TABLE_CREATE_SIMPLE(21, ip_RouteTable_columns, ip_RouteTable_get_cell_value, ip_RouteTable_get_next_cell_instance_and_value);
00649 #endif /* LWIP_IPV4 */
00650 
00651 #if LWIP_ARP && LWIP_IPV4
00652 static const struct snmp_table_simple_col_def ip_NetToMediaTable_columns[] = {
00653   {  1, SNMP_ASN1_TYPE_INTEGER,      SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipNetToMediaIfIndex */
00654   {  2, SNMP_ASN1_TYPE_OCTET_STRING, SNMP_VARIANT_VALUE_TYPE_PTR }, /* ipNetToMediaPhysAddress */
00655   {  3, SNMP_ASN1_TYPE_IPADDR,       SNMP_VARIANT_VALUE_TYPE_U32 }, /* ipNetToMediaNetAddress */
00656   {  4, SNMP_ASN1_TYPE_INTEGER,      SNMP_VARIANT_VALUE_TYPE_U32 }  /* ipNetToMediaType */
00657 };
00658 
00659 static const struct snmp_table_simple_node ip_NetToMediaTable = SNMP_TABLE_CREATE_SIMPLE(22, ip_NetToMediaTable_columns, ip_NetToMediaTable_get_cell_value, ip_NetToMediaTable_get_next_cell_instance_and_value);
00660 #endif /* LWIP_ARP && LWIP_IPV4 */
00661 
00662 #if LWIP_IPV4
00663 /* the following nodes access variables in LWIP stack from SNMP worker thread and must therefore be synced to LWIP (TCPIP) thread */
00664 CREATE_LWIP_SYNC_NODE( 1, ip_Forwarding)
00665 CREATE_LWIP_SYNC_NODE( 2, ip_DefaultTTL)
00666 CREATE_LWIP_SYNC_NODE( 3, ip_InReceives)
00667 CREATE_LWIP_SYNC_NODE( 4, ip_InHdrErrors)
00668 CREATE_LWIP_SYNC_NODE( 5, ip_InAddrErrors)
00669 CREATE_LWIP_SYNC_NODE( 6, ip_ForwDatagrams)
00670 CREATE_LWIP_SYNC_NODE( 7, ip_InUnknownProtos)
00671 CREATE_LWIP_SYNC_NODE( 8, ip_InDiscards)
00672 CREATE_LWIP_SYNC_NODE( 9, ip_InDelivers)
00673 CREATE_LWIP_SYNC_NODE(10, ip_OutRequests)
00674 CREATE_LWIP_SYNC_NODE(11, ip_OutDiscards)
00675 CREATE_LWIP_SYNC_NODE(12, ip_OutNoRoutes)
00676 CREATE_LWIP_SYNC_NODE(13, ip_ReasmTimeout)
00677 CREATE_LWIP_SYNC_NODE(14, ip_ReasmReqds)
00678 CREATE_LWIP_SYNC_NODE(15, ip_ReasmOKs)
00679 CREATE_LWIP_SYNC_NODE(15, ip_ReasmFails)
00680 CREATE_LWIP_SYNC_NODE(17, ip_FragOKs)
00681 CREATE_LWIP_SYNC_NODE(18, ip_FragFails)
00682 CREATE_LWIP_SYNC_NODE(19, ip_FragCreates)
00683 CREATE_LWIP_SYNC_NODE(20, ip_AddrTable)
00684 CREATE_LWIP_SYNC_NODE(21, ip_RouteTable)
00685 #if LWIP_ARP
00686 CREATE_LWIP_SYNC_NODE(22, ip_NetToMediaTable)
00687 #endif /* LWIP_ARP */
00688 CREATE_LWIP_SYNC_NODE(23, ip_RoutingDiscards)
00689 
00690 static const struct snmp_node* const ip_nodes[] = {
00691   &SYNC_NODE_NAME(ip_Forwarding).node.node,
00692   &SYNC_NODE_NAME(ip_DefaultTTL).node.node,
00693   &SYNC_NODE_NAME(ip_InReceives).node.node,
00694   &SYNC_NODE_NAME(ip_InHdrErrors).node.node,
00695   &SYNC_NODE_NAME(ip_InAddrErrors).node.node,
00696   &SYNC_NODE_NAME(ip_ForwDatagrams).node.node,
00697   &SYNC_NODE_NAME(ip_InUnknownProtos).node.node,
00698   &SYNC_NODE_NAME(ip_InDiscards).node.node,
00699   &SYNC_NODE_NAME(ip_InDelivers).node.node,
00700   &SYNC_NODE_NAME(ip_OutRequests).node.node,
00701   &SYNC_NODE_NAME(ip_OutDiscards).node.node,
00702   &SYNC_NODE_NAME(ip_OutNoRoutes).node.node,
00703   &SYNC_NODE_NAME(ip_ReasmTimeout).node.node,
00704   &SYNC_NODE_NAME(ip_ReasmReqds).node.node,
00705   &SYNC_NODE_NAME(ip_ReasmOKs).node.node,
00706   &SYNC_NODE_NAME(ip_ReasmFails).node.node,
00707   &SYNC_NODE_NAME(ip_FragOKs).node.node,
00708   &SYNC_NODE_NAME(ip_FragFails).node.node,
00709   &SYNC_NODE_NAME(ip_FragCreates).node.node,
00710   &SYNC_NODE_NAME(ip_AddrTable).node.node,
00711   &SYNC_NODE_NAME(ip_RouteTable).node.node,
00712 #if LWIP_ARP
00713   &SYNC_NODE_NAME(ip_NetToMediaTable).node.node,
00714 #endif /* LWIP_ARP */
00715   &SYNC_NODE_NAME(ip_RoutingDiscards).node.node
00716 };
00717 
00718 const struct snmp_tree_node snmp_mib2_ip_root = SNMP_CREATE_TREE_NODE(4, ip_nodes);
00719 #endif /* LWIP_IPV4 */
00720 
00721 /* --- at .1.3.6.1.2.1.3 ----------------------------------------------------- */
00722 
00723 #if LWIP_ARP && LWIP_IPV4
00724 /* at node table is a subset of ip_nettomedia table (same rows but less columns) */
00725 static const struct snmp_table_simple_col_def at_Table_columns[] = {
00726   { 1, SNMP_ASN1_TYPE_INTEGER,      SNMP_VARIANT_VALUE_TYPE_U32 }, /* atIfIndex */
00727   { 2, SNMP_ASN1_TYPE_OCTET_STRING, SNMP_VARIANT_VALUE_TYPE_PTR }, /* atPhysAddress */
00728   { 3, SNMP_ASN1_TYPE_IPADDR,       SNMP_VARIANT_VALUE_TYPE_U32 }  /* atNetAddress */
00729 };
00730 
00731 static const struct snmp_table_simple_node at_Table = SNMP_TABLE_CREATE_SIMPLE(1, at_Table_columns, ip_NetToMediaTable_get_cell_value, ip_NetToMediaTable_get_next_cell_instance_and_value);
00732 
00733 /* the following nodes access variables in LWIP stack from SNMP worker thread and must therefore be synced to LWIP (TCPIP) thread */
00734 CREATE_LWIP_SYNC_NODE(1, at_Table)
00735 
00736 static const struct snmp_node* const at_nodes[] = {
00737   &SYNC_NODE_NAME(at_Table).node.node
00738 };
00739 
00740 const struct snmp_tree_node snmp_mib2_at_root = SNMP_CREATE_TREE_NODE(3, at_nodes);
00741 #endif /* LWIP_ARP && LWIP_IPV4 */
00742 
00743 #endif /* LWIP_SNMP && SNMP_LWIP_MIB2 */