Arrow / Mbed OS DAPLink Reset
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers fsl_flash.c Source File

fsl_flash.c

00001 /*
00002  * Copyright (c) 2015, Freescale Semiconductor, Inc.
00003  * All rights reserved.
00004  *
00005  * Redistribution and use in source and binary forms, with or without modification,
00006  * are permitted provided that the following conditions are met:
00007  *
00008  * o Redistributions of source code must retain the above copyright notice, this list
00009  *   of conditions and the following disclaimer.
00010  *
00011  * o Redistributions in binary form must reproduce the above copyright notice, this
00012  *   list of conditions and the following disclaimer in the documentation and/or
00013  *   other materials provided with the distribution.
00014  *
00015  * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
00016  *   contributors may be used to endorse or promote products derived from this
00017  *   software without specific prior written permission.
00018  *
00019  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
00020  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
00021  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
00022  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
00023  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
00024  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00025  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
00026  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00027  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00028  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00029  */
00030 
00031 #include "fsl_flash.h"
00032 
00033 /*******************************************************************************
00034  * Definitions
00035  ******************************************************************************/
00036 
00037 /*!
00038  * @name Misc utility defines
00039  * @{
00040  */
00041 #ifndef ALIGN_DOWN
00042 #define ALIGN_DOWN(x, a) ((x) & (uint32_t)(-((int32_t)(a))))
00043 #endif
00044 #ifndef ALIGN_UP
00045 #define ALIGN_UP(x, a) (-((int32_t)((uint32_t)(-((int32_t)(x))) & (uint32_t)(-((int32_t)(a))))))
00046 #endif
00047 
00048 #define BYTES_JOIN_TO_WORD_1_3(x, y) ((((uint32_t)(x)&0xFFU) << 24) | ((uint32_t)(y)&0xFFFFFFU))
00049 #define BYTES_JOIN_TO_WORD_2_2(x, y) ((((uint32_t)(x)&0xFFFFU) << 16) | ((uint32_t)(y)&0xFFFFU))
00050 #define BYTES_JOIN_TO_WORD_3_1(x, y) ((((uint32_t)(x)&0xFFFFFFU) << 8) | ((uint32_t)(y)&0xFFU))
00051 #define BYTES_JOIN_TO_WORD_1_1_2(x, y, z) \
00052     ((((uint32_t)(x)&0xFFU) << 24) | (((uint32_t)(y)&0xFFU) << 16) | ((uint32_t)(z)&0xFFFFU))
00053 #define BYTES_JOIN_TO_WORD_1_2_1(x, y, z) \
00054     ((((uint32_t)(x)&0xFFU) << 24) | (((uint32_t)(y)&0xFFFFU) << 8) | ((uint32_t)(z)&0xFFU))
00055 #define BYTES_JOIN_TO_WORD_2_1_1(x, y, z) \
00056     ((((uint32_t)(x)&0xFFFFU) << 16) | (((uint32_t)(y)&0xFFU) << 8) | ((uint32_t)(z)&0xFFU))
00057 #define BYTES_JOIN_TO_WORD_1_1_1_1(x, y, z, w)                                                      \
00058     ((((uint32_t)(x)&0xFFU) << 24) | (((uint32_t)(y)&0xFFU) << 16) | (((uint32_t)(z)&0xFFU) << 8) | \
00059      ((uint32_t)(w)&0xFFU))
00060 /*@}*/
00061 
00062 /*! @brief Data flash IFR map Field*/
00063 #if defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
00064 #define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8003F8U
00065 #else /* FSL_FEATURE_FLASH_IS_FTFL == 1 or FSL_FEATURE_FLASH_IS_FTFA = =1 */
00066 #define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8000F8U
00067 #endif
00068 
00069 /*!
00070  * @name Reserved FlexNVM size (For a variety of purposes) defines
00071  * @{
00072  */
00073 #define FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED 0xFFFFFFFFU
00074 #define FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED 0xFFFFU
00075 /*@}*/
00076 
00077 /*!
00078  * @name Flash Program Once Field defines
00079  * @{
00080  */
00081 #if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA
00082 /* FTFA parts(eg. K80, KL80, L5K) support both 4-bytes and 8-bytes unit size */
00083 #define FLASH_PROGRAM_ONCE_MIN_ID_8BYTES \
00084     0x10U /* Minimum Index indcating one of Progam Once Fields which is accessed in 8-byte records */
00085 #define FLASH_PROGRAM_ONCE_MAX_ID_8BYTES \
00086     0x13U /* Maximum Index indcating one of Progam Once Fields which is accessed in 8-byte records */
00087 #define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1
00088 #define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1
00089 #elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
00090 /* FTFE parts(eg. K65, KE18) only support 8-bytes unit size */
00091 #define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 0
00092 #define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1
00093 #elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL
00094 /* FTFL parts(eg. K20) only support 4-bytes unit size */
00095 #define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1
00096 #define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 0
00097 #endif
00098 /*@}*/
00099 
00100 /*!
00101  * @name Flash security status defines
00102  * @{
00103  */
00104 #define FLASH_SECURITY_STATE_KEYEN 0x80U
00105 #define FLASH_SECURITY_STATE_UNSECURED 0x02U
00106 #define FLASH_NOT_SECURE 0x01U
00107 #define FLASH_SECURE_BACKDOOR_ENABLED 0x02U
00108 #define FLASH_SECURE_BACKDOOR_DISABLED 0x04U
00109 /*@}*/
00110 
00111 /*!
00112  * @name Flash controller command numbers
00113  * @{
00114  */
00115 #define FTFx_VERIFY_BLOCK 0x00U                    /*!< RD1BLK*/
00116 #define FTFx_VERIFY_SECTION 0x01U                  /*!< RD1SEC*/
00117 #define FTFx_PROGRAM_CHECK 0x02U                   /*!< PGMCHK*/
00118 #define FTFx_READ_RESOURCE 0x03U                   /*!< RDRSRC*/
00119 #define FTFx_PROGRAM_LONGWORD 0x06U                /*!< PGM4*/
00120 #define FTFx_PROGRAM_PHRASE 0x07U                  /*!< PGM8*/
00121 #define FTFx_ERASE_BLOCK 0x08U                     /*!< ERSBLK*/
00122 #define FTFx_ERASE_SECTOR 0x09U                    /*!< ERSSCR*/
00123 #define FTFx_PROGRAM_SECTION 0x0BU                 /*!< PGMSEC*/
00124 #define FTFx_VERIFY_ALL_BLOCK 0x40U                /*!< RD1ALL*/
00125 #define FTFx_READ_ONCE 0x41U                       /*!< RDONCE or RDINDEX*/
00126 #define FTFx_PROGRAM_ONCE 0x43U                    /*!< PGMONCE or PGMINDEX*/
00127 #define FTFx_ERASE_ALL_BLOCK 0x44U                 /*!< ERSALL*/
00128 #define FTFx_SECURITY_BY_PASS 0x45U                /*!< VFYKEY*/
00129 #define FTFx_SWAP_CONTROL 0x46U                    /*!< SWAP*/
00130 #define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U        /*!< ERSALLU*/
00131 #define FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT 0x4AU /*!< RD1XA*/
00132 #define FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT 0x4BU  /*!< ERSXA*/
00133 #define FTFx_PROGRAM_PARTITION 0x80U               /*!< PGMPART)*/
00134 #define FTFx_SET_FLEXRAM_FUNCTION 0x81U            /*!< SETRAM*/
00135                                                    /*@}*/
00136 
00137 /*!
00138  * @name Common flash register info defines
00139  * @{
00140  */
00141 #if defined(FTFA)
00142 #define FTFx FTFA
00143 #define FTFx_BASE FTFA_BASE
00144 #define FTFx_FSTAT_CCIF_MASK FTFA_FSTAT_CCIF_MASK
00145 #define FTFx_FSTAT_RDCOLERR_MASK FTFA_FSTAT_RDCOLERR_MASK
00146 #define FTFx_FSTAT_ACCERR_MASK FTFA_FSTAT_ACCERR_MASK
00147 #define FTFx_FSTAT_FPVIOL_MASK FTFA_FSTAT_FPVIOL_MASK
00148 #define FTFx_FSTAT_MGSTAT0_MASK FTFA_FSTAT_MGSTAT0_MASK
00149 #define FTFx_FSEC_SEC_MASK FTFA_FSEC_SEC_MASK
00150 #define FTFx_FSEC_KEYEN_MASK FTFA_FSEC_KEYEN_MASK
00151 #if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
00152 #define FTFx_FCNFG_RAMRDY_MASK FTFA_FCNFG_RAMRDY_MASK
00153 #endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
00154 #if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
00155 #define FTFx_FCNFG_EEERDY_MASK FTFA_FCNFG_EEERDY_MASK
00156 #endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
00157 #elif defined(FTFE)
00158 #define FTFx FTFE
00159 #define FTFx_BASE FTFE_BASE
00160 #define FTFx_FSTAT_CCIF_MASK FTFE_FSTAT_CCIF_MASK
00161 #define FTFx_FSTAT_RDCOLERR_MASK FTFE_FSTAT_RDCOLERR_MASK
00162 #define FTFx_FSTAT_ACCERR_MASK FTFE_FSTAT_ACCERR_MASK
00163 #define FTFx_FSTAT_FPVIOL_MASK FTFE_FSTAT_FPVIOL_MASK
00164 #define FTFx_FSTAT_MGSTAT0_MASK FTFE_FSTAT_MGSTAT0_MASK
00165 #define FTFx_FSEC_SEC_MASK FTFE_FSEC_SEC_MASK
00166 #define FTFx_FSEC_KEYEN_MASK FTFE_FSEC_KEYEN_MASK
00167 #if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
00168 #define FTFx_FCNFG_RAMRDY_MASK FTFE_FCNFG_RAMRDY_MASK
00169 #endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
00170 #if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
00171 #define FTFx_FCNFG_EEERDY_MASK FTFE_FCNFG_EEERDY_MASK
00172 #endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
00173 #elif defined(FTFL)
00174 #define FTFx FTFL
00175 #define FTFx_BASE FTFL_BASE
00176 #define FTFx_FSTAT_CCIF_MASK FTFL_FSTAT_CCIF_MASK
00177 #define FTFx_FSTAT_RDCOLERR_MASK FTFL_FSTAT_RDCOLERR_MASK
00178 #define FTFx_FSTAT_ACCERR_MASK FTFL_FSTAT_ACCERR_MASK
00179 #define FTFx_FSTAT_FPVIOL_MASK FTFL_FSTAT_FPVIOL_MASK
00180 #define FTFx_FSTAT_MGSTAT0_MASK FTFL_FSTAT_MGSTAT0_MASK
00181 #define FTFx_FSEC_SEC_MASK FTFL_FSEC_SEC_MASK
00182 #define FTFx_FSEC_KEYEN_MASK FTFL_FSEC_KEYEN_MASK
00183 #if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
00184 #define FTFx_FCNFG_RAMRDY_MASK FTFL_FCNFG_RAMRDY_MASK
00185 #endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
00186 #if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
00187 #define FTFx_FCNFG_EEERDY_MASK FTFL_FCNFG_EEERDY_MASK
00188 #endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
00189 #else
00190 #error "Unknown flash controller"
00191 #endif
00192 /*@}*/
00193 
00194 /*!
00195  * @brief Enumeration for access segment property.
00196  */
00197 enum _flash_access_segment_property
00198 {
00199     kFLASH_accessSegmentBase = 256UL,
00200 };
00201 
00202 /*!
00203  * @brief Enumeration for acceleration ram property.
00204  */
00205 enum _flash_acceleration_ram_property
00206 {
00207     kFLASH_accelerationRamSize = 0x400U
00208 };
00209 
00210 /*!
00211  * @brief Enumeration for flash config area.
00212  */
00213 enum _flash_config_area_range
00214 {
00215     kFLASH_configAreaStart = 0x400U,
00216     kFLASH_configAreaEnd = 0x40FU
00217 };
00218 
00219 /*! @brief program Flash block base address*/
00220 #define PFLASH_BLOCK_BASE 0x00U
00221 
00222 /*! @brief Total flash region count*/
00223 #define FSL_FEATURE_FTFx_REGION_COUNT (32U)
00224 
00225 /*!
00226  * @name Flash register access type defines
00227  * @{
00228  */
00229 #if FLASH_DRIVER_IS_FLASH_RESIDENT
00230 #define FTFx_REG_ACCESS_TYPE volatile uint8_t *
00231 #define FTFx_REG32_ACCESS_TYPE volatile uint32_t *
00232 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
00233        /*@}*/
00234 
00235 /*******************************************************************************
00236  * Prototypes
00237  ******************************************************************************/
00238 
00239 #if FLASH_DRIVER_IS_FLASH_RESIDENT
00240 /*! @brief Copy flash_run_command() to RAM*/
00241 static void copy_flash_run_command(uint8_t *flashRunCommand);
00242 /*! @brief Copy flash_cache_clear_command() to RAM*/
00243 static void copy_flash_cache_clear_command(uint8_t *flashCacheClearCommand);
00244 /*! @brief Check whether flash execute-in-ram functions are ready*/
00245 static status_t flash_check_execute_in_ram_function_info(flash_config_t *config);
00246 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
00247 
00248 /*! @brief Internal function Flash command sequence. Called by driver APIs only*/
00249 static status_t flash_command_sequence(flash_config_t *config);
00250 
00251 /*! @brief Perform the cache clear to the flash*/
00252 void flash_cache_clear(flash_config_t *config);
00253 
00254 /*! @brief Validates the range and alignment of the given address range.*/
00255 static status_t flash_check_range(flash_config_t *config,
00256                                   uint32_t startAddress,
00257                                   uint32_t lengthInBytes,
00258                                   uint32_t alignmentBaseline);
00259 /*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/
00260 static status_t flash_get_matched_operation_info(flash_config_t *config,
00261                                                  uint32_t address,
00262                                                  flash_operation_config_t *info);
00263 /*! @brief Validates the given user key for flash erase APIs.*/
00264 static status_t flash_check_user_key(uint32_t key);
00265 
00266 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
00267 // /*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/
00268 // static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config);
00269 // #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
00270 
00271 // #if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
00272 // /*! @brief Validates the range of the given resource address.*/
00273 // static status_t flash_check_resource_range(uint32_t start,
00274 //                                            uint32_t lengthInBytes,
00275 //                                            uint32_t alignmentBaseline,
00276 //                                            flash_read_resource_option_t option);
00277 // #endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
00278 //
00279 // #if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
00280 // /*! @brief Validates the gived swap control option.*/
00281 // static status_t flash_check_swap_control_option(flash_swap_control_option_t option);
00282 // #endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
00283 //
00284 // #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
00285 // /*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/
00286 // static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address);
00287 // #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
00288 //
00289 // #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
00290 // /*! @brief Validates the gived flexram function option.*/
00291 // static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option);
00292 // #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
00293 
00294 /*******************************************************************************
00295  * Variables
00296  ******************************************************************************/
00297 
00298 /*! @brief Access to FTFx->FCCOB */
00299 #if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA
00300 volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFA->FCCOB3;
00301 #elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
00302 volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFE->FCCOB3;
00303 #elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL
00304 volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFL->FCCOB3;
00305 #else
00306 #error "Unknown flash controller"
00307 #endif
00308 
00309 /*! @brief Access to FTFx->FPROT */
00310 #if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA
00311 volatile uint32_t *const kFPROT = (volatile uint32_t *)&FTFA->FPROT3;
00312 #elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
00313 volatile uint32_t *const kFPROT = (volatile uint32_t *)&FTFE->FPROT3;
00314 #elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL
00315 volatile uint32_t *const kFPROT = (volatile uint32_t *)&FTFL->FPROT3;
00316 #else
00317 #error "Unknown flash controller"
00318 #endif
00319 
00320 #if FLASH_DRIVER_IS_FLASH_RESIDENT
00321 /*! @brief A function pointer used to point to relocated flash_run_command() */
00322 static void (*callFlashRunCommand)(FTFx_REG_ACCESS_TYPE ftfx_fstat);
00323 /*! @brief A function pointer used to point to relocated flash_cache_clear_command() */
00324 static void (*callFlashCacheClearCommand)(FTFx_REG32_ACCESS_TYPE ftfx_reg);
00325 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
00326 
00327 #if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED)
00328 /*! @brief A static buffer used to hold flash_run_command() */
00329 static uint8_t s_flashRunCommand[kFLASH_executeInRamFunctionMaxSize ];
00330 /*! @brief A static buffer used to hold flash_cache_clear_command() */
00331 static uint8_t s_flashCacheClearCommand[kFLASH_executeInRamFunctionMaxSize ];
00332 /*! @brief Flash execute-in-ram function information */
00333 static flash_execute_in_ram_function_config_t s_flashExecuteInRamFunctionInfo;
00334 #endif
00335 
00336 /*!
00337  * @brief Table of pflash sizes.
00338  *
00339  *  The index into this table is the value of the SIM_FCFG1.PFSIZE bitfield.
00340  *
00341  *  The values in this table have been right shifted 10 bits so that they will all fit within
00342  *  an 16-bit integer. To get the actual flash density, you must left shift the looked up value
00343  *  by 10 bits.
00344  *
00345  *  Elements of this table have a value of 0 in cases where the PFSIZE bitfield value is
00346  *  reserved.
00347  *
00348  *  Code to use the table:
00349  *  @code
00350  *      uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT;
00351  *      flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
00352  *  @endcode
00353  */
00354 const uint16_t kPFlashDensities[] = {
00355     8,    /* 0x0 - 8192, 8KB */
00356     16,   /* 0x1 - 16384, 16KB */
00357     24,   /* 0x2 - 24576, 24KB */
00358     32,   /* 0x3 - 32768, 32KB */
00359     48,   /* 0x4 - 49152, 48KB */
00360     64,   /* 0x5 - 65536, 64KB */
00361     96,   /* 0x6 - 98304, 96KB */
00362     128,  /* 0x7 - 131072, 128KB */
00363     192,  /* 0x8 - 196608, 192KB */
00364     256,  /* 0x9 - 262144, 256KB */
00365     384,  /* 0xa - 393216, 384KB */
00366     512,  /* 0xb - 524288, 512KB */
00367     768,  /* 0xc - 786432, 768KB */
00368     1024, /* 0xd - 1048576, 1MB */
00369     1536, /* 0xe - 1572864, 1.5MB */
00370     /* 2048,  0xf - 2097152, 2MB */
00371 };
00372 
00373 /*******************************************************************************
00374  * Code
00375  ******************************************************************************/
00376 
00377 status_t FLASH_Init(flash_config_t *config)
00378 {
00379     uint32_t flashDensity;
00380 
00381     if (config == NULL)
00382     {
00383         return kStatus_FLASH_InvalidArgument ;
00384     }
00385 
00386     /* calculate the flash density from SIM_FCFG1.PFSIZE */
00387     uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT;
00388     /* PFSIZE=0xf means that on customer parts the IFR was not correctly programmed.
00389      * We just use the pre-defined flash size in feature file here to support pre-production parts */
00390     if (pfsize == 0xf)
00391     {
00392         flashDensity = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_BLOCK_SIZE;
00393     }
00394     else
00395     {
00396         flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
00397     }
00398 
00399     /* fill out a few of the structure members */
00400     config->PFlashBlockBase  = PFLASH_BLOCK_BASE;
00401     config->PFlashTotalSize  = flashDensity;
00402     config->PFlashBlockCount  = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT;
00403     config->PFlashSectorSize  = FSL_FEATURE_FLASH_PFLASH_BLOCK_SECTOR_SIZE;
00404 
00405 #if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
00406     config->PFlashAccessSegmentSize  = kFLASH_accessSegmentBase << FTFx->FACSS;
00407     config->PFlashAccessSegmentCount  = FTFx->FACSN;
00408 #else
00409     config->PFlashAccessSegmentSize  = 0;
00410     config->PFlashAccessSegmentCount  = 0;
00411 #endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
00412 
00413     config->PFlashCallback  = NULL;
00414 
00415 /* copy required flash commands to RAM */
00416 #if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED)
00417     if (kStatus_FLASH_Success  != flash_check_execute_in_ram_function_info(config))
00418     {
00419         s_flashExecuteInRamFunctionInfo.activeFunctionCount  = 0;
00420         s_flashExecuteInRamFunctionInfo.flashRunCommand  = s_flashRunCommand;
00421         s_flashExecuteInRamFunctionInfo.flashCacheClearCommand  = s_flashCacheClearCommand;
00422         config->flashExecuteInRamFunctionInfo  = &s_flashExecuteInRamFunctionInfo.activeFunctionCount ;
00423         FLASH_PrepareExecuteInRamFunctions(config);
00424     }
00425 #endif
00426 
00427     config->FlexRAMBlockBase  = FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS;
00428     config->FlexRAMTotalSize  = FSL_FEATURE_FLASH_FLEX_RAM_SIZE;
00429 
00430 #if FLASH_SSD_IS_FLEXNVM_ENABLED
00431     {
00432         status_t returnCode;
00433         config->DFlashBlockBase  = FSL_FEATURE_FLASH_FLEX_NVM_START_ADDRESS;
00434         returnCode = flash_update_flexnvm_memory_partition_status(config);
00435         if (returnCode != kStatus_FLASH_Success )
00436         {
00437             return returnCode;
00438         }
00439     }
00440 #endif
00441 
00442     return kStatus_FLASH_Success ;
00443 }
00444 
00445 status_t FLASH_SetCallback(flash_config_t *config, flash_callback_t callback)
00446 {
00447     if (config == NULL)
00448     {
00449         return kStatus_FLASH_InvalidArgument ;
00450     }
00451 
00452     config->PFlashCallback  = callback;
00453 
00454     return kStatus_FLASH_Success ;
00455 }
00456 
00457 #if FLASH_DRIVER_IS_FLASH_RESIDENT
00458 status_t FLASH_PrepareExecuteInRamFunctions(flash_config_t *config)
00459 {
00460     flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo;
00461 
00462     if (config == NULL)
00463     {
00464         return kStatus_FLASH_InvalidArgument ;
00465     }
00466 
00467     flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo ;
00468 
00469     copy_flash_run_command(flashExecuteInRamFunctionInfo->flashRunCommand );
00470     copy_flash_cache_clear_command(flashExecuteInRamFunctionInfo->flashCacheClearCommand );
00471     flashExecuteInRamFunctionInfo->activeFunctionCount  = kFLASH_executeInRamFunctionTotalNum ;
00472 
00473     return kStatus_FLASH_Success ;
00474 }
00475 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
00476 
00477 status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)
00478 {
00479     status_t returnCode;
00480 
00481     if (config == NULL)
00482     {
00483         return kStatus_FLASH_InvalidArgument ;
00484     }
00485 
00486     /* preparing passing parameter to erase all flash blocks */
00487     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK, 0xFFFFFFU);
00488 
00489     /* Validate the user key */
00490     returnCode = flash_check_user_key(key);
00491     if (returnCode)
00492     {
00493         return returnCode;
00494     }
00495 
00496     /* calling flash command sequence function to execute the command */
00497     returnCode = flash_command_sequence(config);
00498 
00499     flash_cache_clear(config);
00500 
00501 #if FLASH_SSD_IS_FLEXNVM_ENABLED
00502     /* Data flash IFR will be erased by erase all command, so we need to
00503      *  update FlexNVM memory partition status synchronously */
00504     if (returnCode == kStatus_FLASH_Success )
00505     {
00506         returnCode = flash_update_flexnvm_memory_partition_status(config);
00507     }
00508 #endif
00509 
00510     return returnCode;
00511 }
00512 
00513 status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
00514 {
00515     uint32_t sectorSize;
00516     flash_operation_config_t flashInfo;
00517     uint32_t endAddress;      /* storing end address */
00518     uint32_t numberOfSectors; /* number of sectors calculated by endAddress */
00519     status_t returnCode;
00520 
00521     flash_get_matched_operation_info(config, start, &flashInfo);
00522 
00523     /* Check the supplied address range. */
00524     returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.sectorCmdAddressAligment );
00525     if (returnCode)
00526     {
00527         return returnCode;
00528     }
00529 
00530     start = flashInfo.convertedAddress ;
00531     sectorSize = flashInfo.activeSectorSize ;
00532 
00533     /* calculating Flash end address */
00534     endAddress = start + lengthInBytes - 1;
00535 
00536     /* re-calculate the endAddress and align it to the start of the next sector
00537      * which will be used in the comparison below */
00538     if (endAddress % sectorSize)
00539     {
00540         numberOfSectors = endAddress / sectorSize + 1;
00541         endAddress = numberOfSectors * sectorSize - 1;
00542     }
00543 
00544     /* the start address will increment to the next sector address
00545      * until it reaches the endAdddress */
00546     while (start <= endAddress)
00547     {
00548         /* preparing passing parameter to erase a flash block */
00549         kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_SECTOR, start);
00550 
00551         /* Validate the user key */
00552         returnCode = flash_check_user_key(key);
00553         if (returnCode)
00554         {
00555             return returnCode;
00556         }
00557 
00558         /* calling flash command sequence function to execute the command */
00559         returnCode = flash_command_sequence(config);
00560 
00561         /* calling flash callback function if it is available */
00562         if (config->PFlashCallback )
00563         {
00564             config->PFlashCallback ();
00565         }
00566 
00567         /* checking the success of command execution */
00568         if (kStatus_FLASH_Success  != returnCode)
00569         {
00570             break;
00571         }
00572         else
00573         {
00574             /* Increment to the next sector */
00575             start += sectorSize;
00576         }
00577     }
00578 
00579     flash_cache_clear(config);
00580 
00581     return (returnCode);
00582 }
00583 
00584 // #if defined(FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD) && FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD
00585 // status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)
00586 // {
00587 //     status_t returnCode;
00588 //
00589 //     if (config == NULL)
00590 //     {
00591 //         return kStatus_FLASH_InvalidArgument;
00592 //     }
00593 //
00594 //     /* Prepare passing parameter to erase all flash blocks (unsecure). */
00595 //     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK_UNSECURE, 0xFFFFFFU);
00596 //
00597 //     /* Validate the user key */
00598 //     returnCode = flash_check_user_key(key);
00599 //     if (returnCode)
00600 //     {
00601 //         return returnCode;
00602 //     }
00603 //
00604 //     /* calling flash command sequence function to execute the command */
00605 //     returnCode = flash_command_sequence(config);
00606 //
00607 //     flash_cache_clear(config);
00608 //
00609 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
00610 //     /* Data flash IFR will be erased by erase all unsecure command, so we need to
00611 //      *  update FlexNVM memory partition status synchronously */
00612 //     if (returnCode == kStatus_FLASH_Success)
00613 //     {
00614 //         returnCode = flash_update_flexnvm_memory_partition_status(config);
00615 //     }
00616 // #endif
00617 //
00618 //     return returnCode;
00619 // }
00620 // #endif /* FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD */
00621 //
00622 // status_t FLASH_EraseAllExecuteOnlySegments(flash_config_t *config, uint32_t key)
00623 // {
00624 //     status_t returnCode;
00625 //
00626 //     if (config == NULL)
00627 //     {
00628 //         return kStatus_FLASH_InvalidArgument;
00629 //     }
00630 //
00631 //     /* preparing passing parameter to erase all execute-only segments
00632 //      * 1st element for the FCCOB register */
00633 //     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT, 0xFFFFFFU);
00634 //
00635 //     /* Validate the user key */
00636 //     returnCode = flash_check_user_key(key);
00637 //     if (returnCode)
00638 //     {
00639 //         return returnCode;
00640 //     }
00641 //
00642 //     /* calling flash command sequence function to execute the command */
00643 //     returnCode = flash_command_sequence(config);
00644 //
00645 //     flash_cache_clear(config);
00646 //
00647 //     return returnCode;
00648 // }
00649 
00650 status_t FLASH_Program(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes)
00651 {
00652     status_t returnCode;
00653     flash_operation_config_t flashInfo;
00654 
00655     if (src == NULL)
00656     {
00657         return kStatus_FLASH_InvalidArgument ;
00658     }
00659 
00660     flash_get_matched_operation_info(config, start, &flashInfo);
00661 
00662     /* Check the supplied address range. */
00663     returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.blockWriteUnitSize );
00664     if (returnCode)
00665     {
00666         return returnCode;
00667     }
00668 
00669     start = flashInfo.convertedAddress ;
00670 
00671     while (lengthInBytes > 0)
00672     {
00673         /* preparing passing parameter to program the flash block */
00674         kFCCOBx[1] = *src++;
00675         if (4 == flashInfo.blockWriteUnitSize )
00676         {
00677             kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_LONGWORD, start);
00678         }
00679         else if (8 == flashInfo.blockWriteUnitSize )
00680         {
00681             kFCCOBx[2] = *src++;
00682             kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_PHRASE, start);
00683         }
00684         else
00685         {
00686         }
00687 
00688         /* calling flash command sequence function to execute the command */
00689         returnCode = flash_command_sequence(config);
00690 
00691         /* calling flash callback function if it is available */
00692         if (config->PFlashCallback )
00693         {
00694             config->PFlashCallback ();
00695         }
00696 
00697         /* checking for the success of command execution */
00698         if (kStatus_FLASH_Success  != returnCode)
00699         {
00700             break;
00701         }
00702         else
00703         {
00704             /* update start address for next iteration */
00705             start += flashInfo.blockWriteUnitSize ;
00706 
00707             /* update lengthInBytes for next iteration */
00708             lengthInBytes -= flashInfo.blockWriteUnitSize ;
00709         }
00710     }
00711 
00712     flash_cache_clear(config);
00713 
00714     return (returnCode);
00715 }
00716 
00717 // status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint32_t *src, uint32_t lengthInBytes)
00718 // {
00719 //     status_t returnCode;
00720 //
00721 //     if ((config == NULL) || (src == NULL))
00722 //     {
00723 //         return kStatus_FLASH_InvalidArgument;
00724 //     }
00725 //
00726 //     /* pass paramters to FTFx */
00727 //     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_PROGRAM_ONCE, index, 0xFFFFU);
00728 //
00729 //     kFCCOBx[1] = *src;
00730 //
00731 // /* Note: Have to seperate the first index from the rest if it equals 0
00732 //  * to avoid a pointless comparison of unsigned int to 0 compiler warning */
00733 // #if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT
00734 // #if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT
00735 //     if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) ||
00736 //          /* Range check */
00737 //          ((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) &&
00738 //         (lengthInBytes == 8))
00739 // #endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */
00740 //     {
00741 //         kFCCOBx[2] = *(src + 1);
00742 //     }
00743 // #endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */
00744 //
00745 //     /* calling flash command sequence function to execute the command */
00746 //     returnCode = flash_command_sequence(config);
00747 //
00748 //     flash_cache_clear(config);
00749 //
00750 //     return returnCode;
00751 // }
00752 //
00753 // #if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD
00754 // status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes)
00755 // {
00756 //     status_t returnCode;
00757 //     uint32_t sectorSize;
00758 //     flash_operation_config_t flashInfo;
00759 // #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
00760 //     bool needSwitchFlexRamMode = false;
00761 // #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
00762 //
00763 //     if (src == NULL)
00764 //     {
00765 //         return kStatus_FLASH_InvalidArgument;
00766 //     }
00767 //
00768 //     flash_get_matched_operation_info(config, start, &flashInfo);
00769 //
00770 //     /* Check the supplied address range. */
00771 //     returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.sectionCmdAddressAligment);
00772 //     if (returnCode)
00773 //     {
00774 //         return returnCode;
00775 //     }
00776 //
00777 //     start = flashInfo.convertedAddress;
00778 //     sectorSize = flashInfo.activeSectorSize;
00779 //
00780 // #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
00781 //     /* Switch function of FlexRAM if needed */
00782 //     if (!(FTFx->FCNFG & FTFx_FCNFG_RAMRDY_MASK))
00783 //     {
00784 //         needSwitchFlexRamMode = true;
00785 //
00786 //         returnCode = FLASH_SetFlexramFunction(config, kFLASH_flexramFunctionOptionAvailableAsRam);
00787 //         if (returnCode != kStatus_FLASH_Success)
00788 //         {
00789 //             return kStatus_FLASH_SetFlexramAsRamError;
00790 //         }
00791 //     }
00792 // #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
00793 //
00794 //     while (lengthInBytes > 0)
00795 //     {
00796 //         /* Make sure the write operation doesn't span two sectors */
00797 //         uint32_t endAddressOfCurrentSector = ALIGN_UP(start, sectorSize);
00798 //         uint32_t lengthTobeProgrammedOfCurrentSector;
00799 //         uint32_t currentOffset = 0;
00800 //
00801 //         if (endAddressOfCurrentSector == start)
00802 //         {
00803 //             endAddressOfCurrentSector += sectorSize;
00804 //         }
00805 //
00806 //         if (lengthInBytes + start > endAddressOfCurrentSector)
00807 //         {
00808 //             lengthTobeProgrammedOfCurrentSector = endAddressOfCurrentSector - start;
00809 //         }
00810 //         else
00811 //         {
00812 //             lengthTobeProgrammedOfCurrentSector = lengthInBytes;
00813 //         }
00814 //
00815 //         /* Program Current Sector */
00816 //         while (lengthTobeProgrammedOfCurrentSector > 0)
00817 //         {
00818 //             /* Make sure the program size doesn't exceeds Acceleration RAM size */
00819 //             uint32_t programSizeOfCurrentPass;
00820 //             uint32_t numberOfPhases;
00821 //
00822 //             if (lengthTobeProgrammedOfCurrentSector > kFLASH_accelerationRamSize)
00823 //             {
00824 //                 programSizeOfCurrentPass = kFLASH_accelerationRamSize;
00825 //             }
00826 //             else
00827 //             {
00828 //                 programSizeOfCurrentPass = lengthTobeProgrammedOfCurrentSector;
00829 //             }
00830 //
00831 //             /* Copy data to FlexRAM */
00832 //             memcpy((void *)FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS, src + currentOffset / 4, programSizeOfCurrentPass);
00833 //             /* Set start address of the data to be programmed */
00834 //             kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_SECTION, start + currentOffset);
00835 //             /* Set program size in terms of FEATURE_FLASH_SECTION_CMD_ADDRESS_ALIGMENT */
00836 //             numberOfPhases = programSizeOfCurrentPass / flashInfo.sectionCmdAddressAligment;
00837 //
00838 //             kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_2(numberOfPhases, 0xFFFFU);
00839 //
00840 //             /* Peform command sequence */
00841 //             returnCode = flash_command_sequence(config);
00842 //
00843 //             /* calling flash callback function if it is available */
00844 //             if (config->PFlashCallback)
00845 //             {
00846 //                 config->PFlashCallback();
00847 //             }
00848 //
00849 //             if (returnCode != kStatus_FLASH_Success)
00850 //             {
00851 //                 flash_cache_clear(config);
00852 //                 return returnCode;
00853 //             }
00854 //
00855 //             lengthTobeProgrammedOfCurrentSector -= programSizeOfCurrentPass;
00856 //             currentOffset += programSizeOfCurrentPass;
00857 //         }
00858 //
00859 //         src += currentOffset / 4;
00860 //         start += currentOffset;
00861 //         lengthInBytes -= currentOffset;
00862 //     }
00863 //
00864 //     flash_cache_clear(config);
00865 //
00866 // #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
00867 //     /* Restore function of FlexRAM if needed. */
00868 //     if (needSwitchFlexRamMode)
00869 //     {
00870 //         returnCode = FLASH_SetFlexramFunction(config, kFLASH_flexramFunctionOptionAvailableForEeprom);
00871 //         if (returnCode != kStatus_FLASH_Success)
00872 //         {
00873 //             return kStatus_FLASH_RecoverFlexramAsEepromError;
00874 //         }
00875 //     }
00876 // #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
00877 //
00878 //     return returnCode;
00879 // }
00880 // #endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD */
00881 //
00882 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
00883 // status_t FLASH_EepromWrite(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
00884 // {
00885 //     status_t returnCode;
00886 //     bool needSwitchFlexRamMode = false;
00887 //
00888 //     if (config == NULL)
00889 //     {
00890 //         return kStatus_FLASH_InvalidArgument;
00891 //     }
00892 //
00893 //     /* Validates the range of the given address */
00894 //     if ((start < config->FlexRAMBlockBase) ||
00895 //         ((start + lengthInBytes) > (config->FlexRAMBlockBase + config->EEpromTotalSize)))
00896 //     {
00897 //         return kStatus_FLASH_AddressError;
00898 //     }
00899 //
00900 //     returnCode = kStatus_FLASH_Success;
00901 //
00902 //     /* Switch function of FlexRAM if needed */
00903 //     if (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK))
00904 //     {
00905 //         needSwitchFlexRamMode = true;
00906 //
00907 //         returnCode = FLASH_SetFlexramFunction(config, kFLASH_flexramFunctionOptionAvailableForEeprom);
00908 //         if (returnCode != kStatus_FLASH_Success)
00909 //         {
00910 //             return kStatus_FLASH_SetFlexramAsEepromError;
00911 //         }
00912 //     }
00913 //
00914 //     /* Write data to FlexRAM when it is used as EEPROM emulator */
00915 //     while (lengthInBytes > 0)
00916 //     {
00917 //         if ((!(start & 0x3U)) && (lengthInBytes >= 4))
00918 //         {
00919 //             *(uint32_t *)start = *(uint32_t *)src;
00920 //             start += 4;
00921 //             src += 4;
00922 //             lengthInBytes -= 4;
00923 //         }
00924 //         else if ((!(start & 0x1U)) && (lengthInBytes >= 2))
00925 //         {
00926 //             *(uint16_t *)start = *(uint16_t *)src;
00927 //             start += 2;
00928 //             src += 2;
00929 //             lengthInBytes -= 2;
00930 //         }
00931 //         else
00932 //         {
00933 //             *(uint8_t *)start = *src;
00934 //             start += 1;
00935 //             src += 1;
00936 //             lengthInBytes -= 1;
00937 //         }
00938 //         /* Wait till EEERDY bit is set */
00939 //         while (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK))
00940 //         {
00941 //         }
00942 //
00943 //         /* Check for protection violation error */
00944 //         if (FTFx->FSTAT & FTFx_FSTAT_FPVIOL_MASK)
00945 //         {
00946 //             return kStatus_FLASH_ProtectionViolation;
00947 //         }
00948 //     }
00949 //
00950 //     /* Switch function of FlexRAM if needed */
00951 //     if (needSwitchFlexRamMode)
00952 //     {
00953 //         returnCode = FLASH_SetFlexramFunction(config, kFLASH_flexramFunctionOptionAvailableAsRam);
00954 //         if (returnCode != kStatus_FLASH_Success)
00955 //         {
00956 //             return kStatus_FLASH_RecoverFlexramAsRamError;
00957 //         }
00958 //     }
00959 //
00960 //     return returnCode;
00961 // }
00962 // #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
00963 //
00964 // #if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
00965 // status_t FLASH_ReadResource(
00966 //     flash_config_t *config, uint32_t start, uint32_t *dst, uint32_t lengthInBytes, flash_read_resource_option_t option)
00967 // {
00968 //     status_t returnCode;
00969 //     flash_operation_config_t flashInfo;
00970 //
00971 //     if ((config == NULL) || (dst == NULL))
00972 //     {
00973 //         return kStatus_FLASH_InvalidArgument;
00974 //     }
00975 //
00976 //     flash_get_matched_operation_info(config, start, &flashInfo);
00977 //
00978 //     /* Check the supplied address range. */
00979 //     returnCode = flash_check_resource_range(start, lengthInBytes, flashInfo.resourceCmdAddressAligment, option);
00980 //     if (returnCode != kStatus_FLASH_Success)
00981 //     {
00982 //         return returnCode;
00983 //     }
00984 //
00985 //     while (lengthInBytes > 0)
00986 //     {
00987 //         /* preparing passing parameter */
00988 //         kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_READ_RESOURCE, start);
00989 //         if (flashInfo.resourceCmdAddressAligment == 4)
00990 //         {
00991 //             kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
00992 //         }
00993 //         else if (flashInfo.resourceCmdAddressAligment == 8)
00994 //         {
00995 //             kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
00996 //         }
00997 //         else
00998 //         {
00999 //         }
01000 //
01001 //         /* calling flash command sequence function to execute the command */
01002 //         returnCode = flash_command_sequence(config);
01003 //
01004 //         if (kStatus_FLASH_Success != returnCode)
01005 //         {
01006 //             break;
01007 //         }
01008 //
01009 //         /* fetch data */
01010 //         *dst++ = kFCCOBx[1];
01011 //         if (flashInfo.resourceCmdAddressAligment == 8)
01012 //         {
01013 //             *dst++ = kFCCOBx[2];
01014 //         }
01015 //         /* update start address for next iteration */
01016 //         start += flashInfo.resourceCmdAddressAligment;
01017 //         /* update lengthInBytes for next iteration */
01018 //         lengthInBytes -= flashInfo.resourceCmdAddressAligment;
01019 //     }
01020 //
01021 //     return (returnCode);
01022 // }
01023 // #endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
01024 //
01025 // status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint32_t *dst, uint32_t lengthInBytes)
01026 // {
01027 //     status_t returnCode;
01028 //
01029 //     if ((config == NULL) || (dst == NULL))
01030 //     {
01031 //         return kStatus_FLASH_InvalidArgument;
01032 //     }
01033 //
01034 //     /* pass paramters to FTFx */
01035 //     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_READ_ONCE, index, 0xFFFFU);
01036 //
01037 //     /* calling flash command sequence function to execute the command */
01038 //     returnCode = flash_command_sequence(config);
01039 //
01040 //     if (kStatus_FLASH_Success == returnCode)
01041 //     {
01042 //         *dst = kFCCOBx[1];
01043 // /* Note: Have to seperate the first index from the rest if it equals 0
01044 //  *       to avoid a pointless comparison of unsigned int to 0 compiler warning */
01045 // #if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT
01046 // #if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT
01047 //         if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) ||
01048 //              /* Range check */
01049 //              ((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) &&
01050 //             (lengthInBytes == 8))
01051 // #endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */
01052 //         {
01053 //             *(dst + 1) = kFCCOBx[2];
01054 //         }
01055 // #endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */
01056 //     }
01057 //
01058 //     return returnCode;
01059 // }
01060 //
01061 // status_t FLASH_GetSecurityState(flash_config_t *config, flash_security_state_t *state)
01062 // {
01063 //     /* store data read from flash register */
01064 //     uint8_t registerValue;
01065 //
01066 //     if ((config == NULL) || (state == NULL))
01067 //     {
01068 //         return kStatus_FLASH_InvalidArgument;
01069 //     }
01070 //
01071 //     /* Get flash security register value */
01072 //     registerValue = FTFx->FSEC;
01073 //
01074 //     /* check the status of the flash security bits in the security register */
01075 //     if (FLASH_SECURITY_STATE_UNSECURED == (registerValue & FTFx_FSEC_SEC_MASK))
01076 //     {
01077 //         /* Flash in unsecured state */
01078 //         *state = kFLASH_securityStateNotSecure;
01079 //     }
01080 //     else
01081 //     {
01082 //         /* Flash in secured state
01083 //          * check for backdoor key security enable bit */
01084 //         if (FLASH_SECURITY_STATE_KEYEN == (registerValue & FTFx_FSEC_KEYEN_MASK))
01085 //         {
01086 //             /* Backdoor key security enabled */
01087 //             *state = kFLASH_securityStateBackdoorEnabled;
01088 //         }
01089 //         else
01090 //         {
01091 //             /* Backdoor key security disabled */
01092 //             *state = kFLASH_securityStateBackdoorDisabled;
01093 //         }
01094 //     }
01095 //
01096 //     return (kStatus_FLASH_Success);
01097 // }
01098 //
01099 // status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)
01100 // {
01101 //     uint8_t registerValue; /* registerValue */
01102 //     status_t returnCode;   /* return code variable */
01103 //
01104 //     if ((config == NULL) || (backdoorKey == NULL))
01105 //     {
01106 //         return kStatus_FLASH_InvalidArgument;
01107 //     }
01108 //
01109 //     /* set the default return code as kStatus_Success */
01110 //     returnCode = kStatus_FLASH_Success;
01111 //
01112 //     /* Get flash security register value */
01113 //     registerValue = FTFx->FSEC;
01114 //
01115 //     /* Check to see if flash is in secure state (any state other than 0x2)
01116 //      * If not, then skip this since flash is not secure */
01117 //     if (0x02 != (registerValue & 0x03))
01118 //     {
01119 //         /* preparing passing parameter to erase a flash block */
01120 //         kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SECURITY_BY_PASS, 0xFFFFFFU);
01121 //         kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[0], backdoorKey[1], backdoorKey[2], backdoorKey[3]);
01122 //         kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[4], backdoorKey[5], backdoorKey[6], backdoorKey[7]);
01123 //
01124 //         /* calling flash command sequence function to execute the command */
01125 //         returnCode = flash_command_sequence(config);
01126 //     }
01127 //
01128 //     return (returnCode);
01129 // }
01130 
01131 status_t FLASH_VerifyEraseAll(flash_config_t *config, flash_margin_value_t margin)
01132 {
01133     if (config == NULL)
01134     {
01135         return kStatus_FLASH_InvalidArgument ;
01136     }
01137 
01138     /* preparing passing parameter to verify all block command */
01139     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_BLOCK, margin, 0xFFFFU);
01140 
01141     /* calling flash command sequence function to execute the command */
01142     return flash_command_sequence(config);
01143 }
01144 
01145 status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_margin_value_t margin)
01146 {
01147     /* Check arguments. */
01148     uint32_t blockSize;
01149     flash_operation_config_t flashInfo;
01150     uint32_t nextBlockStartAddress;
01151     uint32_t remainingBytes;
01152     status_t returnCode;
01153 
01154     flash_get_matched_operation_info(config, start, &flashInfo);
01155 
01156     returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.sectionCmdAddressAligment );
01157     if (returnCode)
01158     {
01159         return returnCode;
01160     }
01161 
01162     flash_get_matched_operation_info(config, start, &flashInfo);
01163     start = flashInfo.convertedAddress ;
01164     blockSize = flashInfo.activeBlockSize ;
01165 
01166     nextBlockStartAddress = ALIGN_UP(start, blockSize);
01167     if (nextBlockStartAddress == start)
01168     {
01169         nextBlockStartAddress += blockSize;
01170     }
01171 
01172     remainingBytes = lengthInBytes;
01173 
01174     while (remainingBytes)
01175     {
01176         uint32_t numberOfPhrases;
01177         uint32_t verifyLength = nextBlockStartAddress - start;
01178         if (verifyLength > remainingBytes)
01179         {
01180             verifyLength = remainingBytes;
01181         }
01182 
01183         numberOfPhrases = verifyLength / flashInfo.sectionCmdAddressAligment ;
01184 
01185         /* Fill in verify section command parameters. */
01186         kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_VERIFY_SECTION, start);
01187         kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_1_1(numberOfPhrases, margin, 0xFFU);
01188 
01189         /* calling flash command sequence function to execute the command */
01190         returnCode = flash_command_sequence(config);
01191         if (returnCode)
01192         {
01193             return returnCode;
01194         }
01195 
01196         remainingBytes -= verifyLength;
01197         start += verifyLength;
01198         nextBlockStartAddress += blockSize;
01199     }
01200 
01201     return kStatus_FLASH_Success ;
01202 }
01203 
01204 status_t FLASH_VerifyProgram(flash_config_t *config,
01205                              uint32_t start,
01206                              uint32_t lengthInBytes,
01207                              const uint32_t *expectedData,
01208                              flash_margin_value_t margin,
01209                              uint32_t *failedAddress,
01210                              uint32_t *failedData)
01211 {
01212     status_t returnCode;
01213     flash_operation_config_t flashInfo;
01214 
01215     if (expectedData == NULL)
01216     {
01217         return kStatus_FLASH_InvalidArgument ;
01218     }
01219 
01220     flash_get_matched_operation_info(config, start, &flashInfo);
01221 
01222     returnCode = flash_check_range(config, start, lengthInBytes, flashInfo.checkCmdAddressAligment );
01223     if (returnCode)
01224     {
01225         return returnCode;
01226     }
01227 
01228     start = flashInfo.convertedAddress ;
01229 
01230     while (lengthInBytes)
01231     {
01232         /* preparing passing parameter to program check the flash block */
01233         kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_CHECK, start);
01234         kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(margin, 0xFFFFFFU);
01235         kFCCOBx[2] = *expectedData;
01236 
01237         /* calling flash command sequence function to execute the command */
01238         returnCode = flash_command_sequence(config);
01239 
01240         /* checking for the success of command execution */
01241         if (kStatus_FLASH_Success  != returnCode)
01242         {
01243             if (failedAddress)
01244             {
01245                 *failedAddress = start;
01246             }
01247             if (failedData)
01248             {
01249                 *failedData = 0;
01250             }
01251             break;
01252         }
01253 
01254         lengthInBytes -= flashInfo.checkCmdAddressAligment ;
01255         expectedData += flashInfo.checkCmdAddressAligment  / sizeof(*expectedData);
01256         start += flashInfo.checkCmdAddressAligment ;
01257     }
01258 
01259     return (returnCode);
01260 }
01261 
01262 // status_t FLASH_VerifyEraseAllExecuteOnlySegments(flash_config_t *config, flash_margin_value_t margin)
01263 // {
01264 //     if (config == NULL)
01265 //     {
01266 //         return kStatus_FLASH_InvalidArgument;
01267 //     }
01268 //
01269 //     /* preparing passing parameter to verify erase all execute-only segments command */
01270 //     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT, margin, 0xFFFFU);
01271 //
01272 //     /* calling flash command sequence function to execute the command */
01273 //     return flash_command_sequence(config);
01274 // }
01275 //
01276 // status_t FLASH_IsProtected(flash_config_t *config,
01277 //                            uint32_t start,
01278 //                            uint32_t lengthInBytes,
01279 //                            flash_protection_state_t *protection_state)
01280 // {
01281 //     uint32_t endAddress;           /* end address for protection check */
01282 //     uint32_t protectionRegionSize; /* size of flash protection region */
01283 //     uint32_t regionCheckedCounter; /* increments each time the flash address was checked for
01284 //                                     * protection status */
01285 //     uint32_t regionCounter;        /* incrementing variable used to increment through the flash
01286 //                                     * protection regions */
01287 //     uint32_t protectStatusCounter; /* increments each time a flash region was detected as protected */
01288 //
01289 //     uint8_t flashRegionProtectStatus[FSL_FEATURE_FTFx_REGION_COUNT]; /* array of the protection status for each
01290 //                                                                       * protection region */
01291 //     uint32_t flashRegionAddress[FSL_FEATURE_FTFx_REGION_COUNT + 1];  /* array of the start addresses for each flash
01292 //                                                                       * protection region. Note this is REGION_COUNT+1
01293 //                                                                       * due to requiring the next start address after
01294 //                                                                       * the end of flash for loop-check purposes below */
01295 //     status_t returnCode;
01296 //
01297 //     if (protection_state == NULL)
01298 //     {
01299 //         return kStatus_FLASH_InvalidArgument;
01300 //     }
01301 //
01302 //     /* Check the supplied address range. */
01303 //     returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE);
01304 //     if (returnCode)
01305 //     {
01306 //         return returnCode;
01307 //     }
01308 //
01309 //     /* calculating Flash end address */
01310 //     endAddress = start + lengthInBytes;
01311 //
01312 //     /* Calculate the size of the flash protection region
01313 //      * If the flash density is > 32KB, then protection region is 1/32 of total flash density
01314 //      * Else if flash density is < 32KB, then flash protection region is set to 1KB */
01315 //     if (config->PFlashTotalSize > 32 * 1024)
01316 //     {
01317 //         protectionRegionSize = (config->PFlashTotalSize) / FSL_FEATURE_FTFx_REGION_COUNT;
01318 //     }
01319 //     else
01320 //     {
01321 //         protectionRegionSize = 1024;
01322 //     }
01323 //
01324 //     /* populate the flashRegionAddress array with the start address of each flash region */
01325 //     regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
01326 //
01327 //     /* populate up to 33rd element of array, this is the next address after end of flash array */
01328 //     while (regionCounter <= FSL_FEATURE_FTFx_REGION_COUNT)
01329 //     {
01330 //         flashRegionAddress[regionCounter] = config->PFlashBlockBase + protectionRegionSize * regionCounter;
01331 //         regionCounter++;
01332 //     }
01333 //
01334 //     /* populate flashRegionProtectStatus array with status information
01335 //      * Protection status for each region is stored in the FPROT[3:0] registers
01336 //      * Each bit represents one region of flash
01337 //      * 4 registers * 8-bits-per-register = 32-bits (32-regions)
01338 //      * The convention is:
01339 //      * FPROT3[bit 0] is the first protection region (start of flash memory)
01340 //      * FPROT0[bit 7] is the last protection region (end of flash memory)
01341 //      * regionCounter is used to determine which FPROT[3:0] register to check for protection status
01342 //      * Note: FPROT=1 means NOT protected, FPROT=0 means protected */
01343 //     regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
01344 //     while (regionCounter < FSL_FEATURE_FTFx_REGION_COUNT)
01345 //     {
01346 //         if (regionCounter < 8)
01347 //         {
01348 //             flashRegionProtectStatus[regionCounter] = ((FTFx->FPROT3) >> regionCounter) & (0x01u);
01349 //         }
01350 //         else if ((regionCounter >= 8) && (regionCounter < 16))
01351 //         {
01352 //             flashRegionProtectStatus[regionCounter] = ((FTFx->FPROT2) >> (regionCounter - 8)) & (0x01u);
01353 //         }
01354 //         else if ((regionCounter >= 16) && (regionCounter < 24))
01355 //         {
01356 //             flashRegionProtectStatus[regionCounter] = ((FTFx->FPROT1) >> (regionCounter - 16)) & (0x01u);
01357 //         }
01358 //         else
01359 //         {
01360 //             flashRegionProtectStatus[regionCounter] = ((FTFx->FPROT0) >> (regionCounter - 24)) & (0x01u);
01361 //         }
01362 //         regionCounter++;
01363 //     }
01364 //
01365 //     /* loop through the flash regions and check
01366 //      * desired flash address range for protection status
01367 //      * loop stops when it is detected that start has exceeded the endAddress */
01368 //     regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
01369 //     regionCheckedCounter = 0;
01370 //     protectStatusCounter = 0; /* make sure protectStatusCounter is initialized to 0 first */
01371 //     while (start < endAddress)
01372 //     {
01373 //         /* check to see if the address falls within this protection region
01374 //          * Note that if the entire flash is to be checked, the last protection
01375 //          * region checked would consist of the last protection start address and
01376 //          * the start address following the end of flash */
01377 //         if ((start >= flashRegionAddress[regionCounter]) && (start < flashRegionAddress[regionCounter + 1]))
01378 //         {
01379 //             /* increment regionCheckedCounter to indicate this region was checked */
01380 //             regionCheckedCounter++;
01381 //
01382 //             /* check the protection status of this region
01383 //              * Note: FPROT=1 means NOT protected, FPROT=0 means protected */
01384 //             if (!flashRegionProtectStatus[regionCounter])
01385 //             {
01386 //                 /* increment protectStatusCounter to indicate this region is protected */
01387 //                 protectStatusCounter++;
01388 //             }
01389 //             start += protectionRegionSize; /* increment to an address within the next region */
01390 //         }
01391 //         regionCounter++; /* increment regionCounter to check for the next flash protection region */
01392 //     }
01393 //
01394 //     /* if protectStatusCounter == 0, then no region of the desired flash region is protected */
01395 //     if (protectStatusCounter == 0)
01396 //     {
01397 //         *protection_state = kFLASH_protectionStateUnprotected;
01398 //     }
01399 //     /* if protectStatusCounter == regionCheckedCounter, then each region checked was protected */
01400 //     else if (protectStatusCounter == regionCheckedCounter)
01401 //     {
01402 //         *protection_state = kFLASH_protectionStateProtected;
01403 //     }
01404 //     /* if protectStatusCounter != regionCheckedCounter, then protection status is mixed
01405 //      * In other words, some regions are protected while others are unprotected */
01406 //     else
01407 //     {
01408 //         *protection_state = kFLASH_protectionStateMixed;
01409 //     }
01410 //
01411 //     return (returnCode);
01412 // }
01413 //
01414 // status_t FLASH_IsExecuteOnly(flash_config_t *config,
01415 //                              uint32_t start,
01416 //                              uint32_t lengthInBytes,
01417 //                              flash_execute_only_access_state_t *access_state)
01418 // {
01419 //     status_t returnCode;
01420 //
01421 //     if (access_state == NULL)
01422 //     {
01423 //         return kStatus_FLASH_InvalidArgument;
01424 //     }
01425 //
01426 //     /* Check the supplied address range. */
01427 //     returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE);
01428 //     if (returnCode)
01429 //     {
01430 //         return returnCode;
01431 //     }
01432 //
01433 // #if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
01434 //     {
01435 //         uint32_t executeOnlySegmentCounter = 0;
01436 //
01437 //         /* calculating end address */
01438 //         uint32_t endAddress = start + lengthInBytes;
01439 //
01440 //         /* Aligning start address and end address */
01441 //         uint32_t alignedStartAddress = ALIGN_DOWN(start, config->PFlashAccessSegmentSize);
01442 //         uint32_t alignedEndAddress = ALIGN_UP(endAddress, config->PFlashAccessSegmentSize);
01443 //
01444 //         uint32_t segmentIndex = 0;
01445 //         uint32_t maxSupportedExecuteOnlySegmentCount =
01446 //             (alignedEndAddress - alignedStartAddress) / config->PFlashAccessSegmentSize;
01447 //
01448 //         while (start < endAddress)
01449 //         {
01450 //             uint32_t xacc;
01451 //
01452 //             segmentIndex = start / config->PFlashAccessSegmentSize;
01453 //
01454 //             if (segmentIndex < 32)
01455 //             {
01456 //                 xacc = *(const volatile uint32_t *)&FTFx->XACCL3;
01457 //             }
01458 //             else if (segmentIndex < config->PFlashAccessSegmentCount)
01459 //             {
01460 //                 xacc = *(const volatile uint32_t *)&FTFx->XACCH3;
01461 //                 segmentIndex -= 32;
01462 //             }
01463 //             else
01464 //             {
01465 //                 break;
01466 //             }
01467 //
01468 //             /* Determine if this address range is in a execute-only protection flash segment. */
01469 //             if ((~xacc) & (1u << segmentIndex))
01470 //             {
01471 //                 executeOnlySegmentCounter++;
01472 //             }
01473 //
01474 //             start += config->PFlashAccessSegmentSize;
01475 //         }
01476 //
01477 //         if (executeOnlySegmentCounter < 1u)
01478 //         {
01479 //             *access_state = kFLASH_accessStateUnLimited;
01480 //         }
01481 //         else if (executeOnlySegmentCounter < maxSupportedExecuteOnlySegmentCount)
01482 //         {
01483 //             *access_state = kFLASH_accessStateMixed;
01484 //         }
01485 //         else
01486 //         {
01487 //             *access_state = kFLASH_accessStateExecuteOnly;
01488 //         }
01489 //     }
01490 // #else
01491 //     *access_state = kFLASH_accessStateUnLimited;
01492 // #endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
01493 //
01494 //     return (returnCode);
01495 // }
01496 
01497 // status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value)
01498 // {
01499 //     if ((config == NULL) || (value == NULL))
01500 //     {
01501 //         return kStatus_FLASH_InvalidArgument;
01502 //     }
01503 //
01504 //     switch (whichProperty)
01505 //     {
01506 //         case kFLASH_propertyPflashSectorSize:
01507 //             *value = config->PFlashSectorSize;
01508 //             break;
01509 //
01510 //         case kFLASH_propertyPflashTotalSize:
01511 //             *value = config->PFlashTotalSize;
01512 //             break;
01513 //
01514 //         case kFLASH_propertyPflashBlockSize:
01515 //             *value = config->PFlashTotalSize / FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT;
01516 //             break;
01517 //
01518 //         case kFLASH_propertyPflashBlockCount:
01519 //             *value = config->PFlashBlockCount;
01520 //             break;
01521 //
01522 //         case kFLASH_propertyPflashBlockBaseAddr:
01523 //             *value = config->PFlashBlockBase;
01524 //             break;
01525 //
01526 //         case kFLASH_propertyPflashFacSupport:
01527 // #if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL)
01528 //             *value = FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL;
01529 // #else
01530 //             *value = 0;
01531 // #endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
01532 //             break;
01533 //
01534 //         case kFLASH_propertyPflashAccessSegmentSize:
01535 //             *value = config->PFlashAccessSegmentSize;
01536 //             break;
01537 //
01538 //         case kFLASH_propertyPflashAccessSegmentCount:
01539 //             *value = config->PFlashAccessSegmentCount;
01540 //             break;
01541 //
01542 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
01543 //         case kFLASH_propertyDflashSectorSize:
01544 //             *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE;
01545 //             break;
01546 //         case kFLASH_propertyDflashTotalSize:
01547 //             *value = config->DFlashTotalSize;
01548 //             break;
01549 //         case kFLASH_propertyDflashBlockSize:
01550 //             *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SIZE;
01551 //             break;
01552 //         case kFLASH_propertyDflashBlockCount:
01553 //             *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT;
01554 //             break;
01555 //         case kFLASH_propertyDflashBlockBaseAddr:
01556 //             *value = config->DFlashBlockBase;
01557 //             break;
01558 //         case kFLASH_propertyEepromTotalSize:
01559 //             *value = config->EEpromTotalSize;
01560 //             break;
01561 // #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
01562 //
01563 //         default: /* catch inputs that are not recognized */
01564 //             return kStatus_FLASH_UnknownProperty;
01565 //     }
01566 //
01567 //     return kStatus_FLASH_Success;
01568 // }
01569 
01570 // #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
01571 // status_t FLASH_SetFlexramFunction(flash_config_t *config, flash_flexram_function_option_t option)
01572 // {
01573 //     status_t status;
01574 //
01575 //     if (config == NULL)
01576 //     {
01577 //         return kStatus_FLASH_InvalidArgument;
01578 //     }
01579 //
01580 //     status = flasn_check_flexram_function_option_range(option);
01581 //     if (status != kStatus_FLASH_Success)
01582 //     {
01583 //         return status;
01584 //     }
01585 //
01586 //     /* preparing passing parameter to verify all block command */
01587 //     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_SET_FLEXRAM_FUNCTION, option, 0xFFFFU);
01588 //
01589 //     /* calling flash command sequence function to execute the command */
01590 //     return flash_command_sequence(config);
01591 // }
01592 // #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
01593 //
01594 // #if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
01595 // status_t FLASH_SwapControl(flash_config_t *config,
01596 //                            uint32_t address,
01597 //                            flash_swap_control_option_t option,
01598 //                            flash_swap_state_config_t *returnInfo)
01599 // {
01600 //     status_t returnCode;
01601 //
01602 //     if ((config == NULL) || (returnInfo == NULL))
01603 //     {
01604 //         return kStatus_FLASH_InvalidArgument;
01605 //     }
01606 //
01607 //     if (address & (FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT - 1))
01608 //     {
01609 //         return kStatus_FLASH_AlignmentError;
01610 //     }
01611 //
01612 //     /* Make sure address provided is in the lower half of Program flash but not in the Flash Configuration Field */
01613 //     if ((address >= (config->PFlashTotalSize / 2)) ||
01614 //         ((address >= kFLASH_configAreaStart) && (address <= kFLASH_configAreaEnd)))
01615 //     {
01616 //         return kStatus_FLASH_SwapIndicatorAddressError;
01617 //     }
01618 //
01619 //     /* Check the option. */
01620 //     returnCode = flash_check_swap_control_option(option);
01621 //     if (returnCode)
01622 //     {
01623 //         return returnCode;
01624 //     }
01625 //
01626 //     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SWAP_CONTROL, address);
01627 //     kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
01628 //
01629 //     returnCode = flash_command_sequence(config);
01630 //
01631 //     returnInfo->flashSwapState = (flash_swap_state_t)FTFx->FCCOB5;
01632 //     returnInfo->currentSwapBlockStatus = (flash_swap_block_status_t)FTFx->FCCOB6;
01633 //     returnInfo->nextSwapBlockStatus = (flash_swap_block_status_t)FTFx->FCCOB7;
01634 //
01635 //     return returnCode;
01636 // }
01637 // #endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
01638 //
01639 // #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
01640 // status_t FLASH_Swap(flash_config_t *config, uint32_t address, flash_swap_function_option_t option)
01641 // {
01642 //     flash_swap_state_config_t returnInfo;
01643 //     status_t returnCode;
01644 //
01645 //     memset(&returnInfo, 0xFFU, sizeof(returnInfo));
01646 //
01647 //     do
01648 //     {
01649 //         returnCode = FLASH_SwapControl(config, address, kFLASH_swapControlOptionReportStatus, &returnInfo);
01650 //         if (returnCode != kStatus_FLASH_Success)
01651 //         {
01652 //             return returnCode;
01653 //         }
01654 //
01655 //         if (kFLASH_swapFunctionOptionDisable == option)
01656 //         {
01657 //             if (returnInfo.flashSwapState == kFLASH_swapStateDisabled)
01658 //             {
01659 //                 return kStatus_FLASH_Success;
01660 //             }
01661 //             else if (returnInfo.flashSwapState == kFLASH_swapStateUninitialized)
01662 //             {
01663 //                 /* The swap system changed to the DISABLED state with Program flash block 0
01664 //                  * located at relative flash address 0x0_0000 */
01665 //                 returnCode = FLASH_SwapControl(config, address, kFLASH_swapControlOptionDisableSystem, &returnInfo);
01666 //             }
01667 //             else
01668 //             {
01669 //                 /* Swap disable should be requested only when swap system is in the uninitialized state */
01670 //                 return kStatus_FLASH_SwapSystemNotInUninitialized;
01671 //             }
01672 //         }
01673 //         else
01674 //         {
01675 //             /* When first swap: the initial swap state is Uninitialized, flash swap inidicator address is unset,
01676 //              *    the swap procedure should be Uninitialized -> Update-Erased -> Complete.
01677 //              * After the first swap has been completed, the flash swap inidicator address cannot be modified
01678 //              *    unless EraseAllBlocks command is issued, the swap procedure is changed to Update -> Update-Erased ->
01679 //              *    Complete. */
01680 //             switch (returnInfo.flashSwapState)
01681 //             {
01682 //                 case kFLASH_swapStateUninitialized:
01683 //                     /* If current swap mode is Uninitialized, Initialize Swap to Initialized/READY state. */
01684 //                     returnCode =
01685 //                         FLASH_SwapControl(config, address, kFLASH_swapControlOptionIntializeSystem, &returnInfo);
01686 //                     break;
01687 //                 case kFLASH_swapStateReady:
01688 //                     /* Validate whether the address provided to the swap system is matched to
01689 //                      * swap indicator address in the IFR */
01690 //                     returnCode = flash_validate_swap_indicator_address(config, address);
01691 //                     if (returnCode == kStatus_FLASH_Success)
01692 //                     {
01693 //                         /* If current swap mode is Initialized/Ready, Initialize Swap to UPDATE state. */
01694 //                         returnCode =
01695 //                             FLASH_SwapControl(config, address, kFLASH_swapControlOptionSetInUpdateState, &returnInfo);
01696 //                     }
01697 //                     break;
01698 //                 case kFLASH_swapStateUpdate:
01699 //                     /* If current swap mode is Update, Erase indicator sector in non active block
01700 //                      * to proceed swap system to update-erased state */
01701 //                     returnCode = FLASH_Erase(config, address + (config->PFlashTotalSize >> 1),
01702 //                                              FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT, kFLASH_apiEraseKey);
01703 //                     break;
01704 //                 case kFLASH_swapStateUpdateErased:
01705 //                     /* If current swap mode is Update or Update-Erased, progress Swap to COMPLETE State */
01706 //                     returnCode =
01707 //                         FLASH_SwapControl(config, address, kFLASH_swapControlOptionSetInCompleteState, &returnInfo);
01708 //                     break;
01709 //                 case kFLASH_swapStateComplete:
01710 //                     break;
01711 //                 case kFLASH_swapStateDisabled:
01712 //                     /* When swap system is in disabled state, We need to clear swap system back to uninitialized
01713 //                      * by issuing EraseAllBlocks command */
01714 //                     returnCode = kStatus_FLASH_SwapSystemNotInUninitialized;
01715 //                     break;
01716 //                 default:
01717 //                     returnCode = kStatus_FLASH_InvalidArgument;
01718 //                     break;
01719 //             }
01720 //         }
01721 //         if (returnCode != kStatus_FLASH_Success)
01722 //         {
01723 //             break;
01724 //         }
01725 //     } while (!((kFLASH_swapStateComplete == returnInfo.flashSwapState) && (kFLASH_swapFunctionOptionEnable == option)));
01726 //
01727 //     return returnCode;
01728 // }
01729 // #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
01730 //
01731 // #if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD
01732 // status_t FLASH_ProgramPartition(flash_config_t *config,
01733 //                                 flash_partition_flexram_load_option_t option,
01734 //                                 uint32_t eepromDataSizeCode,
01735 //                                 uint32_t flexnvmPartitionCode)
01736 // {
01737 //     status_t returnCode;
01738 //
01739 //     if (config == NULL)
01740 //     {
01741 //         return kStatus_FLASH_InvalidArgument;
01742 //     }
01743 //
01744 //     /* eepromDataSizeCode[7:6], flexnvmPartitionCode[7:4] should be all 1'b0
01745 //      *  or it will cause access error. */
01746 //     /* eepromDataSizeCode &= 0x3FU;  */
01747 //     /* flexnvmPartitionCode &= 0x0FU; */
01748 //
01749 //     /* preparing passing parameter to program the flash block */
01750 //     kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_2_1(FTFx_PROGRAM_PARTITION, 0xFFFFU, option);
01751 //     kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_2(eepromDataSizeCode, flexnvmPartitionCode, 0xFFFFU);
01752 //
01753 //     /* calling flash command sequence function to execute the command */
01754 //     returnCode = flash_command_sequence(config);
01755 //
01756 //     flash_cache_clear(config);
01757 //
01758 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
01759 //     /* Data flash IFR will be updated by program partition command during reset sequence,
01760 //      * so we just set reserved values for partitioned FlexNVM size here */
01761 //     config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED;
01762 //     config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
01763 // #endif
01764 //
01765 //     return (returnCode);
01766 // }
01767 // #endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD */
01768 //
01769 // status_t FLASH_PflashSetProtection(flash_config_t *config, uint32_t protectStatus)
01770 // {
01771 //     if (config == NULL)
01772 //     {
01773 //         return kStatus_FLASH_InvalidArgument;
01774 //     }
01775 //
01776 //     *kFPROT = protectStatus;
01777 //
01778 //     if (protectStatus != *kFPROT)
01779 //     {
01780 //         return kStatus_FLASH_CommandFailure;
01781 //     }
01782 //
01783 //     return kStatus_FLASH_Success;
01784 // }
01785 //
01786 // status_t FLASH_PflashGetProtection(flash_config_t *config, uint32_t *protectStatus)
01787 // {
01788 //     if ((config == NULL) || (protectStatus == NULL))
01789 //     {
01790 //         return kStatus_FLASH_InvalidArgument;
01791 //     }
01792 //
01793 //     *protectStatus = *kFPROT;
01794 //
01795 //     return kStatus_FLASH_Success;
01796 // }
01797 //
01798 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
01799 // status_t FLASH_DflashSetProtection(flash_config_t *config, uint8_t protectStatus)
01800 // {
01801 //     if (config == NULL)
01802 //     {
01803 //         return kStatus_FLASH_InvalidArgument;
01804 //     }
01805 //
01806 //     if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED))
01807 //     {
01808 //         return kStatus_FLASH_CommandNotSupported;
01809 //     }
01810 //
01811 //     FTFx->FDPROT = protectStatus;
01812 //
01813 //     if (FTFx->FDPROT != protectStatus)
01814 //     {
01815 //         return kStatus_FLASH_CommandFailure;
01816 //     }
01817 //
01818 //     return kStatus_FLASH_Success;
01819 // }
01820 // #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
01821 //
01822 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
01823 // status_t FLASH_DflashGetProtection(flash_config_t *config, uint8_t *protectStatus)
01824 // {
01825 //     if ((config == NULL) || (protectStatus == NULL))
01826 //     {
01827 //         return kStatus_FLASH_InvalidArgument;
01828 //     }
01829 //
01830 //     if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED))
01831 //     {
01832 //         return kStatus_FLASH_CommandNotSupported;
01833 //     }
01834 //
01835 //     *protectStatus = FTFx->FDPROT;
01836 //
01837 //     return kStatus_FLASH_Success;
01838 // }
01839 // #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
01840 //
01841 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
01842 // status_t FLASH_EepromSetProtection(flash_config_t *config, uint8_t protectStatus)
01843 // {
01844 //     if (config == NULL)
01845 //     {
01846 //         return kStatus_FLASH_InvalidArgument;
01847 //     }
01848 //
01849 //     if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED))
01850 //     {
01851 //         return kStatus_FLASH_CommandNotSupported;
01852 //     }
01853 //
01854 //     FTFx->FEPROT = protectStatus;
01855 //
01856 //     if (FTFx->FEPROT != protectStatus)
01857 //     {
01858 //         return kStatus_FLASH_CommandFailure;
01859 //     }
01860 //
01861 //     return kStatus_FLASH_Success;
01862 // }
01863 // #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
01864 //
01865 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
01866 // status_t FLASH_EepromGetProtection(flash_config_t *config, uint8_t *protectStatus)
01867 // {
01868 //     if ((config == NULL) || (protectStatus == NULL))
01869 //     {
01870 //         return kStatus_FLASH_InvalidArgument;
01871 //     }
01872 //
01873 //     if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED))
01874 //     {
01875 //         return kStatus_FLASH_CommandNotSupported;
01876 //     }
01877 //
01878 //     *protectStatus = FTFx->FEPROT;
01879 //
01880 //     return kStatus_FLASH_Success;
01881 // }
01882 // #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
01883 
01884 #if FLASH_DRIVER_IS_FLASH_RESIDENT
01885 /*!
01886  * @brief Run flash command
01887  *
01888  * This function should be copied to RAM for execution to make sure that code works
01889  * properly even flash cache is disabled.
01890  * It is for flash-resident bootloader only, not technically required for ROM or
01891  *  flashloader (RAM-resident bootloader).
01892  */
01893 void flash_run_command(FTFx_REG_ACCESS_TYPE ftfx_fstat)
01894 {
01895     /* clear CCIF bit */
01896     *ftfx_fstat = FTFx_FSTAT_CCIF_MASK;
01897 
01898     /* Check CCIF bit of the flash status register, wait till it is set.
01899      * IP team indicates that this loop will always complete. */
01900     while (!((*ftfx_fstat) & FTFx_FSTAT_CCIF_MASK))
01901     {
01902     }
01903 }
01904 
01905 /*!
01906  * @brief Be used for determining the size of flash_run_command()
01907  *
01908  * This function must be defined that lexically follows flash_run_command(),
01909  * so we can determine the size of flash_run_command() at runtime and not worry
01910  * about toolchain or code generation differences.
01911  */
01912 void flash_run_command_end(void)
01913 {
01914 }
01915 
01916 /*!
01917  * @brief Copy flash_run_command() to RAM
01918  *
01919  * This function copys the memory between flash_run_command() and flash_run_command_end()
01920  * into the buffer which is also means that copying flash_run_command() to RAM.
01921  */
01922 static void copy_flash_run_command(uint8_t *flashRunCommand)
01923 {
01924     /* Calculate the valid length of flash_run_command() memory.
01925      * Set max size(64 bytes) as default function size, in case some compiler allocates
01926      * flash_run_command_end ahead of flash_run_command. */
01927     uint32_t funcLength = kFLASH_executeInRamFunctionMaxSize ;
01928     uint32_t flash_run_command_start_addr = (uint32_t)flash_run_command & (~1U);
01929     uint32_t flash_run_command_end_addr = (uint32_t)flash_run_command_end & (~1U);
01930     if (flash_run_command_end_addr > flash_run_command_start_addr)
01931     {
01932         funcLength = flash_run_command_end_addr - flash_run_command_start_addr;
01933 
01934         assert(funcLength <= kFLASH_executeInRamFunctionMaxSize );
01935 
01936         /* In case some compiler allocates other function in the middle of flash_run_command
01937          * and flash_run_command_end. */
01938         if (funcLength > kFLASH_executeInRamFunctionMaxSize )
01939         {
01940             funcLength = kFLASH_executeInRamFunctionMaxSize ;
01941         }
01942     }
01943 
01944     /* Since the value of ARM function pointer is always odd, but the real start address
01945      * of function memory should be even, that's why -1 and +1 operation exist. */
01946     memcpy((void *)flashRunCommand, (void *)flash_run_command_start_addr, funcLength);
01947     callFlashRunCommand = (void (*)(FTFx_REG_ACCESS_TYPE ftfx_fstat))((uint32_t)flashRunCommand + 1);
01948 }
01949 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
01950 
01951 /*!
01952  * @brief Flash Command Sequence
01953  *
01954  * This function is used to perform the command write sequence to the flash.
01955  *
01956  * @param driver Pointer to storage for the driver runtime state.
01957  * @return An error code or kStatus_FLASH_Success
01958  */
01959 static status_t flash_command_sequence(flash_config_t *config)
01960 {
01961     uint8_t registerValue;
01962 
01963 #if FLASH_DRIVER_IS_FLASH_RESIDENT
01964     /* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */
01965     FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK;
01966 
01967     status_t returnCode = flash_check_execute_in_ram_function_info(config);
01968     if (kStatus_FLASH_Success  != returnCode)
01969     {
01970         return returnCode;
01971     }
01972 
01973     /* We pass the ftfx_fstat address as a parameter to flash_run_comamnd() instead of using
01974      * pre-processed MICRO sentences or operating global variable in flash_run_comamnd()
01975      * to make sure that flash_run_command() will be compiled into position-independent code (PIC). */
01976     callFlashRunCommand((FTFx_REG_ACCESS_TYPE)(&FTFx->FSTAT));
01977 #else
01978     /* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */
01979     FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK;
01980 
01981     /* clear CCIF bit */
01982     FTFx->FSTAT = FTFx_FSTAT_CCIF_MASK;
01983 
01984     /* Check CCIF bit of the flash status register, wait till it is set.
01985      * IP team indicates that this loop will always complete. */
01986     while (!(FTFx->FSTAT & FTFx_FSTAT_CCIF_MASK))
01987     {
01988     }
01989 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
01990 
01991     /* Check error bits */
01992     /* Get flash status register value */
01993     registerValue = FTFx->FSTAT;
01994 
01995     /* checking access error */
01996     if (registerValue & FTFx_FSTAT_ACCERR_MASK)
01997     {
01998         return kStatus_FLASH_AccessError ;
01999     }
02000     /* checking protection error */
02001     else if (registerValue & FTFx_FSTAT_FPVIOL_MASK)
02002     {
02003         return kStatus_FLASH_ProtectionViolation ;
02004     }
02005     /* checking MGSTAT0 non-correctable error */
02006     else if (registerValue & FTFx_FSTAT_MGSTAT0_MASK)
02007     {
02008         return kStatus_FLASH_CommandFailure ;
02009     }
02010     else
02011     {
02012         return kStatus_FLASH_Success ;
02013     }
02014 }
02015 
02016 #if FLASH_DRIVER_IS_FLASH_RESIDENT
02017 /*!
02018  * @brief Run flash cache clear command
02019  *
02020  * This function should be copied to RAM for execution to make sure that code works
02021  * properly even flash cache is disabled.
02022  * It is for flash-resident bootloader only, not technically required for ROM or
02023  * flashloader (RAM-resident bootloader).
02024  */
02025 void flash_cache_clear_command(FTFx_REG32_ACCESS_TYPE ftfx_reg)
02026 {
02027 #if defined(FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS
02028     *ftfx_reg |= MCM_PLACR_CFCC_MASK;
02029 #elif defined(FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS
02030 #if defined(FMC_PFB01CR_CINV_WAY_MASK)
02031     *ftfx_reg = (*ftfx_reg & ~FMC_PFB01CR_CINV_WAY_MASK) | FMC_PFB01CR_CINV_WAY(~0);
02032 #else
02033     *ftfx_reg = (*ftfx_reg & ~FMC_PFB0CR_CINV_WAY_MASK) | FMC_PFB0CR_CINV_WAY(~0);
02034 #endif
02035 #elif defined(FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS
02036     *ftfx_reg |= MSCM_OCMDR_OCMC1(2);
02037     *ftfx_reg |= MSCM_OCMDR_OCMC1(1);
02038 #else
02039 /*    #error "Unknown flash cache controller"  */
02040 #endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */
02041        /* Memory barriers for good measure.
02042         * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
02043     __ISB();
02044     __DSB();
02045 }
02046 
02047 /*!
02048  * @brief Be used for determining the size of flash_cache_clear_command()
02049  *
02050  * This function must be defined that lexically follows flash_cache_clear_command(),
02051  * so we can determine the size of flash_cache_clear_command() at runtime and not worry
02052  * about toolchain or code generation differences.
02053  */
02054 void flash_cache_clear_command_end(void)
02055 {
02056 }
02057 
02058 /*!
02059  * @brief Copy flash_cache_clear_command() to RAM
02060  *
02061  * This function copys the memory between flash_cache_clear_command() and flash_cache_clear_command_end()
02062  * into the buffer which is also means that copying flash_cache_clear_command() to RAM.
02063  */
02064 static void copy_flash_cache_clear_command(uint8_t *flashCacheClearCommand)
02065 {
02066     /* Calculate the valid length of flash_cache_clear_command() memory.
02067      * Set max size(64 bytes) as default function size, in case some compiler allocates
02068      * flash_cache_clear_command_end ahead of flash_cache_clear_command. */
02069     uint32_t funcLength = kFLASH_executeInRamFunctionMaxSize ;
02070     uint32_t flash_cache_clear_command_start_addr = (uint32_t)flash_cache_clear_command & (~1U);
02071     uint32_t flash_cache_clear_command_end_addr = (uint32_t)flash_cache_clear_command_end & (~1U);
02072     if (flash_cache_clear_command_end_addr > flash_cache_clear_command_start_addr)
02073     {
02074         funcLength = flash_cache_clear_command_end_addr - flash_cache_clear_command_start_addr;
02075 
02076         assert(funcLength <= kFLASH_executeInRamFunctionMaxSize );
02077 
02078         /* In case some compiler allocates other function in the middle of flash_cache_clear_command
02079          * and flash_cache_clear_command_end. */
02080         if (funcLength > kFLASH_executeInRamFunctionMaxSize )
02081         {
02082             funcLength = kFLASH_executeInRamFunctionMaxSize ;
02083         }
02084     }
02085 
02086     /* Since the value of ARM function pointer is always odd, but the real start address
02087      * of function memory should be even, that's why -1 and +1 operation exist. */
02088     memcpy((void *)flashCacheClearCommand, (void *)flash_cache_clear_command_start_addr, funcLength);
02089     callFlashCacheClearCommand = (void (*)(FTFx_REG32_ACCESS_TYPE ftfx_reg))((uint32_t)flashCacheClearCommand + 1);
02090 }
02091 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
02092 
02093 /*!
02094  * @brief Flash Cache Clear
02095  *
02096  * This function is used to perform the cache clear to the flash.
02097  */
02098 #if (defined(__ICCARM__))
02099 #pragma optimize = none
02100 void flash_cache_clear(flash_config_t *config)
02101 #elif (defined(__CC_ARM))
02102 #pragma push
02103 #pragma O0
02104 void flash_cache_clear(flash_config_t *config)
02105 #elif (!defined(__GNUC__))
02106 /* #pragma GCC push_options */
02107 /* #pragma GCC optimize("O0") */
02108 void __attribute__((optimize("O0"))) flash_cache_clear(flash_config_t *config)
02109 #else
02110 #error "Unknown compiler"
02111 #endif
02112 {
02113 #if FLASH_DRIVER_IS_FLASH_RESIDENT
02114     status_t returnCode = flash_check_execute_in_ram_function_info(config);
02115     if (kStatus_FLASH_Success  != returnCode)
02116     {
02117         return;
02118     }
02119 
02120 /* We pass the ftfx register address as a parameter to flash_cache_clear_comamnd() instead of using
02121  * pre-processed MACROs or a global variable in flash_cache_clear_comamnd()
02122  * to make sure that flash_cache_clear_command() will be compiled into position-independent code (PIC). */
02123 #if defined(FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS
02124 #if defined(MCM)
02125     callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&MCM->PLACR);
02126 #endif
02127 #if defined(MCM0)
02128     callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&MCM0->PLACR);
02129 #endif
02130 #if defined(MCM1)
02131     callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&MCM1->PLACR);
02132 #endif
02133 #elif defined(FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS
02134 #if defined(FMC_PFB01CR_CINV_WAY_MASK)
02135     callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR);
02136 #else
02137     callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR);
02138 #endif
02139 #elif defined(FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS
02140     callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[0]);
02141 #else
02142     /* #error "Unknown flash cache controller" */
02143     /* meaningless code, just a workaround to solve warning*/
02144     callFlashCacheClearCommand((FTFx_REG32_ACCESS_TYPE)0);
02145 #endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */
02146 
02147 #else
02148 
02149 #if defined(FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MCM_FLASH_CACHE_CONTROLS
02150 #if defined(MCM)
02151     MCM->PLACR |= MCM_PLACR_CFCC_MASK;
02152 #endif
02153 #if defined(MCM0)
02154     MCM0->PLACR |= MCM_PLACR_CFCC_MASK;
02155 #endif
02156 #if defined(MCM1)
02157     MCM1->PLACR |= MCM_PLACR_CFCC_MASK;
02158 #endif
02159 #elif defined(FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_FMC_FLASH_CACHE_CONTROLS
02160 #if defined(FMC_PFB01CR_CINV_WAY_MASK)
02161     FMC->PFB01CR = (FMC->PFB01CR & ~FMC_PFB01CR_CINV_WAY_MASK) | FMC_PFB01CR_CINV_WAY(~0);
02162 #else
02163     FMC->PFB0CR = (FMC->PFB0CR & ~FMC_PFB0CR_CINV_WAY_MASK) | FMC_PFB0CR_CINV_WAY(~0);
02164 #endif
02165 #elif defined(FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS) && FSL_FEATURE_FLASH_HAS_MSCM_FLASH_CACHE_CONTROLS
02166     MSCM->OCMDR[0] |= MSCM_OCMDR_OCMC1(2);
02167     MSCM->OCMDR[0] |= MSCM_OCMDR_OCMC1(1);
02168 #else
02169 /*    #error "Unknown flash cache controller" */
02170 #endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */
02171 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
02172 }
02173 #if (defined(__CC_ARM))
02174 #pragma pop
02175 #endif
02176 #if (defined(__GNUC__))
02177 /* #pragma GCC pop_options */
02178 #endif
02179 
02180 #if FLASH_DRIVER_IS_FLASH_RESIDENT
02181 /*! @brief Check whether flash execute-in-ram functions are ready  */
02182 static status_t flash_check_execute_in_ram_function_info(flash_config_t *config)
02183 {
02184     flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo;
02185 
02186     if (config == NULL)
02187     {
02188         return kStatus_FLASH_InvalidArgument ;
02189     }
02190 
02191     flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo ;
02192 
02193     if ((config->flashExecuteInRamFunctionInfo ) &&
02194         (kFLASH_executeInRamFunctionTotalNum  == flashExecuteInRamFunctionInfo->activeFunctionCount ))
02195     {
02196         return kStatus_FLASH_Success ;
02197     }
02198 
02199     return kStatus_FLASH_ExecuteInRamFunctionNotReady ;
02200 }
02201 #endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
02202 
02203 /*! @brief Validates the range and alignment of the given address range.*/
02204 static status_t flash_check_range(flash_config_t *config,
02205                                   uint32_t startAddress,
02206                                   uint32_t lengthInBytes,
02207                                   uint32_t alignmentBaseline)
02208 {
02209     if (config == NULL)
02210     {
02211         return kStatus_FLASH_InvalidArgument ;
02212     }
02213 
02214     /* Verify the start and length are alignmentBaseline aligned. */
02215     if ((startAddress & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1)))
02216     {
02217         return kStatus_FLASH_AlignmentError ;
02218     }
02219 
02220 /* check for valid range of the target addresses */
02221 #if !FLASH_SSD_IS_FLEXNVM_ENABLED
02222     if ((startAddress < config->PFlashBlockBase) ||
02223         ((startAddress + lengthInBytes) > (config->PFlashBlockBase  + config->PFlashTotalSize )))
02224 #else
02225     if (!(((startAddress >= config->PFlashBlockBase ) &&
02226            ((startAddress + lengthInBytes) <= (config->PFlashBlockBase  + config->PFlashTotalSize ))) ||
02227           ((startAddress >= config->DFlashBlockBase ) &&
02228            ((startAddress + lengthInBytes) <= (config->DFlashBlockBase  + config->DFlashTotalSize )))))
02229 #endif
02230     {
02231         return kStatus_FLASH_AddressError ;
02232     }
02233 
02234     return kStatus_FLASH_Success ;
02235 }
02236 
02237 /*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/
02238 static status_t flash_get_matched_operation_info(flash_config_t *config,
02239                                                  uint32_t address,
02240                                                  flash_operation_config_t *info)
02241 {
02242     if (config == NULL)
02243     {
02244         return kStatus_FLASH_InvalidArgument ;
02245     }
02246 
02247     /* Clean up info Structure*/
02248     memset(info, 0, sizeof(flash_operation_config_t));
02249 
02250 #if FLASH_SSD_IS_FLEXNVM_ENABLED
02251     if ((address >= config->DFlashBlockBase ) && (address <= (config->DFlashBlockBase  + config->DFlashTotalSize )))
02252     {
02253         info->convertedAddress  = address - config->DFlashBlockBase  + 0x800000U;
02254         info->activeSectorSize  = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE;
02255         info->activeBlockSize  = config->DFlashTotalSize  / FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT;
02256 
02257         info->blockWriteUnitSize  = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_WRITE_UNIT_SIZE;
02258         info->sectorCmdAddressAligment  = FSL_FEATURE_FLASH_FLEX_NVM_SECTOR_CMD_ADDRESS_ALIGMENT;
02259         info->sectionCmdAddressAligment  = FSL_FEATURE_FLASH_FLEX_NVM_SECTION_CMD_ADDRESS_ALIGMENT;
02260         info->resourceCmdAddressAligment  = FSL_FEATURE_FLASH_FLEX_NVM_RESOURCE_CMD_ADDRESS_ALIGMENT;
02261         info->checkCmdAddressAligment  = FSL_FEATURE_FLASH_FLEX_NVM_CHECK_CMD_ADDRESS_ALIGMENT;
02262     }
02263     else
02264 #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
02265     {
02266         info->convertedAddress  = address;
02267         info->activeSectorSize  = config->PFlashSectorSize ;
02268         info->activeBlockSize  = config->PFlashTotalSize  / config->PFlashBlockCount ;
02269 
02270         info->blockWriteUnitSize  = FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE;
02271         info->sectorCmdAddressAligment  = FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT;
02272         info->sectionCmdAddressAligment  = FSL_FEATURE_FLASH_PFLASH_SECTION_CMD_ADDRESS_ALIGMENT;
02273         info->resourceCmdAddressAligment  = FSL_FEATURE_FLASH_PFLASH_RESOURCE_CMD_ADDRESS_ALIGMENT;
02274         info->checkCmdAddressAligment  = FSL_FEATURE_FLASH_PFLASH_CHECK_CMD_ADDRESS_ALIGMENT;
02275     }
02276 
02277     return kStatus_FLASH_Success ;
02278 }
02279 
02280 /*! @brief Validates the given user key for flash erase APIs.*/
02281 static status_t flash_check_user_key(uint32_t key)
02282 {
02283     /* Validate the user key */
02284     if (key != kFLASH_apiEraseKey )
02285     {
02286         return kStatus_FLASH_EraseKeyError ;
02287     }
02288 
02289     return kStatus_FLASH_Success ;
02290 }
02291 
02292 // #if FLASH_SSD_IS_FLEXNVM_ENABLED
02293 // /*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/
02294 // static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config)
02295 // {
02296 //     struct
02297 //     {
02298 //         uint32_t reserved0;
02299 //         uint8_t FlexNVMPartitionCode;
02300 //         uint8_t EEPROMDataSetSize;
02301 //         uint16_t reserved1;
02302 //     } dataIFRReadOut;
02303 //     status_t returnCode;
02304 //
02305 //     if (config == NULL)
02306 //     {
02307 //         return kStatus_FLASH_InvalidArgument;
02308 //     }
02309 //
02310 //     /* Get FlexNVM memory partition info from data flash IFR */
02311 //     returnCode = FLASH_ReadResource(config, DFLASH_IFR_READRESOURCE_START_ADDRESS, (uint32_t *)&dataIFRReadOut,
02312 //                                     sizeof(dataIFRReadOut), kFLASH_resourceOptionFlashIfr);
02313 //     if (returnCode != kStatus_FLASH_Success)
02314 //     {
02315 //         return kStatus_FLASH_PartitionStatusUpdateFailure;
02316 //     }
02317 //
02318 //     /* Fill out partitioned EEPROM size */
02319 //     dataIFRReadOut.EEPROMDataSetSize &= 0x0FU;
02320 //     switch (dataIFRReadOut.EEPROMDataSetSize)
02321 //     {
02322 //         case 0x00U:
02323 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0000;
02324 //             break;
02325 //         case 0x01U:
02326 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0001;
02327 //             break;
02328 //         case 0x02U:
02329 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0010;
02330 //             break;
02331 //         case 0x03U:
02332 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0011;
02333 //             break;
02334 //         case 0x04U:
02335 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0100;
02336 //             break;
02337 //         case 0x05U:
02338 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0101;
02339 //             break;
02340 //         case 0x06U:
02341 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0110;
02342 //             break;
02343 //         case 0x07U:
02344 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0111;
02345 //             break;
02346 //         case 0x08U:
02347 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1000;
02348 //             break;
02349 //         case 0x09U:
02350 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1001;
02351 //             break;
02352 //         case 0x0AU:
02353 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1010;
02354 //             break;
02355 //         case 0x0BU:
02356 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1011;
02357 //             break;
02358 //         case 0x0CU:
02359 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1100;
02360 //             break;
02361 //         case 0x0DU:
02362 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1101;
02363 //             break;
02364 //         case 0x0EU:
02365 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1110;
02366 //             break;
02367 //         case 0x0FU:
02368 //             config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1111;
02369 //             break;
02370 //         default:
02371 //             config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED;
02372 //             break;
02373 //     }
02374 //
02375 //     /* Fill out partitioned DFlash size */
02376 //     dataIFRReadOut.FlexNVMPartitionCode &= 0x0FU;
02377 //     switch (dataIFRReadOut.FlexNVMPartitionCode)
02378 //     {
02379 //         case 0x00U:
02380 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 != 0xFFFFFFFF)
02381 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000;
02382 // #else
02383 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02384 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 */
02385 //             break;
02386 //         case 0x01U:
02387 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 != 0xFFFFFFFF)
02388 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001;
02389 // #else
02390 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02391 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 */
02392 //             break;
02393 //         case 0x02U:
02394 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 != 0xFFFFFFFF)
02395 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010;
02396 // #else
02397 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02398 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 */
02399 //             break;
02400 //         case 0x03U:
02401 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 != 0xFFFFFFFF)
02402 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011;
02403 // #else
02404 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02405 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 */
02406 //             break;
02407 //         case 0x04U:
02408 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 != 0xFFFFFFFF)
02409 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100;
02410 // #else
02411 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02412 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 */
02413 //             break;
02414 //         case 0x05U:
02415 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 != 0xFFFFFFFF)
02416 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101;
02417 // #else
02418 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02419 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 */
02420 //             break;
02421 //         case 0x06U:
02422 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 != 0xFFFFFFFF)
02423 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110;
02424 // #else
02425 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02426 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 */
02427 //             break;
02428 //         case 0x07U:
02429 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 != 0xFFFFFFFF)
02430 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111;
02431 // #else
02432 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02433 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 */
02434 //             break;
02435 //         case 0x08U:
02436 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 != 0xFFFFFFFF)
02437 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000;
02438 // #else
02439 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02440 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 */
02441 //             break;
02442 //         case 0x09U:
02443 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 != 0xFFFFFFFF)
02444 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001;
02445 // #else
02446 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02447 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 */
02448 //             break;
02449 //         case 0x0AU:
02450 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 != 0xFFFFFFFF)
02451 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010;
02452 // #else
02453 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02454 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 */
02455 //             break;
02456 //         case 0x0BU:
02457 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 != 0xFFFFFFFF)
02458 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011;
02459 // #else
02460 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02461 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 */
02462 //             break;
02463 //         case 0x0CU:
02464 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 != 0xFFFFFFFF)
02465 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100;
02466 // #else
02467 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02468 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 */
02469 //             break;
02470 //         case 0x0DU:
02471 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 != 0xFFFFFFFF)
02472 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101;
02473 // #else
02474 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02475 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 */
02476 //             break;
02477 //         case 0x0EU:
02478 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 != 0xFFFFFFFF)
02479 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110;
02480 // #else
02481 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02482 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 */
02483 //             break;
02484 //         case 0x0FU:
02485 // #if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 != 0xFFFFFFFF)
02486 //             config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111;
02487 // #else
02488 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02489 // #endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 */
02490 //             break;
02491 //         default:
02492 //             config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
02493 //             break;
02494 //     }
02495 //
02496 //     return kStatus_FLASH_Success;
02497 // }
02498 // #endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
02499 
02500 // #if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
02501 // /*! @brief Validates the range of the given resource address.*/
02502 // static status_t flash_check_resource_range(uint32_t start,
02503 //                                            uint32_t lengthInBytes,
02504 //                                            uint32_t alignmentBaseline,
02505 //                                            flash_read_resource_option_t option)
02506 // {
02507 //     status_t status;
02508 //     uint32_t maxReadbleAddress;
02509 //
02510 //     if ((start & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1)))
02511 //     {
02512 //         return kStatus_FLASH_AlignmentError;
02513 //     }
02514 //
02515 //     status = kStatus_FLASH_Success;
02516 //
02517 //     maxReadbleAddress = start + lengthInBytes - 1;
02518 //     if (option == kFLASH_resourceOptionVersionId)
02519 //     {
02520 //         if ((start != kFLASH_resourceRangeVersionIdStart) ||
02521 //             ((start + lengthInBytes - 1) != kFLASH_resourceRangeVersionIdEnd))
02522 //         {
02523 //             status = kStatus_FLASH_InvalidArgument;
02524 //         }
02525 //     }
02526 //     else if (option == kFLASH_resourceOptionFlashIfr)
02527 //     {
02528 //         if (maxReadbleAddress < kFLASH_resourceRangePflashIfrSizeInBytes)
02529 //         {
02530 //         }
02531 // #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
02532 //         else if ((start >= kFLASH_resourceRangePflashSwapIfrStart) &&
02533 //                  (maxReadbleAddress <= kFLASH_resourceRangePflashSwapIfrEnd))
02534 //         {
02535 //         }
02536 // #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
02537 //         else if ((start >= kFLASH_resourceRangeDflashIfrStart) &&
02538 //                  (maxReadbleAddress <= kFLASH_resourceRangeDflashIfrEnd))
02539 //         {
02540 //         }
02541 //         else
02542 //         {
02543 //             status = kStatus_FLASH_InvalidArgument;
02544 //         }
02545 //     }
02546 //     else
02547 //     {
02548 //         status = kStatus_FLASH_InvalidArgument;
02549 //     }
02550 //
02551 //     return status;
02552 // }
02553 // #endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
02554 
02555 // #if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
02556 // /*! @brief Validates the gived swap control option.*/
02557 // static status_t flash_check_swap_control_option(flash_swap_control_option_t option)
02558 // {
02559 //     if ((option == kFLASH_swapControlOptionIntializeSystem) || (option == kFLASH_swapControlOptionSetInUpdateState) ||
02560 //         (option == kFLASH_swapControlOptionSetInCompleteState) || (option == kFLASH_swapControlOptionReportStatus) ||
02561 //         (option == kFLASH_swapControlOptionDisableSystem))
02562 //     {
02563 //         return kStatus_FLASH_Success;
02564 //     }
02565 //
02566 //     return kStatus_FLASH_InvalidArgument;
02567 // }
02568 // #endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
02569 //
02570 // #if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
02571 // /*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/
02572 // static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address)
02573 // {
02574 //     flash_swap_ifr_field_config_t flashSwapIfrField;
02575 //     uint32_t swapIndicatorAddress;
02576 //
02577 //     status_t returnCode;
02578 //     returnCode = FLASH_ReadResource(config, kFLASH_resourceRangePflashSwapIfrStart, (uint32_t *)&flashSwapIfrField,
02579 //                                     sizeof(flash_swap_ifr_field_config_t), kFLASH_resourceOptionFlashIfr);
02580 //     if (returnCode != kStatus_FLASH_Success)
02581 //     {
02582 //         return returnCode;
02583 //     }
02584 //
02585 //     /* The high 2 byte value of Swap Indicator Address is stored in Program Flash Swap IFR Field,
02586 //      * the low 4 bit value of Swap Indicator Address is always 4'b0000 */
02587 //     swapIndicatorAddress =
02588 //         (uint32_t)flashSwapIfrField.swapIndicatorAddress * FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT;
02589 //     if (address != swapIndicatorAddress)
02590 //     {
02591 //         return kStatus_FLASH_SwapIndicatorAddressError;
02592 //     }
02593 //
02594 //     return returnCode;
02595 // }
02596 // #endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
02597 //
02598 // #if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
02599 // /*! @brief Validates the gived flexram function option.*/
02600 // static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option)
02601 // {
02602 //     if ((option != kFLASH_flexramFunctionOptionAvailableAsRam) &&
02603 //         (option != kFLASH_flexramFunctionOptionAvailableForEeprom))
02604 //     {
02605 //         return kStatus_FLASH_InvalidArgument;
02606 //     }
02607 //
02608 //     return kStatus_FLASH_Success;
02609 // }
02610 // #endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */