Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
cmsis_gcc.h
00001 /**************************************************************************//** 00002 * @file cmsis_gcc.h 00003 * @brief CMSIS compiler GCC header file 00004 * @version V5.2.1 00005 * @date 30. July 2019 00006 ******************************************************************************/ 00007 /* 00008 * Copyright (c) 2009-2019 Arm Limited. All rights reserved. 00009 * 00010 * SPDX-License-Identifier: Apache-2.0 00011 * 00012 * Licensed under the Apache License, Version 2.0 (the License); you may 00013 * not use this file except in compliance with the License. 00014 * You may obtain a copy of the License at 00015 * 00016 * www.apache.org/licenses/LICENSE-2.0 00017 * 00018 * Unless required by applicable law or agreed to in writing, software 00019 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 00020 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00021 * See the License for the specific language governing permissions and 00022 * limitations under the License. 00023 */ 00024 00025 #ifndef __CMSIS_GCC_H 00026 #define __CMSIS_GCC_H 00027 00028 /* ignore some GCC warnings */ 00029 #pragma GCC diagnostic push 00030 #pragma GCC diagnostic ignored "-Wsign-conversion" 00031 #pragma GCC diagnostic ignored "-Wconversion" 00032 #pragma GCC diagnostic ignored "-Wunused-parameter" 00033 00034 /* Fallback for __has_builtin */ 00035 #ifndef __has_builtin 00036 #define __has_builtin(x) (0) 00037 #endif 00038 00039 /* CMSIS compiler specific defines */ 00040 #ifndef __ASM 00041 #define __ASM __asm 00042 #endif 00043 #ifndef __INLINE 00044 #define __INLINE inline 00045 #endif 00046 #ifndef __STATIC_INLINE 00047 #define __STATIC_INLINE static inline 00048 #endif 00049 #ifndef __STATIC_FORCEINLINE 00050 #define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline 00051 #endif 00052 #ifndef __NO_RETURN 00053 #define __NO_RETURN __attribute__((__noreturn__)) 00054 #endif 00055 #ifndef __USED 00056 #define __USED __attribute__((used)) 00057 #endif 00058 #ifndef __WEAK 00059 #define __WEAK __attribute__((weak)) 00060 #endif 00061 #ifndef __PACKED 00062 #define __PACKED __attribute__((packed, aligned(1))) 00063 #endif 00064 #ifndef __PACKED_STRUCT 00065 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) 00066 #endif 00067 #ifndef __PACKED_UNION 00068 #define __PACKED_UNION union __attribute__((packed, aligned(1))) 00069 #endif 00070 #ifndef __UNALIGNED_UINT32 /* deprecated */ 00071 #pragma GCC diagnostic push 00072 #pragma GCC diagnostic ignored "-Wpacked" 00073 #pragma GCC diagnostic ignored "-Wattributes" 00074 struct __attribute__((packed)) T_UINT32 { uint32_t v; }; 00075 #pragma GCC diagnostic pop 00076 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) 00077 #endif 00078 #ifndef __UNALIGNED_UINT16_WRITE 00079 #pragma GCC diagnostic push 00080 #pragma GCC diagnostic ignored "-Wpacked" 00081 #pragma GCC diagnostic ignored "-Wattributes" 00082 __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; 00083 #pragma GCC diagnostic pop 00084 #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) 00085 #endif 00086 #ifndef __UNALIGNED_UINT16_READ 00087 #pragma GCC diagnostic push 00088 #pragma GCC diagnostic ignored "-Wpacked" 00089 #pragma GCC diagnostic ignored "-Wattributes" 00090 __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; 00091 #pragma GCC diagnostic pop 00092 #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) 00093 #endif 00094 #ifndef __UNALIGNED_UINT32_WRITE 00095 #pragma GCC diagnostic push 00096 #pragma GCC diagnostic ignored "-Wpacked" 00097 #pragma GCC diagnostic ignored "-Wattributes" 00098 __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; 00099 #pragma GCC diagnostic pop 00100 #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) 00101 #endif 00102 #ifndef __UNALIGNED_UINT32_READ 00103 #pragma GCC diagnostic push 00104 #pragma GCC diagnostic ignored "-Wpacked" 00105 #pragma GCC diagnostic ignored "-Wattributes" 00106 __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; 00107 #pragma GCC diagnostic pop 00108 #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) 00109 #endif 00110 #ifndef __ALIGNED 00111 #define __ALIGNED(x) __attribute__((aligned(x))) 00112 #endif 00113 #ifndef __RESTRICT 00114 #define __RESTRICT __restrict 00115 #endif 00116 #ifndef __COMPILER_BARRIER 00117 #define __COMPILER_BARRIER() __ASM volatile("":::"memory") 00118 #endif 00119 00120 /* ######################### Startup and Lowlevel Init ######################## */ 00121 00122 #ifndef __PROGRAM_START 00123 00124 /** 00125 \brief Initializes data and bss sections 00126 \details This default implementations initialized all data and additional bss 00127 sections relying on .copy.table and .zero.table specified properly 00128 in the used linker script. 00129 00130 */ 00131 __STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void) 00132 { 00133 extern void _start(void) __NO_RETURN; 00134 00135 typedef struct { 00136 uint32_t const* src; 00137 uint32_t* dest; 00138 uint32_t wlen; 00139 } __copy_table_t; 00140 00141 typedef struct { 00142 uint32_t* dest; 00143 uint32_t wlen; 00144 } __zero_table_t; 00145 00146 extern const __copy_table_t __copy_table_start__; 00147 extern const __copy_table_t __copy_table_end__; 00148 extern const __zero_table_t __zero_table_start__; 00149 extern const __zero_table_t __zero_table_end__; 00150 00151 for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) { 00152 for(uint32_t i=0u; i<pTable->wlen; ++i) { 00153 pTable->dest[i] = pTable->src[i]; 00154 } 00155 } 00156 00157 for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) { 00158 for(uint32_t i=0u; i<pTable->wlen; ++i) { 00159 pTable->dest[i] = 0u; 00160 } 00161 } 00162 00163 _start(); 00164 } 00165 00166 #define __PROGRAM_START __cmsis_start 00167 #endif 00168 00169 #ifndef __INITIAL_SP 00170 #define __INITIAL_SP __StackTop 00171 #endif 00172 00173 #ifndef __STACK_LIMIT 00174 #define __STACK_LIMIT __StackLimit 00175 #endif 00176 00177 #ifndef __VECTOR_TABLE 00178 #define __VECTOR_TABLE __Vectors 00179 #endif 00180 00181 #ifndef __VECTOR_TABLE_ATTRIBUTE 00182 #define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section(".vectors"))) 00183 #endif 00184 00185 /* ########################### Core Function Access ########################### */ 00186 /** \ingroup CMSIS_Core_FunctionInterface 00187 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions 00188 @{ 00189 */ 00190 00191 /** 00192 \brief Enable IRQ Interrupts 00193 \details Enables IRQ interrupts by clearing the I-bit in the CPSR. 00194 Can only be executed in Privileged modes. 00195 */ 00196 __STATIC_FORCEINLINE void __enable_irq(void) 00197 { 00198 __ASM volatile ("cpsie i" : : : "memory"); 00199 } 00200 00201 00202 /** 00203 \brief Disable IRQ Interrupts 00204 \details Disables IRQ interrupts by setting the I-bit in the CPSR. 00205 Can only be executed in Privileged modes. 00206 */ 00207 __STATIC_FORCEINLINE void __disable_irq(void) 00208 { 00209 __ASM volatile ("cpsid i" : : : "memory"); 00210 } 00211 00212 00213 /** 00214 \brief Get Control Register 00215 \details Returns the content of the Control Register. 00216 \return Control Register value 00217 */ 00218 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void) 00219 { 00220 uint32_t result; 00221 00222 __ASM volatile ("MRS %0, control" : "=r" (result) ); 00223 return(result); 00224 } 00225 00226 00227 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00228 /** 00229 \brief Get Control Register (non-secure) 00230 \details Returns the content of the non-secure Control Register when in secure mode. 00231 \return non-secure Control Register value 00232 */ 00233 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) 00234 { 00235 uint32_t result; 00236 00237 __ASM volatile ("MRS %0, control_ns" : "=r" (result) ); 00238 return(result); 00239 } 00240 #endif 00241 00242 00243 /** 00244 \brief Set Control Register 00245 \details Writes the given value to the Control Register. 00246 \param [in] control Control Register value to set 00247 */ 00248 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) 00249 { 00250 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); 00251 } 00252 00253 00254 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00255 /** 00256 \brief Set Control Register (non-secure) 00257 \details Writes the given value to the non-secure Control Register when in secure state. 00258 \param [in] control Control Register value to set 00259 */ 00260 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) 00261 { 00262 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory"); 00263 } 00264 #endif 00265 00266 00267 /** 00268 \brief Get IPSR Register 00269 \details Returns the content of the IPSR Register. 00270 \return IPSR Register value 00271 */ 00272 __STATIC_FORCEINLINE uint32_t __get_IPSR(void) 00273 { 00274 uint32_t result; 00275 00276 __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); 00277 return(result); 00278 } 00279 00280 00281 /** 00282 \brief Get APSR Register 00283 \details Returns the content of the APSR Register. 00284 \return APSR Register value 00285 */ 00286 __STATIC_FORCEINLINE uint32_t __get_APSR(void) 00287 { 00288 uint32_t result; 00289 00290 __ASM volatile ("MRS %0, apsr" : "=r" (result) ); 00291 return(result); 00292 } 00293 00294 00295 /** 00296 \brief Get xPSR Register 00297 \details Returns the content of the xPSR Register. 00298 \return xPSR Register value 00299 */ 00300 __STATIC_FORCEINLINE uint32_t __get_xPSR(void) 00301 { 00302 uint32_t result; 00303 00304 __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); 00305 return(result); 00306 } 00307 00308 00309 /** 00310 \brief Get Process Stack Pointer 00311 \details Returns the current value of the Process Stack Pointer (PSP). 00312 \return PSP Register value 00313 */ 00314 __STATIC_FORCEINLINE uint32_t __get_PSP(void) 00315 { 00316 uint32_t result; 00317 00318 __ASM volatile ("MRS %0, psp" : "=r" (result) ); 00319 return(result); 00320 } 00321 00322 00323 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00324 /** 00325 \brief Get Process Stack Pointer (non-secure) 00326 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state. 00327 \return PSP Register value 00328 */ 00329 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) 00330 { 00331 uint32_t result; 00332 00333 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) ); 00334 return(result); 00335 } 00336 #endif 00337 00338 00339 /** 00340 \brief Set Process Stack Pointer 00341 \details Assigns the given value to the Process Stack Pointer (PSP). 00342 \param [in] topOfProcStack Process Stack Pointer value to set 00343 */ 00344 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) 00345 { 00346 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : ); 00347 } 00348 00349 00350 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00351 /** 00352 \brief Set Process Stack Pointer (non-secure) 00353 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state. 00354 \param [in] topOfProcStack Process Stack Pointer value to set 00355 */ 00356 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) 00357 { 00358 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : ); 00359 } 00360 #endif 00361 00362 00363 /** 00364 \brief Get Main Stack Pointer 00365 \details Returns the current value of the Main Stack Pointer (MSP). 00366 \return MSP Register value 00367 */ 00368 __STATIC_FORCEINLINE uint32_t __get_MSP(void) 00369 { 00370 uint32_t result; 00371 00372 __ASM volatile ("MRS %0, msp" : "=r" (result) ); 00373 return(result); 00374 } 00375 00376 00377 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00378 /** 00379 \brief Get Main Stack Pointer (non-secure) 00380 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state. 00381 \return MSP Register value 00382 */ 00383 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) 00384 { 00385 uint32_t result; 00386 00387 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) ); 00388 return(result); 00389 } 00390 #endif 00391 00392 00393 /** 00394 \brief Set Main Stack Pointer 00395 \details Assigns the given value to the Main Stack Pointer (MSP). 00396 \param [in] topOfMainStack Main Stack Pointer value to set 00397 */ 00398 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) 00399 { 00400 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : ); 00401 } 00402 00403 00404 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00405 /** 00406 \brief Set Main Stack Pointer (non-secure) 00407 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state. 00408 \param [in] topOfMainStack Main Stack Pointer value to set 00409 */ 00410 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) 00411 { 00412 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : ); 00413 } 00414 #endif 00415 00416 00417 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00418 /** 00419 \brief Get Stack Pointer (non-secure) 00420 \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state. 00421 \return SP Register value 00422 */ 00423 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) 00424 { 00425 uint32_t result; 00426 00427 __ASM volatile ("MRS %0, sp_ns" : "=r" (result) ); 00428 return(result); 00429 } 00430 00431 00432 /** 00433 \brief Set Stack Pointer (non-secure) 00434 \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state. 00435 \param [in] topOfStack Stack Pointer value to set 00436 */ 00437 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) 00438 { 00439 __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : ); 00440 } 00441 #endif 00442 00443 00444 /** 00445 \brief Get Priority Mask 00446 \details Returns the current state of the priority mask bit from the Priority Mask Register. 00447 \return Priority Mask value 00448 */ 00449 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) 00450 { 00451 uint32_t result; 00452 00453 __ASM volatile ("MRS %0, primask" : "=r" (result) ); 00454 return(result); 00455 } 00456 00457 00458 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00459 /** 00460 \brief Get Priority Mask (non-secure) 00461 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state. 00462 \return Priority Mask value 00463 */ 00464 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) 00465 { 00466 uint32_t result; 00467 00468 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) ); 00469 return(result); 00470 } 00471 #endif 00472 00473 00474 /** 00475 \brief Set Priority Mask 00476 \details Assigns the given value to the Priority Mask Register. 00477 \param [in] priMask Priority Mask 00478 */ 00479 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) 00480 { 00481 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); 00482 } 00483 00484 00485 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00486 /** 00487 \brief Set Priority Mask (non-secure) 00488 \details Assigns the given value to the non-secure Priority Mask Register when in secure state. 00489 \param [in] priMask Priority Mask 00490 */ 00491 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) 00492 { 00493 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory"); 00494 } 00495 #endif 00496 00497 00498 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 00499 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 00500 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) 00501 /** 00502 \brief Enable FIQ 00503 \details Enables FIQ interrupts by clearing the F-bit in the CPSR. 00504 Can only be executed in Privileged modes. 00505 */ 00506 __STATIC_FORCEINLINE void __enable_fault_irq(void) 00507 { 00508 __ASM volatile ("cpsie f" : : : "memory"); 00509 } 00510 00511 00512 /** 00513 \brief Disable FIQ 00514 \details Disables FIQ interrupts by setting the F-bit in the CPSR. 00515 Can only be executed in Privileged modes. 00516 */ 00517 __STATIC_FORCEINLINE void __disable_fault_irq(void) 00518 { 00519 __ASM volatile ("cpsid f" : : : "memory"); 00520 } 00521 00522 00523 /** 00524 \brief Get Base Priority 00525 \details Returns the current value of the Base Priority register. 00526 \return Base Priority register value 00527 */ 00528 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) 00529 { 00530 uint32_t result; 00531 00532 __ASM volatile ("MRS %0, basepri" : "=r" (result) ); 00533 return(result); 00534 } 00535 00536 00537 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00538 /** 00539 \brief Get Base Priority (non-secure) 00540 \details Returns the current value of the non-secure Base Priority register when in secure state. 00541 \return Base Priority register value 00542 */ 00543 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) 00544 { 00545 uint32_t result; 00546 00547 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) ); 00548 return(result); 00549 } 00550 #endif 00551 00552 00553 /** 00554 \brief Set Base Priority 00555 \details Assigns the given value to the Base Priority register. 00556 \param [in] basePri Base Priority value to set 00557 */ 00558 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) 00559 { 00560 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory"); 00561 } 00562 00563 00564 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00565 /** 00566 \brief Set Base Priority (non-secure) 00567 \details Assigns the given value to the non-secure Base Priority register when in secure state. 00568 \param [in] basePri Base Priority value to set 00569 */ 00570 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) 00571 { 00572 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory"); 00573 } 00574 #endif 00575 00576 00577 /** 00578 \brief Set Base Priority with condition 00579 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, 00580 or the new value increases the BASEPRI priority level. 00581 \param [in] basePri Base Priority value to set 00582 */ 00583 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) 00584 { 00585 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory"); 00586 } 00587 00588 00589 /** 00590 \brief Get Fault Mask 00591 \details Returns the current value of the Fault Mask register. 00592 \return Fault Mask register value 00593 */ 00594 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) 00595 { 00596 uint32_t result; 00597 00598 __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); 00599 return(result); 00600 } 00601 00602 00603 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00604 /** 00605 \brief Get Fault Mask (non-secure) 00606 \details Returns the current value of the non-secure Fault Mask register when in secure state. 00607 \return Fault Mask register value 00608 */ 00609 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) 00610 { 00611 uint32_t result; 00612 00613 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) ); 00614 return(result); 00615 } 00616 #endif 00617 00618 00619 /** 00620 \brief Set Fault Mask 00621 \details Assigns the given value to the Fault Mask register. 00622 \param [in] faultMask Fault Mask value to set 00623 */ 00624 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) 00625 { 00626 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); 00627 } 00628 00629 00630 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00631 /** 00632 \brief Set Fault Mask (non-secure) 00633 \details Assigns the given value to the non-secure Fault Mask register when in secure state. 00634 \param [in] faultMask Fault Mask value to set 00635 */ 00636 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) 00637 { 00638 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory"); 00639 } 00640 #endif 00641 00642 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 00643 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 00644 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ 00645 00646 00647 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 00648 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) 00649 00650 /** 00651 \brief Get Process Stack Pointer Limit 00652 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 00653 Stack Pointer Limit register hence zero is returned always in non-secure 00654 mode. 00655 00656 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM). 00657 \return PSPLIM Register value 00658 */ 00659 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) 00660 { 00661 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ 00662 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) 00663 // without main extensions, the non-secure PSPLIM is RAZ/WI 00664 return 0U; 00665 #else 00666 uint32_t result; 00667 __ASM volatile ("MRS %0, psplim" : "=r" (result) ); 00668 return result; 00669 #endif 00670 } 00671 00672 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3)) 00673 /** 00674 \brief Get Process Stack Pointer Limit (non-secure) 00675 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 00676 Stack Pointer Limit register hence zero is returned always. 00677 00678 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. 00679 \return PSPLIM Register value 00680 */ 00681 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) 00682 { 00683 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) 00684 // without main extensions, the non-secure PSPLIM is RAZ/WI 00685 return 0U; 00686 #else 00687 uint32_t result; 00688 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) ); 00689 return result; 00690 #endif 00691 } 00692 #endif 00693 00694 00695 /** 00696 \brief Set Process Stack Pointer Limit 00697 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 00698 Stack Pointer Limit register hence the write is silently ignored in non-secure 00699 mode. 00700 00701 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM). 00702 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set 00703 */ 00704 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) 00705 { 00706 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ 00707 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) 00708 // without main extensions, the non-secure PSPLIM is RAZ/WI 00709 (void)ProcStackPtrLimit; 00710 #else 00711 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit)); 00712 #endif 00713 } 00714 00715 00716 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00717 /** 00718 \brief Set Process Stack Pointer (non-secure) 00719 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 00720 Stack Pointer Limit register hence the write is silently ignored. 00721 00722 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. 00723 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set 00724 */ 00725 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) 00726 { 00727 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) 00728 // without main extensions, the non-secure PSPLIM is RAZ/WI 00729 (void)ProcStackPtrLimit; 00730 #else 00731 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit)); 00732 #endif 00733 } 00734 #endif 00735 00736 00737 /** 00738 \brief Get Main Stack Pointer Limit 00739 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 00740 Stack Pointer Limit register hence zero is returned always in non-secure 00741 mode. 00742 00743 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM). 00744 \return MSPLIM Register value 00745 */ 00746 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) 00747 { 00748 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ 00749 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) 00750 // without main extensions, the non-secure MSPLIM is RAZ/WI 00751 return 0U; 00752 #else 00753 uint32_t result; 00754 __ASM volatile ("MRS %0, msplim" : "=r" (result) ); 00755 return result; 00756 #endif 00757 } 00758 00759 00760 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00761 /** 00762 \brief Get Main Stack Pointer Limit (non-secure) 00763 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 00764 Stack Pointer Limit register hence zero is returned always. 00765 00766 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state. 00767 \return MSPLIM Register value 00768 */ 00769 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) 00770 { 00771 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) 00772 // without main extensions, the non-secure MSPLIM is RAZ/WI 00773 return 0U; 00774 #else 00775 uint32_t result; 00776 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) ); 00777 return result; 00778 #endif 00779 } 00780 #endif 00781 00782 00783 /** 00784 \brief Set Main Stack Pointer Limit 00785 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 00786 Stack Pointer Limit register hence the write is silently ignored in non-secure 00787 mode. 00788 00789 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM). 00790 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set 00791 */ 00792 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) 00793 { 00794 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ 00795 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) 00796 // without main extensions, the non-secure MSPLIM is RAZ/WI 00797 (void)MainStackPtrLimit; 00798 #else 00799 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit)); 00800 #endif 00801 } 00802 00803 00804 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) 00805 /** 00806 \brief Set Main Stack Pointer Limit (non-secure) 00807 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure 00808 Stack Pointer Limit register hence the write is silently ignored. 00809 00810 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state. 00811 \param [in] MainStackPtrLimit Main Stack Pointer value to set 00812 */ 00813 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) 00814 { 00815 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) 00816 // without main extensions, the non-secure MSPLIM is RAZ/WI 00817 (void)MainStackPtrLimit; 00818 #else 00819 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit)); 00820 #endif 00821 } 00822 #endif 00823 00824 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 00825 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ 00826 00827 00828 /** 00829 \brief Get FPSCR 00830 \details Returns the current value of the Floating Point Status/Control register. 00831 \return Floating Point Status/Control register value 00832 */ 00833 __STATIC_FORCEINLINE uint32_t __get_FPSCR(void) 00834 { 00835 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ 00836 (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) 00837 #if __has_builtin(__builtin_arm_get_fpscr) 00838 // Re-enable using built-in when GCC has been fixed 00839 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2) 00840 /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */ 00841 return __builtin_arm_get_fpscr(); 00842 #else 00843 uint32_t result; 00844 00845 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) ); 00846 return(result); 00847 #endif 00848 #else 00849 return(0U); 00850 #endif 00851 } 00852 00853 00854 /** 00855 \brief Set FPSCR 00856 \details Assigns the given value to the Floating Point Status/Control register. 00857 \param [in] fpscr Floating Point Status/Control value to set 00858 */ 00859 __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr) 00860 { 00861 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ 00862 (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) 00863 #if __has_builtin(__builtin_arm_set_fpscr) 00864 // Re-enable using built-in when GCC has been fixed 00865 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2) 00866 /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */ 00867 __builtin_arm_set_fpscr(fpscr); 00868 #else 00869 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory"); 00870 #endif 00871 #else 00872 (void)fpscr; 00873 #endif 00874 } 00875 00876 00877 /*@} end of CMSIS_Core_RegAccFunctions */ 00878 00879 00880 /* ########################## Core Instruction Access ######################### */ 00881 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface 00882 Access to dedicated instructions 00883 @{ 00884 */ 00885 00886 /* Define macros for porting to both thumb1 and thumb2. 00887 * For thumb1, use low register (r0-r7), specified by constraint "l" 00888 * Otherwise, use general registers, specified by constraint "r" */ 00889 #if defined (__thumb__) && !defined (__thumb2__) 00890 #define __CMSIS_GCC_OUT_REG(r) "=l" (r) 00891 #define __CMSIS_GCC_RW_REG(r) "+l" (r) 00892 #define __CMSIS_GCC_USE_REG(r) "l" (r) 00893 #else 00894 #define __CMSIS_GCC_OUT_REG(r) "=r" (r) 00895 #define __CMSIS_GCC_RW_REG(r) "+r" (r) 00896 #define __CMSIS_GCC_USE_REG(r) "r" (r) 00897 #endif 00898 00899 /** 00900 \brief No Operation 00901 \details No Operation does nothing. This instruction can be used for code alignment purposes. 00902 */ 00903 #define __NOP() __ASM volatile ("nop") 00904 00905 /** 00906 \brief Wait For Interrupt 00907 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. 00908 */ 00909 #define __WFI() __ASM volatile ("wfi":::"memory") 00910 00911 00912 /** 00913 \brief Wait For Event 00914 \details Wait For Event is a hint instruction that permits the processor to enter 00915 a low-power state until one of a number of events occurs. 00916 */ 00917 #define __WFE() __ASM volatile ("wfe":::"memory") 00918 00919 00920 /** 00921 \brief Send Event 00922 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. 00923 */ 00924 #define __SEV() __ASM volatile ("sev") 00925 00926 00927 /** 00928 \brief Instruction Synchronization Barrier 00929 \details Instruction Synchronization Barrier flushes the pipeline in the processor, 00930 so that all instructions following the ISB are fetched from cache or memory, 00931 after the instruction has been completed. 00932 */ 00933 __STATIC_FORCEINLINE void __ISB(void) 00934 { 00935 __ASM volatile ("isb 0xF":::"memory"); 00936 } 00937 00938 00939 /** 00940 \brief Data Synchronization Barrier 00941 \details Acts as a special kind of Data Memory Barrier. 00942 It completes when all explicit memory accesses before this instruction complete. 00943 */ 00944 __STATIC_FORCEINLINE void __DSB(void) 00945 { 00946 __ASM volatile ("dsb 0xF":::"memory"); 00947 } 00948 00949 00950 /** 00951 \brief Data Memory Barrier 00952 \details Ensures the apparent order of the explicit memory operations before 00953 and after the instruction, without ensuring their completion. 00954 */ 00955 __STATIC_FORCEINLINE void __DMB(void) 00956 { 00957 __ASM volatile ("dmb 0xF":::"memory"); 00958 } 00959 00960 00961 /** 00962 \brief Reverse byte order (32 bit) 00963 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. 00964 \param [in] value Value to reverse 00965 \return Reversed value 00966 */ 00967 __STATIC_FORCEINLINE uint32_t __REV(uint32_t value) 00968 { 00969 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) 00970 return __builtin_bswap32(value); 00971 #else 00972 uint32_t result; 00973 00974 __ASM ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); 00975 return result; 00976 #endif 00977 } 00978 00979 00980 /** 00981 \brief Reverse byte order (16 bit) 00982 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. 00983 \param [in] value Value to reverse 00984 \return Reversed value 00985 */ 00986 __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value) 00987 { 00988 uint32_t result; 00989 00990 __ASM ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); 00991 return result; 00992 } 00993 00994 00995 /** 00996 \brief Reverse byte order (16 bit) 00997 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. 00998 \param [in] value Value to reverse 00999 \return Reversed value 01000 */ 01001 __STATIC_FORCEINLINE int16_t __REVSH(int16_t value) 01002 { 01003 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) 01004 return (int16_t)__builtin_bswap16(value); 01005 #else 01006 int16_t result; 01007 01008 __ASM ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); 01009 return result; 01010 #endif 01011 } 01012 01013 01014 /** 01015 \brief Rotate Right in unsigned value (32 bit) 01016 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. 01017 \param [in] op1 Value to rotate 01018 \param [in] op2 Number of Bits to rotate 01019 \return Rotated value 01020 */ 01021 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) 01022 { 01023 op2 %= 32U; 01024 if (op2 == 0U) 01025 { 01026 return op1; 01027 } 01028 return (op1 >> op2) | (op1 << (32U - op2)); 01029 } 01030 01031 01032 /** 01033 \brief Breakpoint 01034 \details Causes the processor to enter Debug state. 01035 Debug tools can use this to investigate system state when the instruction at a particular address is reached. 01036 \param [in] value is ignored by the processor. 01037 If required, a debugger can use it to store additional information about the breakpoint. 01038 */ 01039 #define __BKPT(value) __ASM volatile ("bkpt "#value) 01040 01041 01042 /** 01043 \brief Reverse bit order of value 01044 \details Reverses the bit order of the given value. 01045 \param [in] value Value to reverse 01046 \return Reversed value 01047 */ 01048 __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value) 01049 { 01050 uint32_t result; 01051 01052 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 01053 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 01054 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) 01055 __ASM ("rbit %0, %1" : "=r" (result) : "r" (value) ); 01056 #else 01057 uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */ 01058 01059 result = value; /* r will be reversed bits of v; first get LSB of v */ 01060 for (value >>= 1U; value != 0U; value >>= 1U) 01061 { 01062 result <<= 1U; 01063 result |= value & 1U; 01064 s--; 01065 } 01066 result <<= s; /* shift when v's highest bits are zero */ 01067 #endif 01068 return result; 01069 } 01070 01071 01072 /** 01073 \brief Count leading zeros 01074 \details Counts the number of leading zeros of a data value. 01075 \param [in] value Value to count the leading zeros 01076 \return number of leading zeros in value 01077 */ 01078 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value) 01079 { 01080 /* Even though __builtin_clz produces a CLZ instruction on ARM, formally 01081 __builtin_clz(0) is undefined behaviour, so handle this case specially. 01082 This guarantees ARM-compatible results if happening to compile on a non-ARM 01083 target, and ensures the compiler doesn't decide to activate any 01084 optimisations using the logic "value was passed to __builtin_clz, so it 01085 is non-zero". 01086 ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a 01087 single CLZ instruction. 01088 */ 01089 if (value == 0U) 01090 { 01091 return 32U; 01092 } 01093 return __builtin_clz(value); 01094 } 01095 01096 01097 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 01098 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 01099 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 01100 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) 01101 /** 01102 \brief LDR Exclusive (8 bit) 01103 \details Executes a exclusive LDR instruction for 8 bit value. 01104 \param [in] ptr Pointer to data 01105 \return value of type uint8_t at (*ptr) 01106 */ 01107 __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr) 01108 { 01109 uint32_t result; 01110 01111 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) 01112 __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); 01113 #else 01114 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not 01115 accepted by assembler. So has to use following less efficient pattern. 01116 */ 01117 __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); 01118 #endif 01119 return ((uint8_t) result); /* Add explicit type cast here */ 01120 } 01121 01122 01123 /** 01124 \brief LDR Exclusive (16 bit) 01125 \details Executes a exclusive LDR instruction for 16 bit values. 01126 \param [in] ptr Pointer to data 01127 \return value of type uint16_t at (*ptr) 01128 */ 01129 __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr) 01130 { 01131 uint32_t result; 01132 01133 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) 01134 __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); 01135 #else 01136 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not 01137 accepted by assembler. So has to use following less efficient pattern. 01138 */ 01139 __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); 01140 #endif 01141 return ((uint16_t) result); /* Add explicit type cast here */ 01142 } 01143 01144 01145 /** 01146 \brief LDR Exclusive (32 bit) 01147 \details Executes a exclusive LDR instruction for 32 bit values. 01148 \param [in] ptr Pointer to data 01149 \return value of type uint32_t at (*ptr) 01150 */ 01151 __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr) 01152 { 01153 uint32_t result; 01154 01155 __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); 01156 return(result); 01157 } 01158 01159 01160 /** 01161 \brief STR Exclusive (8 bit) 01162 \details Executes a exclusive STR instruction for 8 bit values. 01163 \param [in] value Value to store 01164 \param [in] ptr Pointer to location 01165 \return 0 Function succeeded 01166 \return 1 Function failed 01167 */ 01168 __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) 01169 { 01170 uint32_t result; 01171 01172 __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); 01173 return(result); 01174 } 01175 01176 01177 /** 01178 \brief STR Exclusive (16 bit) 01179 \details Executes a exclusive STR instruction for 16 bit values. 01180 \param [in] value Value to store 01181 \param [in] ptr Pointer to location 01182 \return 0 Function succeeded 01183 \return 1 Function failed 01184 */ 01185 __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) 01186 { 01187 uint32_t result; 01188 01189 __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); 01190 return(result); 01191 } 01192 01193 01194 /** 01195 \brief STR Exclusive (32 bit) 01196 \details Executes a exclusive STR instruction for 32 bit values. 01197 \param [in] value Value to store 01198 \param [in] ptr Pointer to location 01199 \return 0 Function succeeded 01200 \return 1 Function failed 01201 */ 01202 __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) 01203 { 01204 uint32_t result; 01205 01206 __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); 01207 return(result); 01208 } 01209 01210 01211 /** 01212 \brief Remove the exclusive lock 01213 \details Removes the exclusive lock which is created by LDREX. 01214 */ 01215 __STATIC_FORCEINLINE void __CLREX(void) 01216 { 01217 __ASM volatile ("clrex" ::: "memory"); 01218 } 01219 01220 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 01221 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 01222 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 01223 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ 01224 01225 01226 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 01227 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 01228 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) 01229 /** 01230 \brief Signed Saturate 01231 \details Saturates a signed value. 01232 \param [in] ARG1 Value to be saturated 01233 \param [in] ARG2 Bit position to saturate to (1..32) 01234 \return Saturated value 01235 */ 01236 #define __SSAT(ARG1, ARG2) \ 01237 __extension__ \ 01238 ({ \ 01239 int32_t __RES, __ARG1 = (ARG1); \ 01240 __ASM volatile ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \ 01241 __RES; \ 01242 }) 01243 01244 01245 /** 01246 \brief Unsigned Saturate 01247 \details Saturates an unsigned value. 01248 \param [in] ARG1 Value to be saturated 01249 \param [in] ARG2 Bit position to saturate to (0..31) 01250 \return Saturated value 01251 */ 01252 #define __USAT(ARG1, ARG2) \ 01253 __extension__ \ 01254 ({ \ 01255 uint32_t __RES, __ARG1 = (ARG1); \ 01256 __ASM volatile ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \ 01257 __RES; \ 01258 }) 01259 01260 01261 /** 01262 \brief Rotate Right with Extend (32 bit) 01263 \details Moves each bit of a bitstring right by one bit. 01264 The carry input is shifted in at the left end of the bitstring. 01265 \param [in] value Value to rotate 01266 \return Rotated value 01267 */ 01268 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) 01269 { 01270 uint32_t result; 01271 01272 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); 01273 return(result); 01274 } 01275 01276 01277 /** 01278 \brief LDRT Unprivileged (8 bit) 01279 \details Executes a Unprivileged LDRT instruction for 8 bit value. 01280 \param [in] ptr Pointer to data 01281 \return value of type uint8_t at (*ptr) 01282 */ 01283 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) 01284 { 01285 uint32_t result; 01286 01287 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) 01288 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) ); 01289 #else 01290 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not 01291 accepted by assembler. So has to use following less efficient pattern. 01292 */ 01293 __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" ); 01294 #endif 01295 return ((uint8_t) result); /* Add explicit type cast here */ 01296 } 01297 01298 01299 /** 01300 \brief LDRT Unprivileged (16 bit) 01301 \details Executes a Unprivileged LDRT instruction for 16 bit values. 01302 \param [in] ptr Pointer to data 01303 \return value of type uint16_t at (*ptr) 01304 */ 01305 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) 01306 { 01307 uint32_t result; 01308 01309 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) 01310 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) ); 01311 #else 01312 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not 01313 accepted by assembler. So has to use following less efficient pattern. 01314 */ 01315 __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" ); 01316 #endif 01317 return ((uint16_t) result); /* Add explicit type cast here */ 01318 } 01319 01320 01321 /** 01322 \brief LDRT Unprivileged (32 bit) 01323 \details Executes a Unprivileged LDRT instruction for 32 bit values. 01324 \param [in] ptr Pointer to data 01325 \return value of type uint32_t at (*ptr) 01326 */ 01327 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) 01328 { 01329 uint32_t result; 01330 01331 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) ); 01332 return(result); 01333 } 01334 01335 01336 /** 01337 \brief STRT Unprivileged (8 bit) 01338 \details Executes a Unprivileged STRT instruction for 8 bit values. 01339 \param [in] value Value to store 01340 \param [in] ptr Pointer to location 01341 */ 01342 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) 01343 { 01344 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); 01345 } 01346 01347 01348 /** 01349 \brief STRT Unprivileged (16 bit) 01350 \details Executes a Unprivileged STRT instruction for 16 bit values. 01351 \param [in] value Value to store 01352 \param [in] ptr Pointer to location 01353 */ 01354 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) 01355 { 01356 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); 01357 } 01358 01359 01360 /** 01361 \brief STRT Unprivileged (32 bit) 01362 \details Executes a Unprivileged STRT instruction for 32 bit values. 01363 \param [in] value Value to store 01364 \param [in] ptr Pointer to location 01365 */ 01366 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) 01367 { 01368 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) ); 01369 } 01370 01371 #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 01372 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 01373 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ 01374 01375 /** 01376 \brief Signed Saturate 01377 \details Saturates a signed value. 01378 \param [in] value Value to be saturated 01379 \param [in] sat Bit position to saturate to (1..32) 01380 \return Saturated value 01381 */ 01382 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) 01383 { 01384 if ((sat >= 1U) && (sat <= 32U)) 01385 { 01386 const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); 01387 const int32_t min = -1 - max ; 01388 if (val > max) 01389 { 01390 return max; 01391 } 01392 else if (val < min) 01393 { 01394 return min; 01395 } 01396 } 01397 return val; 01398 } 01399 01400 /** 01401 \brief Unsigned Saturate 01402 \details Saturates an unsigned value. 01403 \param [in] value Value to be saturated 01404 \param [in] sat Bit position to saturate to (0..31) 01405 \return Saturated value 01406 */ 01407 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) 01408 { 01409 if (sat <= 31U) 01410 { 01411 const uint32_t max = ((1U << sat) - 1U); 01412 if (val > (int32_t)max) 01413 { 01414 return max; 01415 } 01416 else if (val < 0) 01417 { 01418 return 0U; 01419 } 01420 } 01421 return (uint32_t)val; 01422 } 01423 01424 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ 01425 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ 01426 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ 01427 01428 01429 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 01430 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) 01431 /** 01432 \brief Load-Acquire (8 bit) 01433 \details Executes a LDAB instruction for 8 bit value. 01434 \param [in] ptr Pointer to data 01435 \return value of type uint8_t at (*ptr) 01436 */ 01437 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) 01438 { 01439 uint32_t result; 01440 01441 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); 01442 return ((uint8_t) result); 01443 } 01444 01445 01446 /** 01447 \brief Load-Acquire (16 bit) 01448 \details Executes a LDAH instruction for 16 bit values. 01449 \param [in] ptr Pointer to data 01450 \return value of type uint16_t at (*ptr) 01451 */ 01452 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) 01453 { 01454 uint32_t result; 01455 01456 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); 01457 return ((uint16_t) result); 01458 } 01459 01460 01461 /** 01462 \brief Load-Acquire (32 bit) 01463 \details Executes a LDA instruction for 32 bit values. 01464 \param [in] ptr Pointer to data 01465 \return value of type uint32_t at (*ptr) 01466 */ 01467 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) 01468 { 01469 uint32_t result; 01470 01471 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); 01472 return(result); 01473 } 01474 01475 01476 /** 01477 \brief Store-Release (8 bit) 01478 \details Executes a STLB instruction for 8 bit values. 01479 \param [in] value Value to store 01480 \param [in] ptr Pointer to location 01481 */ 01482 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) 01483 { 01484 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); 01485 } 01486 01487 01488 /** 01489 \brief Store-Release (16 bit) 01490 \details Executes a STLH instruction for 16 bit values. 01491 \param [in] value Value to store 01492 \param [in] ptr Pointer to location 01493 */ 01494 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) 01495 { 01496 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); 01497 } 01498 01499 01500 /** 01501 \brief Store-Release (32 bit) 01502 \details Executes a STL instruction for 32 bit values. 01503 \param [in] value Value to store 01504 \param [in] ptr Pointer to location 01505 */ 01506 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) 01507 { 01508 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); 01509 } 01510 01511 01512 /** 01513 \brief Load-Acquire Exclusive (8 bit) 01514 \details Executes a LDAB exclusive instruction for 8 bit value. 01515 \param [in] ptr Pointer to data 01516 \return value of type uint8_t at (*ptr) 01517 */ 01518 __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr) 01519 { 01520 uint32_t result; 01521 01522 __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); 01523 return ((uint8_t) result); 01524 } 01525 01526 01527 /** 01528 \brief Load-Acquire Exclusive (16 bit) 01529 \details Executes a LDAH exclusive instruction for 16 bit values. 01530 \param [in] ptr Pointer to data 01531 \return value of type uint16_t at (*ptr) 01532 */ 01533 __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr) 01534 { 01535 uint32_t result; 01536 01537 __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); 01538 return ((uint16_t) result); 01539 } 01540 01541 01542 /** 01543 \brief Load-Acquire Exclusive (32 bit) 01544 \details Executes a LDA exclusive instruction for 32 bit values. 01545 \param [in] ptr Pointer to data 01546 \return value of type uint32_t at (*ptr) 01547 */ 01548 __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr) 01549 { 01550 uint32_t result; 01551 01552 __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); 01553 return(result); 01554 } 01555 01556 01557 /** 01558 \brief Store-Release Exclusive (8 bit) 01559 \details Executes a STLB exclusive instruction for 8 bit values. 01560 \param [in] value Value to store 01561 \param [in] ptr Pointer to location 01562 \return 0 Function succeeded 01563 \return 1 Function failed 01564 */ 01565 __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr) 01566 { 01567 uint32_t result; 01568 01569 __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); 01570 return(result); 01571 } 01572 01573 01574 /** 01575 \brief Store-Release Exclusive (16 bit) 01576 \details Executes a STLH exclusive instruction for 16 bit values. 01577 \param [in] value Value to store 01578 \param [in] ptr Pointer to location 01579 \return 0 Function succeeded 01580 \return 1 Function failed 01581 */ 01582 __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr) 01583 { 01584 uint32_t result; 01585 01586 __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); 01587 return(result); 01588 } 01589 01590 01591 /** 01592 \brief Store-Release Exclusive (32 bit) 01593 \details Executes a STL exclusive instruction for 32 bit values. 01594 \param [in] value Value to store 01595 \param [in] ptr Pointer to location 01596 \return 0 Function succeeded 01597 \return 1 Function failed 01598 */ 01599 __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr) 01600 { 01601 uint32_t result; 01602 01603 __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); 01604 return(result); 01605 } 01606 01607 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ 01608 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ 01609 01610 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ 01611 01612 01613 /* ################### Compiler specific Intrinsics ########################### */ 01614 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics 01615 Access to dedicated SIMD instructions 01616 @{ 01617 */ 01618 01619 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) 01620 01621 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) 01622 { 01623 uint32_t result; 01624 01625 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01626 return(result); 01627 } 01628 01629 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) 01630 { 01631 uint32_t result; 01632 01633 __ASM ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01634 return(result); 01635 } 01636 01637 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) 01638 { 01639 uint32_t result; 01640 01641 __ASM ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01642 return(result); 01643 } 01644 01645 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) 01646 { 01647 uint32_t result; 01648 01649 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01650 return(result); 01651 } 01652 01653 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) 01654 { 01655 uint32_t result; 01656 01657 __ASM ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01658 return(result); 01659 } 01660 01661 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) 01662 { 01663 uint32_t result; 01664 01665 __ASM ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01666 return(result); 01667 } 01668 01669 01670 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) 01671 { 01672 uint32_t result; 01673 01674 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01675 return(result); 01676 } 01677 01678 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) 01679 { 01680 uint32_t result; 01681 01682 __ASM ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01683 return(result); 01684 } 01685 01686 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) 01687 { 01688 uint32_t result; 01689 01690 __ASM ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01691 return(result); 01692 } 01693 01694 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) 01695 { 01696 uint32_t result; 01697 01698 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01699 return(result); 01700 } 01701 01702 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) 01703 { 01704 uint32_t result; 01705 01706 __ASM ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01707 return(result); 01708 } 01709 01710 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) 01711 { 01712 uint32_t result; 01713 01714 __ASM ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01715 return(result); 01716 } 01717 01718 01719 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) 01720 { 01721 uint32_t result; 01722 01723 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01724 return(result); 01725 } 01726 01727 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) 01728 { 01729 uint32_t result; 01730 01731 __ASM ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01732 return(result); 01733 } 01734 01735 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) 01736 { 01737 uint32_t result; 01738 01739 __ASM ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01740 return(result); 01741 } 01742 01743 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) 01744 { 01745 uint32_t result; 01746 01747 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01748 return(result); 01749 } 01750 01751 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) 01752 { 01753 uint32_t result; 01754 01755 __ASM ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01756 return(result); 01757 } 01758 01759 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) 01760 { 01761 uint32_t result; 01762 01763 __ASM ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01764 return(result); 01765 } 01766 01767 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) 01768 { 01769 uint32_t result; 01770 01771 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01772 return(result); 01773 } 01774 01775 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) 01776 { 01777 uint32_t result; 01778 01779 __ASM ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01780 return(result); 01781 } 01782 01783 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) 01784 { 01785 uint32_t result; 01786 01787 __ASM ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01788 return(result); 01789 } 01790 01791 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) 01792 { 01793 uint32_t result; 01794 01795 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01796 return(result); 01797 } 01798 01799 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) 01800 { 01801 uint32_t result; 01802 01803 __ASM ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01804 return(result); 01805 } 01806 01807 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) 01808 { 01809 uint32_t result; 01810 01811 __ASM ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01812 return(result); 01813 } 01814 01815 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2) 01816 { 01817 uint32_t result; 01818 01819 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01820 return(result); 01821 } 01822 01823 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2) 01824 { 01825 uint32_t result; 01826 01827 __ASM ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01828 return(result); 01829 } 01830 01831 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) 01832 { 01833 uint32_t result; 01834 01835 __ASM ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01836 return(result); 01837 } 01838 01839 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2) 01840 { 01841 uint32_t result; 01842 01843 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01844 return(result); 01845 } 01846 01847 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) 01848 { 01849 uint32_t result; 01850 01851 __ASM ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01852 return(result); 01853 } 01854 01855 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) 01856 { 01857 uint32_t result; 01858 01859 __ASM ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01860 return(result); 01861 } 01862 01863 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) 01864 { 01865 uint32_t result; 01866 01867 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01868 return(result); 01869 } 01870 01871 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) 01872 { 01873 uint32_t result; 01874 01875 __ASM ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01876 return(result); 01877 } 01878 01879 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) 01880 { 01881 uint32_t result; 01882 01883 __ASM ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01884 return(result); 01885 } 01886 01887 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2) 01888 { 01889 uint32_t result; 01890 01891 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01892 return(result); 01893 } 01894 01895 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) 01896 { 01897 uint32_t result; 01898 01899 __ASM ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01900 return(result); 01901 } 01902 01903 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) 01904 { 01905 uint32_t result; 01906 01907 __ASM ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01908 return(result); 01909 } 01910 01911 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) 01912 { 01913 uint32_t result; 01914 01915 __ASM ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01916 return(result); 01917 } 01918 01919 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) 01920 { 01921 uint32_t result; 01922 01923 __ASM ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 01924 return(result); 01925 } 01926 01927 #define __SSAT16(ARG1, ARG2) \ 01928 ({ \ 01929 int32_t __RES, __ARG1 = (ARG1); \ 01930 __ASM volatile ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \ 01931 __RES; \ 01932 }) 01933 01934 #define __USAT16(ARG1, ARG2) \ 01935 ({ \ 01936 uint32_t __RES, __ARG1 = (ARG1); \ 01937 __ASM volatile ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \ 01938 __RES; \ 01939 }) 01940 01941 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1) 01942 { 01943 uint32_t result; 01944 01945 __ASM ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); 01946 return(result); 01947 } 01948 01949 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) 01950 { 01951 uint32_t result; 01952 01953 __ASM ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01954 return(result); 01955 } 01956 01957 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1) 01958 { 01959 uint32_t result; 01960 01961 __ASM ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); 01962 return(result); 01963 } 01964 01965 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) 01966 { 01967 uint32_t result; 01968 01969 __ASM ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01970 return(result); 01971 } 01972 01973 __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) 01974 { 01975 uint32_t result; 01976 01977 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01978 return(result); 01979 } 01980 01981 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) 01982 { 01983 uint32_t result; 01984 01985 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 01986 return(result); 01987 } 01988 01989 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) 01990 { 01991 uint32_t result; 01992 01993 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 01994 return(result); 01995 } 01996 01997 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) 01998 { 01999 uint32_t result; 02000 02001 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 02002 return(result); 02003 } 02004 02005 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) 02006 { 02007 union llreg_u{ 02008 uint32_t w32[2]; 02009 uint64_t w64; 02010 } llr; 02011 llr.w64 = acc; 02012 02013 #ifndef __ARMEB__ /* Little endian */ 02014 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); 02015 #else /* Big endian */ 02016 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); 02017 #endif 02018 02019 return(llr.w64); 02020 } 02021 02022 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) 02023 { 02024 union llreg_u{ 02025 uint32_t w32[2]; 02026 uint64_t w64; 02027 } llr; 02028 llr.w64 = acc; 02029 02030 #ifndef __ARMEB__ /* Little endian */ 02031 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); 02032 #else /* Big endian */ 02033 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); 02034 #endif 02035 02036 return(llr.w64); 02037 } 02038 02039 __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) 02040 { 02041 uint32_t result; 02042 02043 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 02044 return(result); 02045 } 02046 02047 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) 02048 { 02049 uint32_t result; 02050 02051 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 02052 return(result); 02053 } 02054 02055 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) 02056 { 02057 uint32_t result; 02058 02059 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 02060 return(result); 02061 } 02062 02063 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) 02064 { 02065 uint32_t result; 02066 02067 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); 02068 return(result); 02069 } 02070 02071 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) 02072 { 02073 union llreg_u{ 02074 uint32_t w32[2]; 02075 uint64_t w64; 02076 } llr; 02077 llr.w64 = acc; 02078 02079 #ifndef __ARMEB__ /* Little endian */ 02080 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); 02081 #else /* Big endian */ 02082 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); 02083 #endif 02084 02085 return(llr.w64); 02086 } 02087 02088 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) 02089 { 02090 union llreg_u{ 02091 uint32_t w32[2]; 02092 uint64_t w64; 02093 } llr; 02094 llr.w64 = acc; 02095 02096 #ifndef __ARMEB__ /* Little endian */ 02097 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); 02098 #else /* Big endian */ 02099 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); 02100 #endif 02101 02102 return(llr.w64); 02103 } 02104 02105 __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2) 02106 { 02107 uint32_t result; 02108 02109 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 02110 return(result); 02111 } 02112 02113 __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2) 02114 { 02115 int32_t result; 02116 02117 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 02118 return(result); 02119 } 02120 02121 __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2) 02122 { 02123 int32_t result; 02124 02125 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); 02126 return(result); 02127 } 02128 02129 #if 0 02130 #define __PKHBT(ARG1,ARG2,ARG3) \ 02131 ({ \ 02132 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ 02133 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ 02134 __RES; \ 02135 }) 02136 02137 #define __PKHTB(ARG1,ARG2,ARG3) \ 02138 ({ \ 02139 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ 02140 if (ARG3 == 0) \ 02141 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \ 02142 else \ 02143 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ 02144 __RES; \ 02145 }) 02146 #endif 02147 02148 #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ 02149 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) 02150 02151 #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ 02152 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) 02153 02154 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) 02155 { 02156 int32_t result; 02157 02158 __ASM ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); 02159 return(result); 02160 } 02161 02162 #endif /* (__ARM_FEATURE_DSP == 1) */ 02163 /*@} end of group CMSIS_SIMD_intrinsics */ 02164 02165 02166 #pragma GCC diagnostic pop 02167 02168 #endif /* __CMSIS_GCC_H */
Generated on Tue Jul 12 2022 15:37:14 by
