Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
For additional information check out the mbed page of the Analog Devices wiki: https://wiki.analog.com/resources/tools-software/mbed-drivers-all
libraries/AD7790/AD7790.cpp
- Committer:
- Adrian Suciu
- Date:
- 2016-05-18
- Revision:
- 24:dae7123d432a
File content as of revision 24:dae7123d432a:
/** * @file AD7790.cpp * @brief Source file for AD7790 ADC * @author Analog Devices Inc. * * For support please go to: * Github: https://github.com/analogdevicesinc/mbed-adi * Support: https://ez.analog.com/community/linux-device-drivers/microcontroller-no-os-drivers * Product: http://www.analog.com/ad7790 * More: https://wiki.analog.com/resources/tools-software/mbed-drivers-all ******************************************************************************** * Copyright 2016(c) Analog Devices, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Analog Devices, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * - The use of this software may or may not infringe the patent rights * of one or more patent holders. This license does not release you * from the requirement that you obtain separate licenses from these * patent holders to use this software. * - Use of the software either in source or binary form, must be run * on or directly connected to an Analog Devices Inc. component. * * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ********************************************************************************/ #include <stdint.h> #include "mbed.h" #include "AD7790.h" /** * @brief AD7790 constructor, sets CS pin and SPI format * @param CS - (optional)chip select of the AD7790 * @param MOSI - (optional)pin of the SPI interface * @param MISO - (optional)pin of the SPI interface * @param SCK - (optional)pin of the SPI interface */ AD7790::AD7790(float reference_voltage, PinName CS, PinName MOSI, PinName MISO, PinName SCK) : miso(MISO), ad7790(MOSI, MISO, SCK), cs(CS), _vref(reference_voltage), _PGA_gain(1) { cs = true; // cs is active low ad7790.format(8, _SPI_MODE); _continous_conversion = true; _channel = DIFFERENTIAL; } /** * @brief Set AD7790 SPI frequency * @param hz - SPI bus frequency in hz * @return none */ void AD7790::frequency(int hz) { ad7790.frequency(hz); } /** * @brief Resets the AD7790 * @return none */ void AD7790::reset() { ad7790.format(8, _SPI_MODE); cs = false; wait_us(_DELAY_TIMING); ad7790.write(_RESET); ad7790.write(_RESET); ad7790.write(_RESET); ad7790.write(_RESET); wait_us(_DELAY_TIMING); cs = true; _continous_conversion = true; } /** * Sets the mode register. Also sets continous mode and range based on the value * written in reg_val * @param reg_val */ void AD7790::write_mode_reg(uint8_t reg_val) { write_reg(MODE_REG, reg_val); uint8_t continous_mode = (reg_val & 0xC0); if(continous_mode == 0x00) { _continous_conversion = true; } else { _continous_conversion = false; } uint8_t range = (reg_val & 0x30); _PGA_gain = 1 << (range >> 4); } /** * Reads the mode register and returns its value * @return value of the mode register */ uint8_t AD7790::read_mode_reg() { return read_reg(MODE_REG); } /** * Writes the filter register * @param regValue value to be written. */ void AD7790::write_filter_reg(uint8_t reg_val) { write_reg(FILTER_REG, reg_val); } /** * Reads the filter register and returns its value * @return the value of the filter register */ uint8_t AD7790::read_filter_reg() { return read_reg(FILTER_REG); } /** * Reads the data register and returns its value * @return value of the data register */ uint16_t AD7790::read_data_reg() { uint16_t data_result; ad7790.format(8, _SPI_MODE); cs = false; ad7790.write(_DATA_READ | (static_cast<uint8_t>(_channel))); data_result = ((ad7790.write(_DUMMY_BYTE)) << 8); data_result |= (ad7790.write(_DUMMY_BYTE)); cs = true; return data_result; } /** * Reads the status register of the ADC and returns its value * @return value of the status reg */ uint8_t AD7790::read_status_reg() { return read_reg(STATUS_REG); } /** * @brief Enables/disables continous_conversion mode * In Single Conversion mode, read_u16 method will read the MODE register of the ADC, * then write the Start single conversion bit and wait for the DOUT/RDY pin to go low, * When the pin is driven low, data register is read back from the ADC. * * In Continous conversion mode, read_u16 method will poll the DOUT/RDY pin, if it is low, * the data register is read back from the ADC. * * @param mode * true - continous conversion mode enabled * false - single conversion mode enabled */ void AD7790::set_conversion_mode(AD7790Mode_t mode) { uint8_t mode_reg_val; mode_reg_val = read_mode_reg() & 0x3F; mode_reg_val = mode_reg_val | (static_cast<uint8_t>(mode)); write_mode_reg(mode); } /** * - From mbed AnalogIn API - * @brief Read the input voltage, represented as an unsigned short in the range [0x0, 0xFFFF] * Depending on the conversion mode, this method will have different behavior. Conversion mode is set using * set_continous_conversion_mode(bool). * * In Single Conversion mode, read_u16 method will read the MODE register of the ADC, * then write the Start single conversion bit and wait for the DOUT/RDY pin to go low, * When the pin is driven low, data register is read back from the ADC. * * In Continous conversion mode, read_u16 method will poll the DOUT/RDY pin, if it is low, * the data register is read back from the ADC. * * @return 16-bit unsigned short representing the current input voltage, normalised to a 16-bit value * returns -1 (0xFFFF) along with a debug message if conversion failed. */ uint16_t AD7790::read_u16(void) { uint16_t data_result = 0; ad7790.format(8, _SPI_MODE); cs = false; uint16_t timeout_cnt = 0; if(_continous_conversion == false) { uint8_t mode_reg = read_mode_reg(); wait_us(_DELAY_TIMING); cs = false; mode_reg = (mode_reg & 0x3F) | MD1; // mask single conversion bits ad7790.write((MODE_REG << 4) | (static_cast<uint8_t>(_channel))); // start single conversion ad7790.write(mode_reg); timeout_cnt = _SINGLE_CONVERSION_TIMEOUT; // starts timeout } else { timeout_cnt = _CONTINOUS_CONVERSION_TIMEOUT; // starts timeout } wait_us(1); while(miso) { // wait for the MISO pin to go low. if(timeout_cnt) { timeout_cnt--; } else { cs = true; #ifdef AD7790_DEBUG_MODE printf("timeout occurred reading the AD7790. "); // error, MISO line didn't toggle #endif return -1; // ERROR } wait_us(10); } ad7790.write(_DATA_READ | (static_cast<uint8_t>(_channel))); data_result = ((ad7790.write(_DUMMY_BYTE)) << 8); data_result |= (ad7790.write(_DUMMY_BYTE)); cs = true; return data_result; } /** * @brief Reads a register of the AD7790 * @param address - address of the register * @return value of the register */ uint16_t AD7790::read_reg(AD7790Register_t address) { uint16_t data = address << 12; data |= _DUMMY_BYTE; data |= _READ_FLAG; data |= (static_cast<uint8_t>(_channel) << 8); return write_spi(data); } /** * @brief Writes a register of the AD7790 * @param address - address of the register * @param reg_val - value to be written * @return none * */ void AD7790::write_reg(AD7790Register_t address, uint8_t reg_val) { uint16_t spi_data = address << 12; spi_data |= reg_val; spi_data |= (static_cast<uint8_t>(_channel) << 8); write_spi(spi_data); } /** * @brief Writes 16bit data to the AD7790 SPI interface * @param reg_val to be written * @return data returned by the AD7790 */ uint16_t AD7790::write_spi(uint16_t reg_val) { uint16_t data_result; uint8_t upper_byte = (reg_val >> 8) & 0xFF; uint8_t lower_byte = reg_val & 0xFF; ad7790.format(8, _SPI_MODE); cs = false; data_result = (ad7790.write(upper_byte) << 8); data_result |= ad7790.write(lower_byte); cs = true; return data_result; } /** * Sets the AnalogInputRange to be used by the AD7790 * @param range AnalogInputRange_t to be used in voltage computations */ void AD7790::set_range(AnalogInputRange_t range) { uint8_t mode_reg_val; mode_reg_val = read_mode_reg() & 0xCF; mode_reg_val = mode_reg_val | (range << 4); write_mode_reg(mode_reg_val); } /** * Sets the reference voltage of the AD7790 * @param ref reference voltage to be set */ void AD7790::set_reference_voltage(float ref) { _vref = ref; } /** * Gets the reference voltage of the AD7790 * @return reference voltage */ float AD7790::get_reference_voltage(void) { return _vref; } /** * Reads the data register of the ADC and converts the result to volts * Gain needs to be correctly set using set_gain in order to get accurate results * @return voltage of the ADC input */ float AD7790::read_voltage(void) { return data_to_voltage(read_u16()); } /** * Converts an uint16_t to voltage. * Gain needs to be correctly set using set_gain in order to get accurate results * @param data in uint16_t format * @return float value of voltage (in V) */ float AD7790::data_to_voltage(uint16_t data) { return ((data / static_cast<float>(_RESOLUTION / 2)) - 1) * (_vref / _PGA_gain); } /** * Converts voltage to an uint16_t. * Gain needs to be correctly set using set_gain in order to get accurate results * @param voltage to be converted * @return data in uint16_t format */ uint16_t AD7790::voltage_to_data(float voltage) { return (((voltage * _PGA_gain / _vref) + 1) * static_cast<float>(_RESOLUTION / 2)); } /** * Sets the conversion channel. * @param channel */ void AD7790::set_channel(AD7790Channel_t channel) { _channel = channel; } /** * - From mbed AnalogIn API - * Read the input voltage, represented as a float in the range [0.0, 1.0] - uses the read_u16 method * @returns A floating-point value representing the current input voltage, measured as a percentage * returns 1.0 along with a debug message if the conversion failed */ float AD7790::read(void) { float percent; uint16_t data; data = read_u16(); percent = (data / static_cast<float>(_RESOLUTION) ); // translate bipolar conversion to [0.0, 1.0] domain return percent; } #ifdef MBED_OPERATORS /** * - From mbed AnalogIn API - * An operator shorthand for read() * The float() operator can be used as a shorthand for read() to simplify common code sequences */ AD7790::operator float() { return read(); } #endif