Mbed Fw supporting Device FW v82.25

Committer:
Vkadaba
Date:
Fri Mar 06 05:59:00 2020 +0000
Revision:
51:393e1e7ae860
Parent:
50:d84305e5e1c0
SPIfrequency set to 700khz

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ADIJake 0:85855ecd3257 1 /*
Vkadaba 8:2f2775c34640 2 Copyright 2019 (c) Analog Devices, Inc.
ADIJake 0:85855ecd3257 3
ADIJake 0:85855ecd3257 4 All rights reserved.
ADIJake 0:85855ecd3257 5
ADIJake 0:85855ecd3257 6 Redistribution and use in source and binary forms, with or without
ADIJake 0:85855ecd3257 7 modification, are permitted provided that the following conditions are met:
ADIJake 0:85855ecd3257 8 - Redistributions of source code must retain the above copyright
ADIJake 0:85855ecd3257 9 notice, this list of conditions and the following disclaimer.
ADIJake 0:85855ecd3257 10 - Redistributions in binary form must reproduce the above copyright
ADIJake 0:85855ecd3257 11 notice, this list of conditions and the following disclaimer in
ADIJake 0:85855ecd3257 12 the documentation and/or other materials provided with the
ADIJake 0:85855ecd3257 13 distribution.
ADIJake 0:85855ecd3257 14 - Neither the name of Analog Devices, Inc. nor the names of its
ADIJake 0:85855ecd3257 15 contributors may be used to endorse or promote products derived
ADIJake 0:85855ecd3257 16 from this software without specific prior written permission.
ADIJake 0:85855ecd3257 17 - The use of this software may or may not infringe the patent rights
ADIJake 0:85855ecd3257 18 of one or more patent holders. This license does not release you
ADIJake 0:85855ecd3257 19 from the requirement that you obtain separate licenses from these
ADIJake 0:85855ecd3257 20 patent holders to use this software.
ADIJake 0:85855ecd3257 21 - Use of the software either in source or binary form, must be run
ADIJake 0:85855ecd3257 22 on or directly connected to an Analog Devices Inc. component.
ADIJake 0:85855ecd3257 23
ADIJake 0:85855ecd3257 24 THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
ADIJake 0:85855ecd3257 25 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
ADIJake 0:85855ecd3257 26 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
ADIJake 0:85855ecd3257 27 IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
ADIJake 0:85855ecd3257 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
ADIJake 0:85855ecd3257 29 LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
ADIJake 0:85855ecd3257 30 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
ADIJake 0:85855ecd3257 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
ADIJake 0:85855ecd3257 32 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
ADIJake 0:85855ecd3257 33 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
ADIJake 0:85855ecd3257 34 */
ADIJake 0:85855ecd3257 35
ADIJake 0:85855ecd3257 36 /*!
ADIJake 0:85855ecd3257 37 ******************************************************************************
ADIJake 0:85855ecd3257 38 * @file:
Vkadaba 8:2f2775c34640 39 * @brief: API implementation for ADMW1001
ADIJake 0:85855ecd3257 40 *-----------------------------------------------------------------------------
ADIJake 0:85855ecd3257 41 */
ADIJake 0:85855ecd3257 42
ADIJake 0:85855ecd3257 43 #include <float.h>
ADIJake 0:85855ecd3257 44 #include <math.h>
ADIJake 0:85855ecd3257 45 #include <string.h>
ADIJake 0:85855ecd3257 46
Vkadaba 5:0728bde67bdb 47 #include "admw_platform.h"
Vkadaba 5:0728bde67bdb 48 #include "admw_api.h"
Vkadaba 5:0728bde67bdb 49 #include "admw1001/admw1001_api.h"
Vkadaba 5:0728bde67bdb 50
Vkadaba 5:0728bde67bdb 51 #include "admw1001/ADMW1001_REGISTERS_typedefs.h"
Vkadaba 5:0728bde67bdb 52 #include "admw1001/ADMW1001_REGISTERS.h"
Vkadaba 5:0728bde67bdb 53 #include "admw1001/admw1001_lut_data.h"
Vkadaba 5:0728bde67bdb 54 #include "admw1001/admw1001_host_comms.h"
ADIJake 0:85855ecd3257 55
ADIJake 0:85855ecd3257 56 #include "crc16.h"
Vkadaba 13:97cb32670539 57 #define VERSIONID_MAJOR 2
Vkadaba 13:97cb32670539 58 #define VERSIONID_MINOR 0
ADIJake 0:85855ecd3257 59
ADIJake 0:85855ecd3257 60 uint32_t getDataCnt = 0;
Vkadaba 32:52445bef314d 61 #define ADMW_VERSION_REG_VAL_SIZE 4u
Vkadaba 32:52445bef314d 62 #define ADMW_FORMATTED_VERSION_SIZE 11u
ADIJake 0:85855ecd3257 63
Vkadaba 32:52445bef314d 64 #define ADMW_SFL_READ_STATUS_SIZE 42u
ADIJake 0:85855ecd3257 65 /*
ADIJake 0:85855ecd3257 66 * The following macros are used to encapsulate the register access code
ADIJake 0:85855ecd3257 67 * to improve readability in the functions further below in this file
ADIJake 0:85855ecd3257 68 */
ADIJake 0:85855ecd3257 69 #define STRINGIFY(name) #name
ADIJake 0:85855ecd3257 70
ADIJake 0:85855ecd3257 71 /* Expand the full name of the reset value macro for the specified register */
Vkadaba 5:0728bde67bdb 72 #define REG_RESET_VAL(_name) REG_##_name##_RESET
ADIJake 0:85855ecd3257 73
ADIJake 0:85855ecd3257 74 /* Checks if a value is outside the bounds of the specified register field */
ADIJake 0:85855ecd3257 75 #define CHECK_REG_FIELD_VAL(_field, _val) \
ADIJake 0:85855ecd3257 76 do { \
Vkadaba 8:2f2775c34640 77 uint32_t _mask = BITM_##_field; \
Vkadaba 8:2f2775c34640 78 uint32_t _shift = BITP_##_field; \
ADIJake 0:85855ecd3257 79 if ((((_val) << _shift) & ~(_mask)) != 0) { \
Vkadaba 6:9d393a9677f4 80 ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s",\
ADIJake 0:85855ecd3257 81 (uint32_t)(_val), \
Vkadaba 6:9d393a9677f4 82 STRINGIFY(ADMW_##_field)); \
Vkadaba 8:2f2775c34640 83 return ADMW_INVALID_PARAM; \
ADIJake 0:85855ecd3257 84 } \
ADIJake 0:85855ecd3257 85 } while(false)
ADIJake 0:85855ecd3257 86
ADIJake 0:85855ecd3257 87 /*
ADIJake 0:85855ecd3257 88 * Encapsulates the write to a specified register
ADIJake 0:85855ecd3257 89 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 90 */
ADIJake 0:85855ecd3257 91 #define WRITE_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 92 do { \
Vkadaba 8:2f2775c34640 93 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 94 _type _regval = _val; \
Vkadaba 8:2f2775c34640 95 _res = admw1001_WriteRegister((_hdev), \
Vkadaba 8:2f2775c34640 96 REG_##_name, \
ADIJake 0:85855ecd3257 97 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 98 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 99 return _res; \
ADIJake 0:85855ecd3257 100 } while(false)
ADIJake 0:85855ecd3257 101
ADIJake 0:85855ecd3257 102 /* Wrapper macro to write a value to a uint32_t register */
Vkadaba 8:2f2775c34640 103 #define WRITE_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 104 WRITE_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 105 /* Wrapper macro to write a value to a uint16_t register */
Vkadaba 8:2f2775c34640 106 #define WRITE_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 107 WRITE_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 108 /* Wrapper macro to write a value to a uint8_t register */
Vkadaba 8:2f2775c34640 109 #define WRITE_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 110 WRITE_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 111 /* Wrapper macro to write a value to a float32_t register */
Vkadaba 8:2f2775c34640 112 #define WRITE_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 113 WRITE_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 114
ADIJake 0:85855ecd3257 115 /*
ADIJake 0:85855ecd3257 116 * Encapsulates the read from a specified register
ADIJake 0:85855ecd3257 117 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 118 */
ADIJake 0:85855ecd3257 119 #define READ_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 120 do { \
Vkadaba 8:2f2775c34640 121 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 122 _type _regval; \
Vkadaba 8:2f2775c34640 123 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 124 REG_##_name, \
ADIJake 0:85855ecd3257 125 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 126 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 127 return _res; \
ADIJake 0:85855ecd3257 128 _val = _regval; \
ADIJake 0:85855ecd3257 129 } while(false)
ADIJake 0:85855ecd3257 130
ADIJake 0:85855ecd3257 131 /* Wrapper macro to read a value from a uint32_t register */
Vkadaba 8:2f2775c34640 132 #define READ_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 133 READ_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 134 /* Wrapper macro to read a value from a uint16_t register */
Vkadaba 8:2f2775c34640 135 #define READ_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 136 READ_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 137 /* Wrapper macro to read a value from a uint8_t register */
Vkadaba 8:2f2775c34640 138 #define READ_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 139 READ_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 140 /* Wrapper macro to read a value from a float32_t register */
Vkadaba 8:2f2775c34640 141 #define READ_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 142 READ_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 143
ADIJake 0:85855ecd3257 144 /*
ADIJake 0:85855ecd3257 145 * Wrapper macro to write an array of values to a uint8_t register
ADIJake 0:85855ecd3257 146 * NOTE - this is intended only for writing to a keyhole data register
ADIJake 0:85855ecd3257 147 */
Vkadaba 8:2f2775c34640 148 #define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 149 do { \
Vkadaba 8:2f2775c34640 150 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 151 _res = admw1001_WriteRegister(_hdev, \
Vkadaba 8:2f2775c34640 152 REG_##_name, \
Vkadaba 6:9d393a9677f4 153 _arr, _len); \
Vkadaba 8:2f2775c34640 154 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 155 return _res; \
ADIJake 0:85855ecd3257 156 } while(false)
ADIJake 0:85855ecd3257 157
ADIJake 0:85855ecd3257 158 /*
ADIJake 0:85855ecd3257 159 * Wrapper macro to read an array of values from a uint8_t register
ADIJake 0:85855ecd3257 160 * NOTE - this is intended only for reading from a keyhole data register
ADIJake 0:85855ecd3257 161 */
Vkadaba 6:9d393a9677f4 162 #define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 163 do { \
Vkadaba 8:2f2775c34640 164 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 165 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 166 REG##_name, \
Vkadaba 6:9d393a9677f4 167 _arr, _len); \
Vkadaba 8:2f2775c34640 168 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 169 return _res; \
ADIJake 0:85855ecd3257 170 } while(false)
ADIJake 0:85855ecd3257 171
Vkadaba 8:2f2775c34640 172 #define ADMW1001_CHANNEL_IS_ADC(c) \
Vkadaba 8:2f2775c34640 173 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 174
Vkadaba 8:2f2775c34640 175 #define ADMW1001_CHANNEL_IS_ADC_CJC(c) \
Vkadaba 8:2f2775c34640 176 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 177
Vkadaba 8:2f2775c34640 178 #define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \
Vkadaba 8:2f2775c34640 179 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 180
Vkadaba 8:2f2775c34640 181 #define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \
Vkadaba 8:2f2775c34640 182 ((c) == ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL || ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 183
Vkadaba 8:2f2775c34640 184 #define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \
Vkadaba 8:2f2775c34640 185 ((c) == ADMW1001_CH_ID_ANLG_1_UNIVERSAL || (c) == ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 186
Vkadaba 8:2f2775c34640 187 #define ADMW1001_CHANNEL_IS_VIRTUAL(c) \
Vkadaba 8:2f2775c34640 188 ((c) == ADMW1001_CH_ID_DIG_SPI_1 || (c) == ADMW1001_CH_ID_DIG_SPI_2)
ADIJake 0:85855ecd3257 189
Vkadaba 32:52445bef314d 190 //typedef struct {
Vkadaba 32:52445bef314d 191 // unsigned nDeviceIndex;
Vkadaba 32:52445bef314d 192 // ADMW_SPI_HANDLE hSpi;
Vkadaba 32:52445bef314d 193 // ADMW_GPIO_HANDLE hGpio;
Vkadaba 32:52445bef314d 194 //
Vkadaba 32:52445bef314d 195 //} ADMW_DEVICE_CONTEXT;
Vkadaba 5:0728bde67bdb 196
Vkadaba 5:0728bde67bdb 197 static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES];
ADIJake 0:85855ecd3257 198
ADIJake 0:85855ecd3257 199 /*
Vkadaba 5:0728bde67bdb 200 * Open an ADMW device instance.
ADIJake 0:85855ecd3257 201 */
Vkadaba 5:0728bde67bdb 202 ADMW_RESULT admw_Open(
Vkadaba 8:2f2775c34640 203 unsigned const nDeviceIndex,
Vkadaba 5:0728bde67bdb 204 ADMW_CONNECTION * const pConnectionInfo,
Vkadaba 5:0728bde67bdb 205 ADMW_DEVICE_HANDLE * const phDevice)
ADIJake 0:85855ecd3257 206 {
Vkadaba 5:0728bde67bdb 207 ADMW_DEVICE_CONTEXT *pCtx;
Vkadaba 5:0728bde67bdb 208 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 209
Vkadaba 5:0728bde67bdb 210 if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES)
Vkadaba 5:0728bde67bdb 211 return ADMW_INVALID_DEVICE_NUM;
ADIJake 0:85855ecd3257 212
ADIJake 0:85855ecd3257 213 pCtx = &gDeviceCtx[nDeviceIndex];
ADIJake 0:85855ecd3257 214 pCtx->nDeviceIndex = nDeviceIndex;
ADIJake 0:85855ecd3257 215
Vkadaba 5:0728bde67bdb 216 eRet = admw_LogOpen(&pConnectionInfo->log);
Vkadaba 5:0728bde67bdb 217 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 218 return eRet;
ADIJake 0:85855ecd3257 219
Vkadaba 5:0728bde67bdb 220 eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
Vkadaba 5:0728bde67bdb 221 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 222 return eRet;
ADIJake 0:85855ecd3257 223
Vkadaba 5:0728bde67bdb 224 eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
Vkadaba 5:0728bde67bdb 225 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 226 return eRet;
ADIJake 0:85855ecd3257 227
ADIJake 0:85855ecd3257 228 *phDevice = pCtx;
Vkadaba 5:0728bde67bdb 229 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 230 }
ADIJake 0:85855ecd3257 231
ADIJake 0:85855ecd3257 232 /*
ADIJake 0:85855ecd3257 233 * Get the current state of the specified GPIO input signal.
ADIJake 0:85855ecd3257 234 */
Vkadaba 5:0728bde67bdb 235 ADMW_RESULT admw_GetGpioState(
Vkadaba 5:0728bde67bdb 236 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 237 ADMW_GPIO_PIN const ePinId,
ADIJake 0:85855ecd3257 238 bool * const pbAsserted)
ADIJake 0:85855ecd3257 239 {
Vkadaba 5:0728bde67bdb 240 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 241
Vkadaba 5:0728bde67bdb 242 return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
ADIJake 0:85855ecd3257 243 }
ADIJake 0:85855ecd3257 244
ADIJake 0:85855ecd3257 245 /*
ADIJake 0:85855ecd3257 246 * Register an application-defined callback function for GPIO interrupts.
ADIJake 0:85855ecd3257 247 */
Vkadaba 5:0728bde67bdb 248 ADMW_RESULT admw_RegisterGpioCallback(
Vkadaba 5:0728bde67bdb 249 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 250 ADMW_GPIO_PIN const ePinId,
Vkadaba 5:0728bde67bdb 251 ADMW_GPIO_CALLBACK const callbackFunction,
ADIJake 0:85855ecd3257 252 void * const pCallbackParam)
ADIJake 0:85855ecd3257 253 {
Vkadaba 5:0728bde67bdb 254 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
ADIJake 0:85855ecd3257 255
Vkadaba 23:bb685f35b08b 256 if (callbackFunction) {
Vkadaba 5:0728bde67bdb 257 return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
Vkadaba 23:bb685f35b08b 258 pCallbackParam);
Vkadaba 23:bb685f35b08b 259 } else {
Vkadaba 5:0728bde67bdb 260 return admw_GpioIrqDisable(pCtx->hGpio, ePinId);
ADIJake 0:85855ecd3257 261 }
ADIJake 0:85855ecd3257 262 }
ADIJake 0:85855ecd3257 263
Vkadaba 8:2f2775c34640 264 /*!
Vkadaba 8:2f2775c34640 265 * @brief Reset the specified ADMW device.
Vkadaba 8:2f2775c34640 266 *
Vkadaba 8:2f2775c34640 267 * @param[in] hDevice - handle of ADMW device to reset.
Vkadaba 8:2f2775c34640 268 *
Vkadaba 8:2f2775c34640 269 * @return Status
Vkadaba 8:2f2775c34640 270 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 8:2f2775c34640 271 * - #ADMW_FAILURE If reseet faisl
Vkadaba 8:2f2775c34640 272 *
Vkadaba 23:bb685f35b08b 273 * @details Toggle reset pin of the ADMW device low for a
Vkadaba 8:2f2775c34640 274 * minimum of 4 usec.
Vkadaba 8:2f2775c34640 275 *
ADIJake 0:85855ecd3257 276 */
Vkadaba 8:2f2775c34640 277 ADMW_RESULT admw_Reset(ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 278 {
Vkadaba 5:0728bde67bdb 279 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 280 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 281
ADIJake 0:85855ecd3257 282 /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
Vkadaba 5:0728bde67bdb 283 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false);
Vkadaba 5:0728bde67bdb 284 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 285 return eRet;
ADIJake 0:85855ecd3257 286
Vkadaba 5:0728bde67bdb 287 admw_TimeDelayUsec(4);
Vkadaba 5:0728bde67bdb 288
Vkadaba 5:0728bde67bdb 289 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true);
Vkadaba 5:0728bde67bdb 290 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 291 return eRet;
ADIJake 0:85855ecd3257 292
Vkadaba 5:0728bde67bdb 293 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 294 }
ADIJake 0:85855ecd3257 295
ADIJake 0:85855ecd3257 296 /*!
Vkadaba 8:2f2775c34640 297 * @brief Get general status of ADMW module.
ADIJake 0:85855ecd3257 298 *
ADIJake 0:85855ecd3257 299 * @param[in]
ADIJake 0:85855ecd3257 300 * @param[out] pStatus : Pointer to CORE Status struct.
ADIJake 0:85855ecd3257 301 *
ADIJake 0:85855ecd3257 302 * @return Status
Vkadaba 5:0728bde67bdb 303 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 304 * - #ADMW_FAILURE If status register read fails.
ADIJake 0:85855ecd3257 305 *
Vkadaba 8:2f2775c34640 306 * @details Read the general status register for the ADMW
ADIJake 0:85855ecd3257 307 * module. Indicates Error, Alert conditions, data ready
ADIJake 0:85855ecd3257 308 * and command running.
ADIJake 0:85855ecd3257 309 *
ADIJake 0:85855ecd3257 310 */
Vkadaba 5:0728bde67bdb 311 ADMW_RESULT admw_GetStatus(
Vkadaba 5:0728bde67bdb 312 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 313 ADMW_STATUS * const pStatus)
ADIJake 0:85855ecd3257 314 {
Vkadaba 8:2f2775c34640 315 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 316 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 317
ADIJake 0:85855ecd3257 318 memset(pStatus, 0, sizeof(*pStatus));
ADIJake 0:85855ecd3257 319
ADIJake 0:85855ecd3257 320 if (!statusReg.Cmd_Running) /* Active-low, so invert it */
Vkadaba 5:0728bde67bdb 321 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY;
ADIJake 0:85855ecd3257 322 if (statusReg.Drdy)
Vkadaba 5:0728bde67bdb 323 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY;
ADIJake 0:85855ecd3257 324 if (statusReg.FIFO_Error)
Vkadaba 5:0728bde67bdb 325 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR;
Vkadaba 23:bb685f35b08b 326 if (statusReg.Alert_Active) {
Vkadaba 5:0728bde67bdb 327 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT;
Vkadaba 5:0728bde67bdb 328
Vkadaba 8:2f2775c34640 329 ADMW_CORE_Channel_Alert_Status_t channelAlertStatusReg;
ADIJake 0:85855ecd3257 330 READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
ADIJake 0:85855ecd3257 331 CORE_CHANNEL_ALERT_STATUS);
ADIJake 0:85855ecd3257 332
Vkadaba 23:bb685f35b08b 333 for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) {
Vkadaba 23:bb685f35b08b 334 if (channelAlertStatusReg.VALUE16 & (1 << i)) {
Vkadaba 8:2f2775c34640 335 ADMW_CORE_Alert_Detail_Ch_t alertDetailReg;
ADIJake 0:85855ecd3257 336 READ_REG_U16(hDevice, alertDetailReg.VALUE16,
ADIJake 0:85855ecd3257 337 CORE_ALERT_DETAIL_CHn(i));
ADIJake 0:85855ecd3257 338
Vkadaba 32:52445bef314d 339 if (alertDetailReg.ADC_Near_Overrange)
Vkadaba 32:52445bef314d 340 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_NEAR_OVERRANGE;
Vkadaba 32:52445bef314d 341 if (alertDetailReg.Sensor_UnderRange)
Vkadaba 32:52445bef314d 342 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_UNDERRANGE;
Vkadaba 32:52445bef314d 343 if (alertDetailReg.Sensor_OverRange)
Vkadaba 32:52445bef314d 344 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_OVERRANGE ;
Vkadaba 32:52445bef314d 345 if (alertDetailReg.CJ_Soft_Fault)
Vkadaba 32:52445bef314d 346 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_SOFT_FAULT ;
Vkadaba 32:52445bef314d 347 if (alertDetailReg.CJ_Hard_Fault)
Vkadaba 32:52445bef314d 348 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_HARD_FAULT;
Vkadaba 32:52445bef314d 349 if (alertDetailReg.ADC_Input_OverRange)
Vkadaba 32:52445bef314d 350 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_INPUT_OVERRANGE ;
Vkadaba 32:52445bef314d 351 if (alertDetailReg.Sensor_HardFault)
Vkadaba 32:52445bef314d 352 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_HARDFAULT;
Vkadaba 32:52445bef314d 353
ADIJake 0:85855ecd3257 354 }
ADIJake 0:85855ecd3257 355 }
ADIJake 0:85855ecd3257 356
Vkadaba 32:52445bef314d 357 if (statusReg.Configuration_Error)
Vkadaba 5:0728bde67bdb 358 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR;
Vkadaba 32:52445bef314d 359 if (statusReg.LUT_Error)
Vkadaba 5:0728bde67bdb 360 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR;
ADIJake 0:85855ecd3257 361 }
ADIJake 0:85855ecd3257 362
Vkadaba 23:bb685f35b08b 363 if (statusReg.Error) {
Vkadaba 5:0728bde67bdb 364 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR;
Vkadaba 5:0728bde67bdb 365
Vkadaba 8:2f2775c34640 366 ADMW_CORE_Error_Code_t errorCodeReg;
ADIJake 0:85855ecd3257 367 READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
ADIJake 0:85855ecd3257 368 pStatus->errorCode = errorCodeReg.Error_Code;
ADIJake 0:85855ecd3257 369
ADIJake 0:85855ecd3257 370 }
Vkadaba 5:0728bde67bdb 371 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 372 }
ADIJake 0:85855ecd3257 373
Vkadaba 5:0728bde67bdb 374 ADMW_RESULT admw_GetCommandRunningState(
Vkadaba 5:0728bde67bdb 375 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 376 bool *pbCommandRunning)
ADIJake 0:85855ecd3257 377 {
Vkadaba 8:2f2775c34640 378 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 379
ADIJake 0:85855ecd3257 380 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 381
ADIJake 0:85855ecd3257 382 /* We should never normally see 0xFF here if the module is operational */
ADIJake 0:85855ecd3257 383 if (statusReg.VALUE8 == 0xFF)
Vkadaba 5:0728bde67bdb 384 return ADMW_ERR_NOT_INITIALIZED;
ADIJake 0:85855ecd3257 385
ADIJake 0:85855ecd3257 386 *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
ADIJake 0:85855ecd3257 387
Vkadaba 5:0728bde67bdb 388 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 389 }
ADIJake 0:85855ecd3257 390
Vkadaba 50:d84305e5e1c0 391 ADMW_RESULT admw_deviceInformation(ADMW_DEVICE_HANDLE hDevice)
Vkadaba 32:52445bef314d 392 {
Vkadaba 32:52445bef314d 393 uint16_t nAddress = REG_CORE_REVISION;
Vkadaba 32:52445bef314d 394 char nData[ADMW_VERSION_REG_VAL_SIZE]; //4 Bytes of version register data
Vkadaba 32:52445bef314d 395 ADMW_RESULT res;
Vkadaba 32:52445bef314d 396 res=admw1001_ReadRegister(hDevice,nAddress,nData,sizeof(nData));
Vkadaba 32:52445bef314d 397 if(res != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 398 //if reading version register failed, sending 00.00.0000 as ADMW1001 firmware version
Vkadaba 32:52445bef314d 399 //strcat(nData, ADMW1001_FIRMWARE_VERSION_DEFAULT);
Vkadaba 32:52445bef314d 400 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 32:52445bef314d 401 } else {
Vkadaba 32:52445bef314d 402 char buffer[ADMW_FORMATTED_VERSION_SIZE]; //00.00.0000 8 digits + 2 Bytes "." + one null character at the end
Vkadaba 32:52445bef314d 403 strcat(nData, buffer);
Vkadaba 42:c9c5a22e539e 404 ADMW_LOG_INFO("Firmware Version Id is %X.%X.%X",nData[3],nData[2],nData[0]);
Vkadaba 32:52445bef314d 405 }
Vkadaba 32:52445bef314d 406 return ADMW_SUCCESS;
Vkadaba 32:52445bef314d 407 }
Vkadaba 5:0728bde67bdb 408 static ADMW_RESULT executeCommand(
Vkadaba 5:0728bde67bdb 409 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 410 ADMW_CORE_Command_Special_Command const command,
ADIJake 0:85855ecd3257 411 bool const bWaitForCompletion)
ADIJake 0:85855ecd3257 412 {
Vkadaba 8:2f2775c34640 413 ADMW_CORE_Command_t commandReg;
ADIJake 0:85855ecd3257 414 bool bCommandRunning;
Vkadaba 5:0728bde67bdb 415 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 416
ADIJake 0:85855ecd3257 417 /*
ADIJake 0:85855ecd3257 418 * Don't allow another command to be issued if one is already running, but
Vkadaba 6:9d393a9677f4 419 * make an exception for ENUM_CORE_COMMAND_NOP which can be used to
ADIJake 0:85855ecd3257 420 * request a running command to be stopped (e.g. continuous measurement)
ADIJake 0:85855ecd3257 421 */
Vkadaba 23:bb685f35b08b 422 if (command != ENUM_CORE_COMMAND_NOP) {
Vkadaba 5:0728bde67bdb 423 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 424 if (eRet)
ADIJake 0:85855ecd3257 425 return eRet;
ADIJake 0:85855ecd3257 426
ADIJake 0:85855ecd3257 427 if (bCommandRunning)
Vkadaba 5:0728bde67bdb 428 return ADMW_IN_USE;
ADIJake 0:85855ecd3257 429 }
ADIJake 0:85855ecd3257 430
ADIJake 0:85855ecd3257 431 commandReg.Special_Command = command;
ADIJake 0:85855ecd3257 432 WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
ADIJake 0:85855ecd3257 433
Vkadaba 23:bb685f35b08b 434 if (bWaitForCompletion) {
ADIJake 0:85855ecd3257 435 do {
Vkadaba 50:d84305e5e1c0 436 /* Allow a minimum 100usec delay for status update before checking */
Vkadaba 50:d84305e5e1c0 437 admw_TimeDelayUsec(100);
Vkadaba 5:0728bde67bdb 438
Vkadaba 5:0728bde67bdb 439 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 440 if (eRet)
ADIJake 0:85855ecd3257 441 return eRet;
ADIJake 0:85855ecd3257 442 } while (bCommandRunning);
ADIJake 0:85855ecd3257 443 }
ADIJake 0:85855ecd3257 444
Vkadaba 5:0728bde67bdb 445 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 446 }
ADIJake 0:85855ecd3257 447
Vkadaba 5:0728bde67bdb 448 ADMW_RESULT admw_ApplyConfigUpdates(
Vkadaba 5:0728bde67bdb 449 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 450 {
Vkadaba 5:0728bde67bdb 451 return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true);
ADIJake 0:85855ecd3257 452 }
ADIJake 0:85855ecd3257 453
ADIJake 0:85855ecd3257 454 /*!
ADIJake 0:85855ecd3257 455 * @brief Start a measurement cycle.
ADIJake 0:85855ecd3257 456 *
ADIJake 0:85855ecd3257 457 * @param[out]
ADIJake 0:85855ecd3257 458 *
ADIJake 0:85855ecd3257 459 * @return Status
Vkadaba 5:0728bde67bdb 460 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 461 * - #ADMW_FAILURE
ADIJake 0:85855ecd3257 462 *
ADIJake 0:85855ecd3257 463 * @details Sends the latch config command. Configuration for channels in
ADIJake 0:85855ecd3257 464 * conversion cycle should be completed before this function.
ADIJake 0:85855ecd3257 465 * Channel enabled bit should be set before this function.
ADIJake 0:85855ecd3257 466 * Starts a conversion and configures the format of the sample.
ADIJake 0:85855ecd3257 467 *
ADIJake 0:85855ecd3257 468 */
Vkadaba 5:0728bde67bdb 469 ADMW_RESULT admw_StartMeasurement(
Vkadaba 5:0728bde67bdb 470 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 471 ADMW_MEASUREMENT_MODE const eMeasurementMode)
ADIJake 0:85855ecd3257 472 {
Vkadaba 23:bb685f35b08b 473 switch (eMeasurementMode) {
Vkadaba 23:bb685f35b08b 474 case ADMW_MEASUREMENT_MODE_NORMAL:
Vkadaba 23:bb685f35b08b 475 return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false);
Vkadaba 23:bb685f35b08b 476 case ADMW_MEASUREMENT_MODE_OMIT_RAW:
Vkadaba 23:bb685f35b08b 477 return executeCommand(hDevice, CORE_COMMAND_CONVERT, false);
Vkadaba 23:bb685f35b08b 478 default:
Vkadaba 23:bb685f35b08b 479 ADMW_LOG_ERROR("Invalid measurement mode %d specified",
Vkadaba 23:bb685f35b08b 480 eMeasurementMode);
Vkadaba 23:bb685f35b08b 481 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 482 }
ADIJake 0:85855ecd3257 483 }
ADIJake 0:85855ecd3257 484
ADIJake 0:85855ecd3257 485 /*
ADIJake 0:85855ecd3257 486 * Store the configuration settings to persistent memory on the device.
ADIJake 0:85855ecd3257 487 * The settings can be saved to 4 different flash memory areas (slots).
ADIJake 0:85855ecd3257 488 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 489 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 490 */
Vkadaba 5:0728bde67bdb 491 ADMW_RESULT admw_SaveConfig(
Vkadaba 5:0728bde67bdb 492 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 493 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 494 {
Vkadaba 23:bb685f35b08b 495 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 496 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 497 return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true);
ADIJake 0:85855ecd3257 498 default:
Vkadaba 5:0728bde67bdb 499 ADMW_LOG_ERROR("Invalid user config target slot %d specified",
Vkadaba 23:bb685f35b08b 500 eSlotId);
Vkadaba 5:0728bde67bdb 501 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 502 }
ADIJake 0:85855ecd3257 503 }
ADIJake 0:85855ecd3257 504
ADIJake 0:85855ecd3257 505 /*
ADIJake 0:85855ecd3257 506 * Restore the configuration settings from persistent memory on the device.
ADIJake 0:85855ecd3257 507 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 508 */
Vkadaba 5:0728bde67bdb 509 ADMW_RESULT admw_RestoreConfig(
Vkadaba 5:0728bde67bdb 510 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 511 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 512 {
Vkadaba 23:bb685f35b08b 513 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 514 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 515 return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true);
ADIJake 0:85855ecd3257 516 default:
Vkadaba 5:0728bde67bdb 517 ADMW_LOG_ERROR("Invalid user config source slot %d specified",
Vkadaba 23:bb685f35b08b 518 eSlotId);
Vkadaba 5:0728bde67bdb 519 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 520 }
ADIJake 0:85855ecd3257 521 }
ADIJake 0:85855ecd3257 522
ADIJake 0:85855ecd3257 523 /*
ADIJake 0:85855ecd3257 524 * Store the LUT data to persistent memory on the device.
ADIJake 0:85855ecd3257 525 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 526 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 527 */
Vkadaba 5:0728bde67bdb 528 ADMW_RESULT admw_SaveLutData(
Vkadaba 5:0728bde67bdb 529 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 530 {
Vkadaba 5:0728bde67bdb 531 return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true);
ADIJake 0:85855ecd3257 532 }
ADIJake 0:85855ecd3257 533
ADIJake 0:85855ecd3257 534 /*
ADIJake 0:85855ecd3257 535 * Restore the LUT data from persistent memory on the device.
ADIJake 0:85855ecd3257 536 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 537 */
Vkadaba 5:0728bde67bdb 538 ADMW_RESULT admw_RestoreLutData(
Vkadaba 5:0728bde67bdb 539 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 540 {
Vkadaba 5:0728bde67bdb 541 return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true);
ADIJake 0:85855ecd3257 542 }
ADIJake 0:85855ecd3257 543
ADIJake 0:85855ecd3257 544 /*
ADIJake 0:85855ecd3257 545 * Stop the measurement cycles on the device.
ADIJake 0:85855ecd3257 546 * To be used only if a measurement command is currently running.
ADIJake 0:85855ecd3257 547 */
Vkadaba 5:0728bde67bdb 548 ADMW_RESULT admw_StopMeasurement(
Vkadaba 5:0728bde67bdb 549 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 550 {
Vkadaba 5:0728bde67bdb 551 return executeCommand(hDevice, CORE_COMMAND_NOP, true);
ADIJake 0:85855ecd3257 552 }
ADIJake 0:85855ecd3257 553
ADIJake 0:85855ecd3257 554 /*
Vkadaba 32:52445bef314d 555 *
Vkadaba 32:52445bef314d 556 */
Vkadaba 32:52445bef314d 557 ADMW_RESULT admw1001_sendRun( ADMW_DEVICE_HANDLE const hDevice)
Vkadaba 32:52445bef314d 558 {
Vkadaba 32:52445bef314d 559 bool bitCommand;
Vkadaba 32:52445bef314d 560 ADMW_RESULT eRet;
Vkadaba 32:52445bef314d 561 uint8_t pinreg = 0x1;
Vkadaba 32:52445bef314d 562
Vkadaba 32:52445bef314d 563 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 32:52445bef314d 564 static uint8_t DataBuffer[SPI_BUFFER_SIZE] = {0};
Vkadaba 32:52445bef314d 565 uint16_t nSize;
Vkadaba 32:52445bef314d 566
Vkadaba 32:52445bef314d 567 //Construct Read Status command
Vkadaba 32:52445bef314d 568 DataBuffer[0] = 0x07;
Vkadaba 32:52445bef314d 569 DataBuffer[1] = 0x0E; //Packet ID
Vkadaba 32:52445bef314d 570
Vkadaba 32:52445bef314d 571 DataBuffer[2] = 0x00;
Vkadaba 32:52445bef314d 572 DataBuffer[3] = 0x00; //Data words
Vkadaba 32:52445bef314d 573
Vkadaba 32:52445bef314d 574 DataBuffer[4] = 0x45;
Vkadaba 32:52445bef314d 575 DataBuffer[5] = 0x00; //Command ID
Vkadaba 32:52445bef314d 576
Vkadaba 32:52445bef314d 577 DataBuffer[6] = 0x00;
Vkadaba 32:52445bef314d 578 DataBuffer[7] = 0x50;
Vkadaba 32:52445bef314d 579 DataBuffer[8] = 0x00;
Vkadaba 32:52445bef314d 580 DataBuffer[9] = 0x00; //Address
Vkadaba 32:52445bef314d 581
Vkadaba 32:52445bef314d 582 DataBuffer[10] = 0x95;
Vkadaba 32:52445bef314d 583 DataBuffer[11] = 0x00;
Vkadaba 32:52445bef314d 584 DataBuffer[12] = 0x00;
Vkadaba 32:52445bef314d 585 DataBuffer[13] = 0x00; //Checksum
Vkadaba 32:52445bef314d 586
Vkadaba 32:52445bef314d 587 nSize = SFL_READ_STATUS_HDR_SIZE;
Vkadaba 32:52445bef314d 588
Vkadaba 32:52445bef314d 589 do {
Vkadaba 32:52445bef314d 590 // Get the SFL command irq pin to check if SFL is ready to receive commands
Vkadaba 32:52445bef314d 591 // Status pin is not checked since SFL is just booted, there should not be any issue with SFL
Vkadaba 32:52445bef314d 592 eRet = admw_GetGpioState( hDevice, ADMW_GPIO_PIN_DATAREADY, &bitCommand );
Vkadaba 32:52445bef314d 593 if( eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 594 return eRet;
Vkadaba 32:52445bef314d 595 }
Vkadaba 32:52445bef314d 596
Vkadaba 32:52445bef314d 597 // Command IRQ pin should be low and Status IRQ pin should be high for SFL to be in good state and ready to recieve commands
Vkadaba 32:52445bef314d 598 // pinreg == '0x00' - Error occured in SFL
Vkadaba 32:52445bef314d 599 // pinreg == '0x01' - SFL is ready to recieve commands
Vkadaba 32:52445bef314d 600 // pinreg == '0x02' - Error occured in handling any commands in SFL
Vkadaba 32:52445bef314d 601 // pinreg == '0x03' - SFL not booted
Vkadaba 32:52445bef314d 602
Vkadaba 32:52445bef314d 603 pinreg = (bitCommand);
Vkadaba 32:52445bef314d 604
Vkadaba 32:52445bef314d 605 } while(pinreg != 0x0u);
Vkadaba 32:52445bef314d 606
Vkadaba 32:52445bef314d 607 eRet = admw_SpiTransfer(pCtx->hSpi, DataBuffer, NULL,
Vkadaba 32:52445bef314d 608 nSize, false);
Vkadaba 32:52445bef314d 609
Vkadaba 32:52445bef314d 610 return eRet;
Vkadaba 32:52445bef314d 611 }
Vkadaba 32:52445bef314d 612
Vkadaba 32:52445bef314d 613 /*
ADIJake 0:85855ecd3257 614 * Read a set of data samples from the device.
ADIJake 0:85855ecd3257 615 * This may be called at any time.
ADIJake 0:85855ecd3257 616 */
Vkadaba 32:52445bef314d 617
Vkadaba 5:0728bde67bdb 618 ADMW_RESULT admw_GetData(
Vkadaba 5:0728bde67bdb 619 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 620 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 621 ADMW_DATA_SAMPLE * const pSamples,
ADIJake 0:85855ecd3257 622 uint8_t const nBytesPerSample,
ADIJake 0:85855ecd3257 623 uint32_t const nRequested,
ADIJake 0:85855ecd3257 624 uint32_t * const pnReturned)
ADIJake 0:85855ecd3257 625 {
Vkadaba 5:0728bde67bdb 626 ADMW1001_Sensor_Result_t sensorResult;
Vkadaba 5:0728bde67bdb 627 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 628 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 629 (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 630 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 631 command >> 8,
ADIJake 0:85855ecd3257 632 command & 0xFF
ADIJake 0:85855ecd3257 633 };
ADIJake 0:85855ecd3257 634 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 635 unsigned nValidSamples = 0;
Vkadaba 5:0728bde67bdb 636 ADMW_RESULT eRet = ADMW_SUCCESS;
ADIJake 0:85855ecd3257 637
ADIJake 0:85855ecd3257 638 do {
Vkadaba 5:0728bde67bdb 639 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 640 sizeof(command), false);
Vkadaba 23:bb685f35b08b 641 if (eRet) {
Vkadaba 5:0728bde67bdb 642 ADMW_LOG_ERROR("Failed to send read command for FIFO register");
ADIJake 0:85855ecd3257 643 return eRet;
ADIJake 0:85855ecd3257 644 }
Vkadaba 5:0728bde67bdb 645 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 646 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 647 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 50:d84305e5e1c0 648
Vkadaba 23:bb685f35b08b 649 for (unsigned i = 0; i < nRequested; i++) {
ADIJake 0:85855ecd3257 650 bool bHoldCs = true;
ADIJake 0:85855ecd3257 651 /* Keep the CS signal asserted for all but the last sample */
ADIJake 0:85855ecd3257 652 if ((i + 1) == nRequested)
ADIJake 0:85855ecd3257 653 bHoldCs = false;
ADIJake 0:85855ecd3257 654
ADIJake 0:85855ecd3257 655 getDataCnt++;
ADIJake 0:85855ecd3257 656
Vkadaba 5:0728bde67bdb 657 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult,
Vkadaba 23:bb685f35b08b 658 nBytesPerSample, bHoldCs);
Vkadaba 23:bb685f35b08b 659 if (eRet) {
Vkadaba 5:0728bde67bdb 660 ADMW_LOG_ERROR("Failed to read data from FIFO register");
ADIJake 0:85855ecd3257 661 return eRet;
ADIJake 0:85855ecd3257 662 }
ADIJake 0:85855ecd3257 663
Vkadaba 23:bb685f35b08b 664 if (! sensorResult.Ch_Valid) {
ADIJake 0:85855ecd3257 665 /*
ADIJake 0:85855ecd3257 666 * Reading an invalid sample indicates that there are no
ADIJake 0:85855ecd3257 667 * more samples available or we've lost sync with the device.
ADIJake 0:85855ecd3257 668 * In the latter case, it might be recoverable, but return here
ADIJake 0:85855ecd3257 669 * to let the application check the device status and decide itself.
ADIJake 0:85855ecd3257 670 */
Vkadaba 5:0728bde67bdb 671 eRet = ADMW_INCOMPLETE;
ADIJake 0:85855ecd3257 672 break;
ADIJake 0:85855ecd3257 673 }
ADIJake 0:85855ecd3257 674
Vkadaba 5:0728bde67bdb 675 ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
Vkadaba 5:0728bde67bdb 676
Vkadaba 5:0728bde67bdb 677 pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
ADIJake 0:85855ecd3257 678 if (sensorResult.Ch_Error)
Vkadaba 5:0728bde67bdb 679 pSample->status |= ADMW_DEVICE_STATUS_ERROR;
ADIJake 0:85855ecd3257 680 if (sensorResult.Ch_Alert)
Vkadaba 5:0728bde67bdb 681 pSample->status |= ADMW_DEVICE_STATUS_ALERT;
ADIJake 0:85855ecd3257 682
ADIJake 0:85855ecd3257 683 if (sensorResult.Ch_Raw)
ADIJake 0:85855ecd3257 684 pSample->rawValue = sensorResult.Raw_Sample;
ADIJake 0:85855ecd3257 685 else
ADIJake 0:85855ecd3257 686 pSample->rawValue = 0;
ADIJake 0:85855ecd3257 687
ADIJake 0:85855ecd3257 688 pSample->channelId = sensorResult.Channel_ID;
ADIJake 0:85855ecd3257 689 pSample->processedValue = sensorResult.Sensor_Result;
ADIJake 0:85855ecd3257 690
ADIJake 0:85855ecd3257 691 nValidSamples++;
ADIJake 0:85855ecd3257 692
Vkadaba 50:d84305e5e1c0 693 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
ADIJake 0:85855ecd3257 694 }
ADIJake 0:85855ecd3257 695 *pnReturned = nValidSamples;
ADIJake 0:85855ecd3257 696
ADIJake 0:85855ecd3257 697 return eRet;
ADIJake 0:85855ecd3257 698 }
ADIJake 0:85855ecd3257 699
ADIJake 0:85855ecd3257 700 /*
Vkadaba 5:0728bde67bdb 701 * Close the given ADMW device.
ADIJake 0:85855ecd3257 702 */
Vkadaba 5:0728bde67bdb 703 ADMW_RESULT admw_Close(
Vkadaba 5:0728bde67bdb 704 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 705 {
Vkadaba 5:0728bde67bdb 706 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 707
Vkadaba 5:0728bde67bdb 708 admw_GpioClose(pCtx->hGpio);
Vkadaba 5:0728bde67bdb 709 admw_SpiClose(pCtx->hSpi);
Vkadaba 5:0728bde67bdb 710 admw_LogClose();
Vkadaba 5:0728bde67bdb 711
Vkadaba 5:0728bde67bdb 712 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 713 }
ADIJake 0:85855ecd3257 714
Vkadaba 5:0728bde67bdb 715 ADMW_RESULT admw1001_WriteRegister(
Vkadaba 5:0728bde67bdb 716 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 717 uint16_t nAddress,
ADIJake 0:85855ecd3257 718 void *pData,
ADIJake 0:85855ecd3257 719 unsigned nLength)
ADIJake 0:85855ecd3257 720 {
Vkadaba 5:0728bde67bdb 721 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 722 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 723 uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD |
Vkadaba 23:bb685f35b08b 724 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 725 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 726 command >> 8,
ADIJake 0:85855ecd3257 727 command & 0xFF
ADIJake 0:85855ecd3257 728 };
ADIJake 0:85855ecd3257 729 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 730
ADIJake 0:85855ecd3257 731 do {
Vkadaba 5:0728bde67bdb 732 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 733 sizeof(command), false);
Vkadaba 23:bb685f35b08b 734 if (eRet) {
Vkadaba 5:0728bde67bdb 735 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 736 nAddress);
ADIJake 0:85855ecd3257 737 return eRet;
ADIJake 0:85855ecd3257 738 }
ADIJake 0:85855ecd3257 739
Vkadaba 5:0728bde67bdb 740 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 741 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 742 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 743
Vkadaba 5:0728bde67bdb 744 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 745 if (eRet) {
Vkadaba 5:0728bde67bdb 746 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 747 nLength, nAddress);
ADIJake 0:85855ecd3257 748 return eRet;
ADIJake 0:85855ecd3257 749 }
ADIJake 0:85855ecd3257 750
Vkadaba 5:0728bde67bdb 751 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 752
Vkadaba 5:0728bde67bdb 753 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 754 }
ADIJake 0:85855ecd3257 755
Vkadaba 6:9d393a9677f4 756 ADMW_RESULT admw1001_Write_Debug_Register(
Vkadaba 6:9d393a9677f4 757 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 758 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 759 void *pData,
Vkadaba 6:9d393a9677f4 760 unsigned nLength)
Vkadaba 6:9d393a9677f4 761 {
Vkadaba 6:9d393a9677f4 762 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 763 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 764 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_WRITE_CMD |
Vkadaba 23:bb685f35b08b 765 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 766 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 767 command >> 8,
Vkadaba 6:9d393a9677f4 768 command & 0xFF
Vkadaba 6:9d393a9677f4 769 };
Vkadaba 6:9d393a9677f4 770 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 771
Vkadaba 6:9d393a9677f4 772 do {
Vkadaba 6:9d393a9677f4 773 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 774 sizeof(command), false);
Vkadaba 23:bb685f35b08b 775 if (eRet) {
Vkadaba 6:9d393a9677f4 776 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 777 nAddress);
Vkadaba 6:9d393a9677f4 778 return eRet;
Vkadaba 6:9d393a9677f4 779 }
Vkadaba 48:5731f1aa2c5a 780 wait_ms(100);
Vkadaba 48:5731f1aa2c5a 781 //admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 782 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 783 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 784
Vkadaba 6:9d393a9677f4 785 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 786 if (eRet) {
Vkadaba 6:9d393a9677f4 787 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 788 nLength, nAddress);
Vkadaba 6:9d393a9677f4 789 return eRet;
Vkadaba 6:9d393a9677f4 790 }
Vkadaba 6:9d393a9677f4 791
Vkadaba 6:9d393a9677f4 792 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 793
Vkadaba 6:9d393a9677f4 794 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 795 }
Vkadaba 5:0728bde67bdb 796 ADMW_RESULT admw1001_ReadRegister(
Vkadaba 5:0728bde67bdb 797 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 798 uint16_t nAddress,
ADIJake 0:85855ecd3257 799 void *pData,
ADIJake 0:85855ecd3257 800 unsigned nLength)
ADIJake 0:85855ecd3257 801 {
Vkadaba 5:0728bde67bdb 802 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 803 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 804 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 805 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 806 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 807 command >> 8,
ADIJake 0:85855ecd3257 808 command & 0xFF
ADIJake 0:85855ecd3257 809 };
ADIJake 0:85855ecd3257 810 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 811
ADIJake 0:85855ecd3257 812 do {
Vkadaba 5:0728bde67bdb 813 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 814 sizeof(command), false);
Vkadaba 23:bb685f35b08b 815 if (eRet) {
Vkadaba 5:0728bde67bdb 816 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 817 nAddress);
ADIJake 0:85855ecd3257 818 return eRet;
ADIJake 0:85855ecd3257 819 }
ADIJake 0:85855ecd3257 820
Vkadaba 5:0728bde67bdb 821 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 822 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 823 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 824
Vkadaba 5:0728bde67bdb 825 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 826 if (eRet) {
Vkadaba 5:0728bde67bdb 827 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 828 nLength, nAddress);
ADIJake 0:85855ecd3257 829 return eRet;
ADIJake 0:85855ecd3257 830 }
ADIJake 0:85855ecd3257 831
Vkadaba 5:0728bde67bdb 832 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 833
Vkadaba 5:0728bde67bdb 834 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 835 }
ADIJake 0:85855ecd3257 836
Vkadaba 6:9d393a9677f4 837 ADMW_RESULT admw1001_Read_Debug_Register(
Vkadaba 6:9d393a9677f4 838 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 839 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 840 void *pData,
Vkadaba 6:9d393a9677f4 841 unsigned nLength)
Vkadaba 6:9d393a9677f4 842 {
Vkadaba 6:9d393a9677f4 843 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 844 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 845 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_READ_CMD |
Vkadaba 23:bb685f35b08b 846 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 847 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 848 command >> 8,
Vkadaba 6:9d393a9677f4 849 command & 0xFF
Vkadaba 6:9d393a9677f4 850 };
Vkadaba 6:9d393a9677f4 851 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 852
Vkadaba 6:9d393a9677f4 853 do {
Vkadaba 6:9d393a9677f4 854 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 855 sizeof(command), false);
Vkadaba 23:bb685f35b08b 856 if (eRet) {
Vkadaba 6:9d393a9677f4 857 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 858 nAddress);
Vkadaba 6:9d393a9677f4 859 return eRet;
Vkadaba 6:9d393a9677f4 860 }
Vkadaba 6:9d393a9677f4 861
Vkadaba 6:9d393a9677f4 862 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 863 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 864 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 865
Vkadaba 6:9d393a9677f4 866 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 867 if (eRet) {
Vkadaba 6:9d393a9677f4 868 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 869 nLength, nAddress);
Vkadaba 6:9d393a9677f4 870 return eRet;
Vkadaba 6:9d393a9677f4 871 }
Vkadaba 6:9d393a9677f4 872
Vkadaba 6:9d393a9677f4 873 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 874
Vkadaba 6:9d393a9677f4 875 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 876 }
Vkadaba 5:0728bde67bdb 877 ADMW_RESULT admw_GetDeviceReadyState(
Vkadaba 5:0728bde67bdb 878 ADMW_DEVICE_HANDLE const hDevice,
ADIJake 0:85855ecd3257 879 bool * const bReady)
ADIJake 0:85855ecd3257 880 {
Vkadaba 5:0728bde67bdb 881 ADMW_SPI_Chip_Type_t chipTypeReg;
ADIJake 0:85855ecd3257 882
ADIJake 0:85855ecd3257 883 READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
ADIJake 0:85855ecd3257 884 /* If we read this register successfully, assume the device is ready */
Vkadaba 5:0728bde67bdb 885 *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET);
Vkadaba 5:0728bde67bdb 886
Vkadaba 5:0728bde67bdb 887 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 888 }
ADIJake 0:85855ecd3257 889
Vkadaba 5:0728bde67bdb 890 ADMW_RESULT admw1001_GetDataReadyModeInfo(
Vkadaba 8:2f2775c34640 891 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 892 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 893 ADMW1001_OPERATING_MODE * const peOperatingMode,
Vkadaba 5:0728bde67bdb 894 ADMW1001_DATAREADY_MODE * const peDataReadyMode,
Vkadaba 8:2f2775c34640 895 uint32_t * const pnSamplesPerDataready,
Vkadaba 8:2f2775c34640 896 uint32_t * const pnSamplesPerCycle,
Vkadaba 8:2f2775c34640 897 uint8_t * const pnBytesPerSample)
ADIJake 0:85855ecd3257 898 {
ADIJake 0:85855ecd3257 899 unsigned nChannelsEnabled = 0;
ADIJake 0:85855ecd3257 900 unsigned nSamplesPerCycle = 0;
ADIJake 0:85855ecd3257 901
Vkadaba 8:2f2775c34640 902 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 903 READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 904
Vkadaba 50:d84305e5e1c0 905 if (eMeasurementMode == (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE))
Vkadaba 50:d84305e5e1c0 906 *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
Vkadaba 50:d84305e5e1c0 907 else
Vkadaba 50:d84305e5e1c0 908 *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
ADIJake 0:85855ecd3257 909
Vkadaba 23:bb685f35b08b 910 if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) {
Vkadaba 50:d84305e5e1c0 911 *pnBytesPerSample = 8;
Vkadaba 23:bb685f35b08b 912 } else {
Vkadaba 50:d84305e5e1c0 913 *pnBytesPerSample = 12;
Vkadaba 6:9d393a9677f4 914 }
Vkadaba 23:bb685f35b08b 915
Vkadaba 8:2f2775c34640 916 for (ADMW1001_CH_ID chId = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 917 chId < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 918 chId++) {
Vkadaba 8:2f2775c34640 919 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
Vkadaba 8:2f2775c34640 920 ADMW_CORE_Channel_Count_t channelCountReg;
Vkadaba 23:bb685f35b08b 921
Vkadaba 8:2f2775c34640 922 if (ADMW1001_CHANNEL_IS_VIRTUAL(chId))
Vkadaba 8:2f2775c34640 923 continue;
Vkadaba 23:bb685f35b08b 924
Vkadaba 8:2f2775c34640 925 READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
Vkadaba 8:2f2775c34640 926 READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
Vkadaba 23:bb685f35b08b 927
Vkadaba 41:df78b7d7b675 928 if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) {
Vkadaba 8:2f2775c34640 929 unsigned nActualChannels = 1;
Vkadaba 23:bb685f35b08b 930
Vkadaba 41:df78b7d7b675 931 if (chId == ADMW1001_CH_ID_DIG_SPI_0) {
Vkadaba 23:bb685f35b08b 932 /* Some sensors automatically generate samples on additional
Vkadaba 23:bb685f35b08b 933 * "virtual" channels so these channels must be counted as
Vkadaba 23:bb685f35b08b 934 * active when those sensors are selected and we use the count
Vkadaba 23:bb685f35b08b 935 * from the corresponding "physical" channel
Vkadaba 8:2f2775c34640 936 */
Vkadaba 50:d84305e5e1c0 937 #if 0 /* SPI sensors arent supported at present to be added back once there is
Vkadaba 32:52445bef314d 938 * support for these sensors
Vkadaba 32:52445bef314d 939 */
Vkadaba 36:54e2418e7620 940 ADMW_CORE_Sensor_Type_t sensorTypeReg;
Vkadaba 36:54e2418e7620 941
Vkadaba 36:54e2418e7620 942 READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId));
Vkadaba 41:df78b7d7b675 943
Vkadaba 8:2f2775c34640 944 if ((sensorTypeReg.Sensor_Type >=
Vkadaba 41:df78b7d7b675 945 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_A) &&
Vkadaba 41:df78b7d7b675 946 (sensorTypeReg.Sensor_Type <=
Vkadaba 41:df78b7d7b675 947 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_B)) {
Vkadaba 8:2f2775c34640 948 nActualChannels += 2;
Vkadaba 8:2f2775c34640 949 }
Vkadaba 32:52445bef314d 950 #endif
Vkadaba 8:2f2775c34640 951 }
Vkadaba 23:bb685f35b08b 952
Vkadaba 8:2f2775c34640 953 nChannelsEnabled += nActualChannels;
Vkadaba 23:bb685f35b08b 954
Vkadaba 8:2f2775c34640 955 nSamplesPerCycle += nActualChannels *
Vkadaba 8:2f2775c34640 956 (channelCountReg.Channel_Count + 1);
ADIJake 0:85855ecd3257 957 }
Vkadaba 6:9d393a9677f4 958 }
Vkadaba 23:bb685f35b08b 959
Vkadaba 23:bb685f35b08b 960 if (nChannelsEnabled == 0) {
Vkadaba 8:2f2775c34640 961 *pnSamplesPerDataready = 0;
Vkadaba 8:2f2775c34640 962 *pnSamplesPerCycle = 0;
Vkadaba 8:2f2775c34640 963 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 964 }
Vkadaba 23:bb685f35b08b 965
Vkadaba 6:9d393a9677f4 966 *pnSamplesPerCycle = nSamplesPerCycle;
Vkadaba 23:bb685f35b08b 967
Vkadaba 23:bb685f35b08b 968 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 969 *pnSamplesPerDataready = 1;
Vkadaba 50:d84305e5e1c0 970 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) {
Vkadaba 50:d84305e5e1c0 971 *pnSamplesPerDataready = nSamplesPerCycle;
Vkadaba 50:d84305e5e1c0 972 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 973 ADMW_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg;
Vkadaba 50:d84305e5e1c0 974
Vkadaba 50:d84305e5e1c0 975 READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES);
Vkadaba 50:d84305e5e1c0 976
Vkadaba 50:d84305e5e1c0 977 *pnSamplesPerDataready = nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles;
Vkadaba 23:bb685f35b08b 978 } else {
Vkadaba 50:d84305e5e1c0 979 ADMW_LOG_ERROR("Invalid DRDY mode %d specified",
Vkadaba 50:d84305e5e1c0 980 modeReg.Drdy_Mode);
Vkadaba 50:d84305e5e1c0 981 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 982 }
Vkadaba 23:bb685f35b08b 983
Vkadaba 23:bb685f35b08b 984 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 985 *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION;
Vkadaba 50:d84305e5e1c0 986 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) {
Vkadaba 50:d84305e5e1c0 987 *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
Vkadaba 50:d84305e5e1c0 988 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 989 *peDataReadyMode = ADMW1001_DATAREADY_PER_FIFO_FILL;
Vkadaba 23:bb685f35b08b 990 } else {
Vkadaba 50:d84305e5e1c0 991 ADMW_LOG_ERROR("Invalid DRDY mode %d specified",
Vkadaba 50:d84305e5e1c0 992 modeReg.Drdy_Mode);
Vkadaba 50:d84305e5e1c0 993 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 994 }
Vkadaba 23:bb685f35b08b 995
Vkadaba 5:0728bde67bdb 996 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 997 }
ADIJake 0:85855ecd3257 998
Vkadaba 5:0728bde67bdb 999 ADMW_RESULT admw_GetProductID(
Vkadaba 5:0728bde67bdb 1000 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1001 ADMW_PRODUCT_ID *pProductId)
ADIJake 0:85855ecd3257 1002 {
Vkadaba 5:0728bde67bdb 1003 ADMW_SPI_Product_ID_L_t productIdLoReg;
Vkadaba 5:0728bde67bdb 1004 ADMW_SPI_Product_ID_H_t productIdHiReg;
ADIJake 0:85855ecd3257 1005
ADIJake 0:85855ecd3257 1006 READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
ADIJake 0:85855ecd3257 1007 READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
ADIJake 0:85855ecd3257 1008
Vkadaba 23:bb685f35b08b 1009 *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) |
Vkadaba 8:2f2775c34640 1010 productIdLoReg.VALUE8);
Vkadaba 5:0728bde67bdb 1011 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1012 }
ADIJake 0:85855ecd3257 1013
Vkadaba 5:0728bde67bdb 1014 static ADMW_RESULT admw_SetPowerMode(
Vkadaba 5:0728bde67bdb 1015 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1016 ADMW1001_POWER_MODE powerMode)
ADIJake 0:85855ecd3257 1017 {
Vkadaba 50:d84305e5e1c0 1018 ADMW_CORE_Power_Config_t powerConfigReg = { 0 };
Vkadaba 5:0728bde67bdb 1019
Vkadaba 23:bb685f35b08b 1020 if (powerMode == ADMW1001_POWER_MODE_HIBERNATION) {
Vkadaba 6:9d393a9677f4 1021 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_HIBERNATION;
Vkadaba 23:bb685f35b08b 1022 } else if (powerMode == ADMW1001_POWER_MODE_ACTIVE) {
Vkadaba 6:9d393a9677f4 1023 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_ACTIVE_MODE;
Vkadaba 23:bb685f35b08b 1024 } else {
Vkadaba 5:0728bde67bdb 1025 ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode);
Vkadaba 5:0728bde67bdb 1026 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1027 }
ADIJake 0:85855ecd3257 1028
ADIJake 0:85855ecd3257 1029 WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
ADIJake 0:85855ecd3257 1030
Vkadaba 5:0728bde67bdb 1031 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1032 }
ADIJake 0:85855ecd3257 1033
Vkadaba 5:0728bde67bdb 1034 ADMW_RESULT admw1001_SetPowerConfig(
Vkadaba 5:0728bde67bdb 1035 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1036 ADMW1001_POWER_CONFIG *pPowerConfig)
ADIJake 0:85855ecd3257 1037 {
Vkadaba 5:0728bde67bdb 1038 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1039
Vkadaba 5:0728bde67bdb 1040 eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode);
Vkadaba 23:bb685f35b08b 1041 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1042 ADMW_LOG_ERROR("Failed to set power mode");
ADIJake 0:85855ecd3257 1043 return eRet;
ADIJake 0:85855ecd3257 1044 }
ADIJake 0:85855ecd3257 1045
Vkadaba 5:0728bde67bdb 1046 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1047 }
ADIJake 0:85855ecd3257 1048
Vkadaba 33:df7a00f1b8e1 1049 static ADMW_RESULT admw_SetRSenseValue(
Vkadaba 33:df7a00f1b8e1 1050 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 33:df7a00f1b8e1 1051 float32_t RSenseValue)
Vkadaba 33:df7a00f1b8e1 1052 {
Vkadaba 41:df78b7d7b675 1053 ADMW_CORE_External_Reference_Resistor_t RefResistorConfigReg;
Vkadaba 41:df78b7d7b675 1054
Vkadaba 41:df78b7d7b675 1055 RefResistorConfigReg.Ext_Refin1_Value = RSenseValue;
Vkadaba 41:df78b7d7b675 1056
Vkadaba 41:df78b7d7b675 1057 WRITE_REG_FLOAT(hDevice, RefResistorConfigReg.VALUE32, CORE_EXTERNAL_REFERENCE_RESISTOR);
Vkadaba 41:df78b7d7b675 1058
Vkadaba 41:df78b7d7b675 1059 return ADMW_SUCCESS;
Vkadaba 33:df7a00f1b8e1 1060
Vkadaba 33:df7a00f1b8e1 1061 }
Vkadaba 5:0728bde67bdb 1062 static ADMW_RESULT admw_SetMode(
Vkadaba 5:0728bde67bdb 1063 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1064 ADMW1001_OPERATING_MODE eOperatingMode,
Vkadaba 8:2f2775c34640 1065 ADMW1001_DATAREADY_MODE eDataReadyMode)
ADIJake 0:85855ecd3257 1066 {
Vkadaba 8:2f2775c34640 1067 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 1068
ADIJake 0:85855ecd3257 1069 modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
ADIJake 0:85855ecd3257 1070
Vkadaba 23:bb685f35b08b 1071 if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) {
Vkadaba 5:0728bde67bdb 1072 modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE;
Vkadaba 23:bb685f35b08b 1073 } else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) {
Vkadaba 5:0728bde67bdb 1074 modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS;
Vkadaba 23:bb685f35b08b 1075 } else {
Vkadaba 5:0728bde67bdb 1076 ADMW_LOG_ERROR("Invalid operating mode %d specified",
Vkadaba 23:bb685f35b08b 1077 eOperatingMode);
Vkadaba 5:0728bde67bdb 1078 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1079 }
ADIJake 0:85855ecd3257 1080
Vkadaba 23:bb685f35b08b 1081 if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) {
Vkadaba 5:0728bde67bdb 1082 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 1083 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) {
Vkadaba 5:0728bde67bdb 1084 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE;
Vkadaba 50:d84305e5e1c0 1085 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 1086 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_FIFO_FILL;
Vkadaba 23:bb685f35b08b 1087 } else {
Vkadaba 5:0728bde67bdb 1088 ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
Vkadaba 5:0728bde67bdb 1089 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1090 }
ADIJake 0:85855ecd3257 1091
ADIJake 0:85855ecd3257 1092 WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 1093
Vkadaba 5:0728bde67bdb 1094 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1095 }
ADIJake 0:85855ecd3257 1096
Vkadaba 8:2f2775c34640 1097 ADMW_RESULT admw_SetCycleControl(ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1098 uint32_t nCycleInterval,
Vkadaba 50:d84305e5e1c0 1099 bool vBiasEnable,
Vkadaba 43:e1789b7214cf 1100 bool vPostExecCurrentState,
Vkadaba 43:e1789b7214cf 1101 bool vGroundSwitch)
ADIJake 0:85855ecd3257 1102 {
Vkadaba 8:2f2775c34640 1103 ADMW_CORE_Cycle_Control_t cycleControlReg;
ADIJake 0:85855ecd3257 1104
ADIJake 0:85855ecd3257 1105 cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1106
Vkadaba 43:e1789b7214cf 1107 if (nCycleInterval < (1 << 12)) {
Vkadaba 43:e1789b7214cf 1108 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS;
Vkadaba 23:bb685f35b08b 1109 } else {
Vkadaba 43:e1789b7214cf 1110 ADMW_LOG_ERROR("Invalid nCycleInterval %d specified", nCycleInterval);
Vkadaba 50:d84305e5e1c0 1111 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1112 }
ADIJake 0:85855ecd3257 1113
Vkadaba 23:bb685f35b08b 1114 if (vBiasEnable == true) {
Vkadaba 8:2f2775c34640 1115 cycleControlReg.Vbias = 1;
Vkadaba 8:2f2775c34640 1116 }
ADIJake 0:85855ecd3257 1117 CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
ADIJake 0:85855ecd3257 1118 cycleControlReg.Cycle_Time = nCycleInterval;
Vkadaba 50:d84305e5e1c0 1119
Vkadaba 50:d84305e5e1c0 1120 switch(vPostExecCurrentState) {
Vkadaba 50:d84305e5e1c0 1121 case ADMW1001_ADC_EXC_STATE_CYCLE_POWER:
Vkadaba 50:d84305e5e1c0 1122 cycleControlReg.PST_MEAS_EXC_CTRL = CORE_CYCLE_CONTROL_POWERCYCLE;
Vkadaba 50:d84305e5e1c0 1123 break;
Vkadaba 50:d84305e5e1c0 1124 case ADMW1001_ADC_EXC_STATE_ALWAYS_ON:
Vkadaba 50:d84305e5e1c0 1125 cycleControlReg.PST_MEAS_EXC_CTRL = CORE_CYCLE_CONTROL_ALWAYSON;
Vkadaba 50:d84305e5e1c0 1126 break;
Vkadaba 50:d84305e5e1c0 1127 default:
Vkadaba 50:d84305e5e1c0 1128 ADMW_LOG_ERROR("Invalid Post measurement Excitation Current state %d specified",
Vkadaba 50:d84305e5e1c0 1129 vPostExecCurrentState);
Vkadaba 50:d84305e5e1c0 1130 return ADMW_INVALID_PARAM;
Vkadaba 43:e1789b7214cf 1131 }
Vkadaba 50:d84305e5e1c0 1132
Vkadaba 50:d84305e5e1c0 1133 switch(vGroundSwitch) {
Vkadaba 50:d84305e5e1c0 1134 case ADMW1001_ADC_GND_SW_OPEN:
Vkadaba 50:d84305e5e1c0 1135 cycleControlReg.GND_SW_CTRL = CORE_CYCLE_CONTROL_OPEN_SW;
Vkadaba 50:d84305e5e1c0 1136 break;
Vkadaba 50:d84305e5e1c0 1137 case ADMW1001_ADC_GND_SW_CLOSED:
Vkadaba 50:d84305e5e1c0 1138 cycleControlReg.GND_SW_CTRL = CORE_CYCLE_CONTROL_CLOSE_SW;
Vkadaba 50:d84305e5e1c0 1139 break;
Vkadaba 50:d84305e5e1c0 1140 default:
Vkadaba 50:d84305e5e1c0 1141 ADMW_LOG_ERROR("Invalid ground switch state %d specified",
Vkadaba 50:d84305e5e1c0 1142 vGroundSwitch);
Vkadaba 50:d84305e5e1c0 1143 return ADMW_INVALID_PARAM;
Vkadaba 43:e1789b7214cf 1144 }
Vkadaba 50:d84305e5e1c0 1145
ADIJake 0:85855ecd3257 1146 WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1147
Vkadaba 5:0728bde67bdb 1148 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1149 }
Vkadaba 36:54e2418e7620 1150 static ADMW_RESULT admw_SetExternalReferenceVoltage(
Vkadaba 36:54e2418e7620 1151 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1152 float32_t externalRefVoltage)
Vkadaba 36:54e2418e7620 1153 {
Vkadaba 36:54e2418e7620 1154 WRITE_REG_FLOAT(hDevice, externalRefVoltage, CORE_EXTERNAL_VOLTAGE_REFERENCE);
Vkadaba 36:54e2418e7620 1155
Vkadaba 36:54e2418e7620 1156 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1157 }
Vkadaba 50:d84305e5e1c0 1158 static ADMW_RESULT admw_SetFifoNumCycles(
Vkadaba 50:d84305e5e1c0 1159 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 50:d84305e5e1c0 1160 uint8_t fifoNumCycles)
Vkadaba 50:d84305e5e1c0 1161 {
Vkadaba 50:d84305e5e1c0 1162 WRITE_REG_U8(hDevice, fifoNumCycles, CORE_FIFO_NUM_CYCLES);
Vkadaba 50:d84305e5e1c0 1163
Vkadaba 50:d84305e5e1c0 1164 return ADMW_SUCCESS;
Vkadaba 50:d84305e5e1c0 1165 }
ADIJake 0:85855ecd3257 1166
Vkadaba 5:0728bde67bdb 1167 static ADMW_RESULT admw_SetExternalReferenceValues(
Vkadaba 5:0728bde67bdb 1168 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 1169 float32_t externalRef1Value)
ADIJake 0:85855ecd3257 1170 {
Vkadaba 6:9d393a9677f4 1171 WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE_RESISTOR);
ADIJake 0:85855ecd3257 1172
Vkadaba 5:0728bde67bdb 1173 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1174 }
Vkadaba 45:f5f553b8c0d5 1175 static ADMW_RESULT admw_SetAVDDVoltage(
Vkadaba 50:d84305e5e1c0 1176 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 50:d84305e5e1c0 1177 float32_t AVDDVoltage)
Vkadaba 50:d84305e5e1c0 1178 {
Vkadaba 45:f5f553b8c0d5 1179
Vkadaba 50:d84305e5e1c0 1180 WRITE_REG_FLOAT(hDevice, AVDDVoltage, CORE_AVDD_VOLTAGE);
Vkadaba 45:f5f553b8c0d5 1181
Vkadaba 50:d84305e5e1c0 1182 return ADMW_SUCCESS;
Vkadaba 50:d84305e5e1c0 1183 }
ADIJake 0:85855ecd3257 1184
Vkadaba 5:0728bde67bdb 1185 ADMW_RESULT admw1001_SetMeasurementConfig(
Vkadaba 5:0728bde67bdb 1186 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1187 ADMW1001_MEASUREMENT_CONFIG *pMeasConfig)
ADIJake 0:85855ecd3257 1188 {
Vkadaba 5:0728bde67bdb 1189 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1190
Vkadaba 5:0728bde67bdb 1191 eRet = admw_SetMode(hDevice,
Vkadaba 8:2f2775c34640 1192 pMeasConfig->operatingMode,
Vkadaba 8:2f2775c34640 1193 pMeasConfig->dataReadyMode);
Vkadaba 23:bb685f35b08b 1194 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1195 ADMW_LOG_ERROR("Failed to set operating mode");
ADIJake 0:85855ecd3257 1196 return eRet;
ADIJake 0:85855ecd3257 1197 }
ADIJake 0:85855ecd3257 1198
Vkadaba 8:2f2775c34640 1199 eRet = admw_SetCycleControl(hDevice, pMeasConfig->cycleInterval,
Vkadaba 43:e1789b7214cf 1200 pMeasConfig->vBiasEnable,
Vkadaba 43:e1789b7214cf 1201 pMeasConfig->excitationState,
Vkadaba 43:e1789b7214cf 1202 pMeasConfig->groundSwitch );
Vkadaba 23:bb685f35b08b 1203 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1204 ADMW_LOG_ERROR("Failed to set cycle control");
ADIJake 0:85855ecd3257 1205 return eRet;
ADIJake 0:85855ecd3257 1206 }
ADIJake 0:85855ecd3257 1207
Vkadaba 50:d84305e5e1c0 1208 if (pMeasConfig->fifoNumCycles > 0) {
Vkadaba 50:d84305e5e1c0 1209 eRet = admw_SetFifoNumCycles(hDevice,
Vkadaba 50:d84305e5e1c0 1210 pMeasConfig->fifoNumCycles);
Vkadaba 50:d84305e5e1c0 1211 }
Vkadaba 50:d84305e5e1c0 1212
Vkadaba 50:d84305e5e1c0 1213 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1214 ADMW_LOG_ERROR("Failed to set the FIFO number of cycles.");
Vkadaba 50:d84305e5e1c0 1215 return eRet;
Vkadaba 50:d84305e5e1c0 1216 }
Vkadaba 50:d84305e5e1c0 1217
Vkadaba 43:e1789b7214cf 1218 if(pMeasConfig->externalRef1Value > 0) {
Vkadaba 8:2f2775c34640 1219 eRet = admw_SetExternalReferenceValues(hDevice,
Vkadaba 8:2f2775c34640 1220 pMeasConfig->externalRef1Value);
ADIJake 0:85855ecd3257 1221 }
Vkadaba 50:d84305e5e1c0 1222
Vkadaba 50:d84305e5e1c0 1223 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1224 ADMW_LOG_ERROR("Failed to set external reference values");
Vkadaba 50:d84305e5e1c0 1225 return eRet;
Vkadaba 50:d84305e5e1c0 1226 }
Vkadaba 50:d84305e5e1c0 1227
Vkadaba 50:d84305e5e1c0 1228 if((pMeasConfig->AVDDVoltage >= 3.0) && (pMeasConfig->AVDDVoltage <= 3.6)) {
Vkadaba 45:f5f553b8c0d5 1229 eRet = admw_SetAVDDVoltage(hDevice,
Vkadaba 45:f5f553b8c0d5 1230 pMeasConfig->AVDDVoltage);
Vkadaba 45:f5f553b8c0d5 1231 }
Vkadaba 50:d84305e5e1c0 1232
Vkadaba 23:bb685f35b08b 1233 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1234 ADMW_LOG_ERROR("Failed to set AVDD Voltge");
ADIJake 0:85855ecd3257 1235 return eRet;
ADIJake 0:85855ecd3257 1236 }
ADIJake 0:85855ecd3257 1237
Vkadaba 33:df7a00f1b8e1 1238 eRet = admw_SetRSenseValue(hDevice, pMeasConfig->RSenseValue);
Vkadaba 41:df78b7d7b675 1239 if (eRet != ADMW_SUCCESS) {
Vkadaba 33:df7a00f1b8e1 1240 ADMW_LOG_ERROR("Failed to set RSenseValue");
Vkadaba 33:df7a00f1b8e1 1241 return eRet;
Vkadaba 33:df7a00f1b8e1 1242 }
Vkadaba 41:df78b7d7b675 1243
Vkadaba 36:54e2418e7620 1244 eRet = admw_SetExternalReferenceVoltage(hDevice, pMeasConfig->externalRefVoltage);
Vkadaba 41:df78b7d7b675 1245 if (eRet != ADMW_SUCCESS) {
Vkadaba 36:54e2418e7620 1246 ADMW_LOG_ERROR("Failed to set External reference Voltage");
Vkadaba 36:54e2418e7620 1247 return eRet;
Vkadaba 41:df78b7d7b675 1248 }
Vkadaba 41:df78b7d7b675 1249
Vkadaba 5:0728bde67bdb 1250 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1251 }
Vkadaba 36:54e2418e7620 1252 ADMW_RESULT admw1001_SetDiagnosticsConfig(
Vkadaba 36:54e2418e7620 1253 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1254 ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
Vkadaba 36:54e2418e7620 1255 {
Vkadaba 36:54e2418e7620 1256 ADMW_CORE_Diagnostics_Control_t diagnosticsControlReg;
ADIJake 0:85855ecd3257 1257
Vkadaba 36:54e2418e7620 1258 diagnosticsControlReg.VALUE8 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1259
Vkadaba 36:54e2418e7620 1260 if (pDiagnosticsConfig->disableMeasurementDiag)
Vkadaba 36:54e2418e7620 1261 diagnosticsControlReg.Diag_Meas_En = 0;
Vkadaba 36:54e2418e7620 1262 else
Vkadaba 36:54e2418e7620 1263 diagnosticsControlReg.Diag_Meas_En = 1;
Vkadaba 36:54e2418e7620 1264
Vkadaba 44:94bdfaefddac 1265 if(pDiagnosticsConfig->osdFrequency <= 0x7F)
Vkadaba 44:94bdfaefddac 1266 {
Vkadaba 44:94bdfaefddac 1267 diagnosticsControlReg.Diag_OSD_Freq = pDiagnosticsConfig->osdFrequency;
Vkadaba 36:54e2418e7620 1268 }
Vkadaba 44:94bdfaefddac 1269 else
Vkadaba 44:94bdfaefddac 1270 {
Vkadaba 44:94bdfaefddac 1271 ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
Vkadaba 44:94bdfaefddac 1272 pDiagnosticsConfig->osdFrequency);
Vkadaba 44:94bdfaefddac 1273 return ADMW_INVALID_PARAM;
Vkadaba 44:94bdfaefddac 1274 }
Vkadaba 36:54e2418e7620 1275 WRITE_REG_U8(hDevice, diagnosticsControlReg.VALUE8, CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1276
Vkadaba 36:54e2418e7620 1277 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1278 }
ADIJake 0:85855ecd3257 1279
Vkadaba 5:0728bde67bdb 1280 ADMW_RESULT admw1001_SetChannelCount(
Vkadaba 5:0728bde67bdb 1281 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1282 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1283 uint32_t nMeasurementsPerCycle)
ADIJake 0:85855ecd3257 1284 {
Vkadaba 8:2f2775c34640 1285 ADMW_CORE_Channel_Count_t channelCountReg;
ADIJake 0:85855ecd3257 1286
ADIJake 0:85855ecd3257 1287 channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
ADIJake 0:85855ecd3257 1288
Vkadaba 23:bb685f35b08b 1289 if (nMeasurementsPerCycle > 0) {
ADIJake 0:85855ecd3257 1290 nMeasurementsPerCycle -= 1;
ADIJake 0:85855ecd3257 1291
ADIJake 0:85855ecd3257 1292 CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
ADIJake 0:85855ecd3257 1293 nMeasurementsPerCycle);
ADIJake 0:85855ecd3257 1294
ADIJake 0:85855ecd3257 1295 channelCountReg.Channel_Enable = 1;
ADIJake 0:85855ecd3257 1296 channelCountReg.Channel_Count = nMeasurementsPerCycle;
Vkadaba 23:bb685f35b08b 1297 } else {
ADIJake 0:85855ecd3257 1298 channelCountReg.Channel_Enable = 0;
ADIJake 0:85855ecd3257 1299 }
ADIJake 0:85855ecd3257 1300
ADIJake 0:85855ecd3257 1301 WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
ADIJake 0:85855ecd3257 1302
Vkadaba 5:0728bde67bdb 1303 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1304 }
ADIJake 0:85855ecd3257 1305
Vkadaba 5:0728bde67bdb 1306 ADMW_RESULT admw1001_SetChannelOptions(
Vkadaba 5:0728bde67bdb 1307 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1308 ADMW1001_CH_ID eChannelId,
Vkadaba 6:9d393a9677f4 1309 ADMW1001_CHANNEL_PRIORITY ePriority)
ADIJake 0:85855ecd3257 1310 {
Vkadaba 8:2f2775c34640 1311 ADMW_CORE_Channel_Options_t channelOptionsReg;
ADIJake 0:85855ecd3257 1312
ADIJake 0:85855ecd3257 1313 channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn);
ADIJake 0:85855ecd3257 1314
ADIJake 0:85855ecd3257 1315 CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority);
ADIJake 0:85855ecd3257 1316 channelOptionsReg.Channel_Priority = ePriority;
ADIJake 0:85855ecd3257 1317
ADIJake 0:85855ecd3257 1318 WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId));
ADIJake 0:85855ecd3257 1319
Vkadaba 5:0728bde67bdb 1320 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1321 }
ADIJake 0:85855ecd3257 1322
Vkadaba 5:0728bde67bdb 1323 ADMW_RESULT admw1001_SetChannelSkipCount(
Vkadaba 5:0728bde67bdb 1324 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1325 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1326 uint32_t nCycleSkipCount)
ADIJake 0:85855ecd3257 1327 {
Vkadaba 8:2f2775c34640 1328 ADMW_CORE_Channel_Skip_t channelSkipReg;
ADIJake 0:85855ecd3257 1329
ADIJake 0:85855ecd3257 1330 channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn);
ADIJake 0:85855ecd3257 1331
ADIJake 0:85855ecd3257 1332 CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount);
ADIJake 0:85855ecd3257 1333
ADIJake 0:85855ecd3257 1334 channelSkipReg.Channel_Skip = nCycleSkipCount;
ADIJake 0:85855ecd3257 1335
ADIJake 0:85855ecd3257 1336 WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId));
ADIJake 0:85855ecd3257 1337
Vkadaba 5:0728bde67bdb 1338 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1339 }
ADIJake 0:85855ecd3257 1340
Vkadaba 5:0728bde67bdb 1341 static ADMW_RESULT admw_SetChannelAdcSensorType(
Vkadaba 8:2f2775c34640 1342 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1343 ADMW1001_CH_ID eChannelId,
Vkadaba 8:2f2775c34640 1344 ADMW1001_ADC_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1345 {
Vkadaba 8:2f2775c34640 1346 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1347
ADIJake 0:85855ecd3257 1348 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1349
ADIJake 0:85855ecd3257 1350 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1351 switch(sensorType) {
Vkadaba 50:d84305e5e1c0 1352 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1353
Vkadaba 50:d84305e5e1c0 1354 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT50:
Vkadaba 50:d84305e5e1c0 1355 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1356 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1357 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT500:
Vkadaba 50:d84305e5e1c0 1358 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1359 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_0P00375:
Vkadaba 50:d84305e5e1c0 1360 case ADMW1001_ADC_SENSOR_RTD_2WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1361 case ADMW1001_ADC_SENSOR_RTD_2WIRE_CUSTOM:
Vkadaba 50:d84305e5e1c0 1362 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1363
Vkadaba 50:d84305e5e1c0 1364 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT50:
Vkadaba 50:d84305e5e1c0 1365 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1366 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1367 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT500:
Vkadaba 50:d84305e5e1c0 1368 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1369 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_0P00375:
Vkadaba 50:d84305e5e1c0 1370 case ADMW1001_ADC_SENSOR_RTD_4WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1371 case ADMW1001_ADC_SENSOR_RTD_4WIRE_CUSTOM:
Vkadaba 50:d84305e5e1c0 1372 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1373
Vkadaba 50:d84305e5e1c0 1374 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT50:
Vkadaba 8:2f2775c34640 1375 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1376 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1377 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT500:
Vkadaba 8:2f2775c34640 1378 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1379 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_0P00375 :
Vkadaba 50:d84305e5e1c0 1380
Vkadaba 50:d84305e5e1c0 1381 case ADMW1001_ADC_SENSOR_RTD_3WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1382 case ADMW1001_ADC_SENSOR_RTD_3WIRE_CUSTOM:
Vkadaba 8:2f2775c34640 1383 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1:
Vkadaba 8:2f2775c34640 1384 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2:
Vkadaba 8:2f2775c34640 1385 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3:
Vkadaba 8:2f2775c34640 1386 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4:
Vkadaba 8:2f2775c34640 1387 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1:
Vkadaba 8:2f2775c34640 1388 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2:
Vkadaba 8:2f2775c34640 1389 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3:
Vkadaba 8:2f2775c34640 1390 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4:
Vkadaba 50:d84305e5e1c0 1391 case ADMW1001_ADC_SENSOR_DIODE:
Vkadaba 50:d84305e5e1c0 1392 case ADMW1001_ADC_SENSOR_THERMISTOR_44004_44033_2P252K_AT_25C:
Vkadaba 50:d84305e5e1c0 1393 case ADMW1001_ADC_SENSOR_THERMISTOR_44005_44030_3K_AT_25C:
Vkadaba 50:d84305e5e1c0 1394 case ADMW1001_ADC_SENSOR_THERMISTOR_44007_44034_5K_AT_25C:
Vkadaba 50:d84305e5e1c0 1395 case ADMW1001_ADC_SENSOR_THERMISTOR_44006_44031_10K_AT_25C:
Vkadaba 50:d84305e5e1c0 1396 case ADMW1001_ADC_SENSOR_THERMISTOR_44008_44032_30K_AT_25C:
Vkadaba 50:d84305e5e1c0 1397 case ADMW1001_ADC_SENSOR_THERMISTOR_YSI_400:
Vkadaba 50:d84305e5e1c0 1398 case ADMW1001_ADC_SENSOR_THERMISTOR_SPECTRUM_1003K_1K:
Vkadaba 50:d84305e5e1c0 1399 case ADMW1001_ADC_SENSOR_THERMISTOR_CUSTOM_STEINHART_HART:
Vkadaba 50:d84305e5e1c0 1400 case ADMW1001_ADC_SENSOR_THERMISTOR_CUSTOM_TABLE:
Vkadaba 36:54e2418e7620 1401 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_ABSOLUTE:
Vkadaba 36:54e2418e7620 1402 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_ABSOLUTE:
Vkadaba 36:54e2418e7620 1403 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_RATIO:
Vkadaba 36:54e2418e7620 1404 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_RATIO:
Vkadaba 50:d84305e5e1c0 1405
Vkadaba 50:d84305e5e1c0 1406 if (! (ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId) ||
Vkadaba 50:d84305e5e1c0 1407 ADMW1001_CHANNEL_IS_ADC(eChannelId) )) {
Vkadaba 6:9d393a9677f4 1408 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1409 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1410 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1411 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1412 }
Vkadaba 6:9d393a9677f4 1413 break;
Vkadaba 6:9d393a9677f4 1414 case ADMW1001_ADC_SENSOR_VOLTAGE:
Vkadaba 8:2f2775c34640 1415 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A:
Vkadaba 8:2f2775c34640 1416 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B:
Vkadaba 8:2f2775c34640 1417 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1:
Vkadaba 8:2f2775c34640 1418 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2:
Vkadaba 8:2f2775c34640 1419 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J:
Vkadaba 8:2f2775c34640 1420 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K:
Vkadaba 8:2f2775c34640 1421 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T:
Vkadaba 50:d84305e5e1c0 1422 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_E:
Vkadaba 50:d84305e5e1c0 1423 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_N:
Vkadaba 50:d84305e5e1c0 1424 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_R:
Vkadaba 50:d84305e5e1c0 1425 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_S:
Vkadaba 50:d84305e5e1c0 1426 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_B:
Vkadaba 50:d84305e5e1c0 1427 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_CUSTOM:
Vkadaba 23:bb685f35b08b 1428 if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) {
Vkadaba 6:9d393a9677f4 1429 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1430 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1431 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1432 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1433 }
Vkadaba 6:9d393a9677f4 1434 break;
Vkadaba 6:9d393a9677f4 1435 case ADMW1001_ADC_SENSOR_CURRENT:
Vkadaba 8:2f2775c34640 1436 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A:
Vkadaba 8:2f2775c34640 1437 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1:
Vkadaba 8:2f2775c34640 1438 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2:
Vkadaba 23:bb685f35b08b 1439 if (! ADMW1001_CHANNEL_IS_ADC_CURRENT(eChannelId)) {
Vkadaba 6:9d393a9677f4 1440 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1441 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1442 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1443 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1444 }
Vkadaba 6:9d393a9677f4 1445 break;
Vkadaba 6:9d393a9677f4 1446 default:
Vkadaba 6:9d393a9677f4 1447 ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
Vkadaba 23:bb685f35b08b 1448 sensorType);
Vkadaba 5:0728bde67bdb 1449 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1450 }
ADIJake 0:85855ecd3257 1451
ADIJake 0:85855ecd3257 1452 sensorTypeReg.Sensor_Type = sensorType;
ADIJake 0:85855ecd3257 1453
ADIJake 0:85855ecd3257 1454 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1455
Vkadaba 5:0728bde67bdb 1456 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1457 }
ADIJake 0:85855ecd3257 1458
Vkadaba 5:0728bde67bdb 1459 static ADMW_RESULT admw_SetChannelAdcSensorDetails(
Vkadaba 8:2f2775c34640 1460 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1461 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1462 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1463 /*
ADIJake 0:85855ecd3257 1464 * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
ADIJake 0:85855ecd3257 1465 * General details:
ADIJake 0:85855ecd3257 1466 * - Measurement_Units
ADIJake 0:85855ecd3257 1467 * - Compensation_Channel
ADIJake 0:85855ecd3257 1468 * - CJC_Publish (if "CJC" was removed from the name)
ADIJake 0:85855ecd3257 1469 * ADC-specific details:
ADIJake 0:85855ecd3257 1470 * - PGA_Gain
ADIJake 0:85855ecd3257 1471 * - Reference_Select
ADIJake 0:85855ecd3257 1472 * - Reference_Buffer_Disable
ADIJake 0:85855ecd3257 1473 */
ADIJake 0:85855ecd3257 1474 {
Vkadaba 5:0728bde67bdb 1475 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
Vkadaba 8:2f2775c34640 1476 ADMW1001_ADC_REFERENCE_TYPE refType = pAdcChannelConfig->reference;
Vkadaba 8:2f2775c34640 1477 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1478
ADIJake 0:85855ecd3257 1479 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1480
Vkadaba 23:bb685f35b08b 1481 switch(pChannelConfig->measurementUnit) {
Vkadaba 8:2f2775c34640 1482 case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT:
Vkadaba 8:2f2775c34640 1483 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
Vkadaba 8:2f2775c34640 1484 break;
Vkadaba 8:2f2775c34640 1485 case ADMW1001_MEASUREMENT_UNIT_CELSIUS:
Vkadaba 8:2f2775c34640 1486 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
Vkadaba 8:2f2775c34640 1487 break;
Vkadaba 8:2f2775c34640 1488 case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED:
Vkadaba 8:2f2775c34640 1489 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 8:2f2775c34640 1490 break;
Vkadaba 8:2f2775c34640 1491 default:
Vkadaba 8:2f2775c34640 1492 ADMW_LOG_ERROR("Invalid measurement unit %d specified",
Vkadaba 8:2f2775c34640 1493 pChannelConfig->measurementUnit);
Vkadaba 8:2f2775c34640 1494 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1495 }
ADIJake 0:85855ecd3257 1496
Vkadaba 23:bb685f35b08b 1497 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1498 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1499 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1500 } else {
ADIJake 0:85855ecd3257 1501 sensorDetailsReg.Compensation_Disable = 0;
ADIJake 0:85855ecd3257 1502 sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
ADIJake 0:85855ecd3257 1503 }
ADIJake 0:85855ecd3257 1504
Vkadaba 23:bb685f35b08b 1505 switch(refType) {
Vkadaba 8:2f2775c34640 1506 case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL:
Vkadaba 8:2f2775c34640 1507 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VINT;
Vkadaba 8:2f2775c34640 1508 break;
Vkadaba 8:2f2775c34640 1509 case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
Vkadaba 8:2f2775c34640 1510 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1;
Vkadaba 8:2f2775c34640 1511 break;
Vkadaba 8:2f2775c34640 1512 case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD:
Vkadaba 8:2f2775c34640 1513 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD;
Vkadaba 8:2f2775c34640 1514 break;
Vkadaba 8:2f2775c34640 1515 default:
Vkadaba 8:2f2775c34640 1516 ADMW_LOG_ERROR("Invalid ADC reference type %d specified", refType);
Vkadaba 8:2f2775c34640 1517 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1518 }
Vkadaba 23:bb685f35b08b 1519
Vkadaba 23:bb685f35b08b 1520 switch(pAdcChannelConfig->gain) {
Vkadaba 8:2f2775c34640 1521 case ADMW1001_ADC_GAIN_1X:
Vkadaba 8:2f2775c34640 1522 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1;
Vkadaba 8:2f2775c34640 1523 break;
Vkadaba 8:2f2775c34640 1524 case ADMW1001_ADC_GAIN_2X:
Vkadaba 8:2f2775c34640 1525 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2;
Vkadaba 8:2f2775c34640 1526 break;
Vkadaba 8:2f2775c34640 1527 case ADMW1001_ADC_GAIN_4X:
Vkadaba 8:2f2775c34640 1528 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4;
Vkadaba 8:2f2775c34640 1529 break;
Vkadaba 8:2f2775c34640 1530 case ADMW1001_ADC_GAIN_8X:
Vkadaba 8:2f2775c34640 1531 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8;
Vkadaba 8:2f2775c34640 1532 break;
Vkadaba 8:2f2775c34640 1533 case ADMW1001_ADC_GAIN_16X:
Vkadaba 8:2f2775c34640 1534 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16;
Vkadaba 8:2f2775c34640 1535 break;
Vkadaba 8:2f2775c34640 1536 case ADMW1001_ADC_GAIN_32X:
Vkadaba 8:2f2775c34640 1537 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32;
Vkadaba 8:2f2775c34640 1538 break;
Vkadaba 8:2f2775c34640 1539 case ADMW1001_ADC_GAIN_64X:
Vkadaba 8:2f2775c34640 1540 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64;
Vkadaba 8:2f2775c34640 1541 break;
Vkadaba 8:2f2775c34640 1542 case ADMW1001_ADC_GAIN_128X:
Vkadaba 8:2f2775c34640 1543 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_128;
Vkadaba 8:2f2775c34640 1544 break;
Vkadaba 8:2f2775c34640 1545 default:
Vkadaba 8:2f2775c34640 1546 ADMW_LOG_ERROR("Invalid ADC gain %d specified",
Vkadaba 23:bb685f35b08b 1547 pAdcChannelConfig->gain);
Vkadaba 8:2f2775c34640 1548 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1549 }
ADIJake 0:85855ecd3257 1550
Vkadaba 23:bb685f35b08b 1551 switch(pAdcChannelConfig->rtdCurve) {
Vkadaba 8:2f2775c34640 1552 case ADMW1001_ADC_RTD_CURVE_EUROPEAN:
Vkadaba 8:2f2775c34640 1553 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_EUROPEAN_CURVE;
Vkadaba 8:2f2775c34640 1554 break;
Vkadaba 8:2f2775c34640 1555 case ADMW1001_ADC_RTD_CURVE_AMERICAN:
Vkadaba 8:2f2775c34640 1556 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_AMERICAN_CURVE;
Vkadaba 8:2f2775c34640 1557 break;
Vkadaba 8:2f2775c34640 1558 case ADMW1001_ADC_RTD_CURVE_JAPANESE:
Vkadaba 8:2f2775c34640 1559 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_JAPANESE_CURVE;
Vkadaba 8:2f2775c34640 1560 break;
Vkadaba 8:2f2775c34640 1561 case ADMW1001_ADC_RTD_CURVE_ITS90:
Vkadaba 8:2f2775c34640 1562 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_ITS90_CURVE;
Vkadaba 8:2f2775c34640 1563 break;
Vkadaba 8:2f2775c34640 1564 default:
Vkadaba 8:2f2775c34640 1565 ADMW_LOG_ERROR("Invalid RTD Curve %d specified",
Vkadaba 23:bb685f35b08b 1566 pAdcChannelConfig->rtdCurve);
Vkadaba 8:2f2775c34640 1567 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1568 }
Vkadaba 6:9d393a9677f4 1569
Vkadaba 23:bb685f35b08b 1570 if (pChannelConfig->disablePublishing) {
ADIJake 0:85855ecd3257 1571 sensorDetailsReg.Do_Not_Publish = 1;
Vkadaba 23:bb685f35b08b 1572 } else {
ADIJake 0:85855ecd3257 1573 sensorDetailsReg.Do_Not_Publish = 0;
Vkadaba 8:2f2775c34640 1574 }
Vkadaba 23:bb685f35b08b 1575
Vkadaba 23:bb685f35b08b 1576 switch (pChannelConfig->lutSelect) {
Vkadaba 8:2f2775c34640 1577 case ADMW1001_LUT_DEFAULT:
Vkadaba 8:2f2775c34640 1578 case ADMW1001_LUT_CUSTOM:
Vkadaba 8:2f2775c34640 1579 sensorDetailsReg.LUT_Select = pChannelConfig->lutSelect;
Vkadaba 8:2f2775c34640 1580 break;
Vkadaba 8:2f2775c34640 1581 default:
Vkadaba 8:2f2775c34640 1582 ADMW_LOG_ERROR("Invalid LUT selection %d specified",
Vkadaba 23:bb685f35b08b 1583 pChannelConfig->lutSelect);
Vkadaba 23:bb685f35b08b 1584 return ADMW_INVALID_PARAM;
Vkadaba 8:2f2775c34640 1585 }
Vkadaba 23:bb685f35b08b 1586
ADIJake 0:85855ecd3257 1587 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1588
Vkadaba 5:0728bde67bdb 1589 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1590 }
ADIJake 0:85855ecd3257 1591
Vkadaba 33:df7a00f1b8e1 1592 static ADMW_RESULT admw_SetChannelAdcMeasurementSetup(
Vkadaba 5:0728bde67bdb 1593 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1594 ADMW1001_CH_ID eChannelId,
Vkadaba 33:df7a00f1b8e1 1595 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig)
ADIJake 0:85855ecd3257 1596 {
Vkadaba 8:2f2775c34640 1597 ADMW_CORE_Measurement_Setup_t MeasSetupReg;
Vkadaba 33:df7a00f1b8e1 1598 ADMW1001_ADC_FILTER_CONFIG *pFilterConfig = &pAdcChannelConfig->filter;
Vkadaba 6:9d393a9677f4 1599 MeasSetupReg.VALUE32 = REG_RESET_VAL(CORE_MEASUREMENT_SETUPn);
Vkadaba 33:df7a00f1b8e1 1600 MeasSetupReg.Buffer_Bypass = pAdcChannelConfig->bufferBypass;
Vkadaba 41:df78b7d7b675 1601
Vkadaba 23:bb685f35b08b 1602 if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) {
Vkadaba 6:9d393a9677f4 1603 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC4;
Vkadaba 6:9d393a9677f4 1604 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1605 } else if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC3) {
Vkadaba 6:9d393a9677f4 1606 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC3;
Vkadaba 23:bb685f35b08b 1607 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1608 } else {
Vkadaba 5:0728bde67bdb 1609 ADMW_LOG_ERROR("Invalid ADC filter type %d specified",
Vkadaba 23:bb685f35b08b 1610 pFilterConfig->type);
Vkadaba 5:0728bde67bdb 1611 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1612 }
Vkadaba 23:bb685f35b08b 1613
Vkadaba 8:2f2775c34640 1614 /* chop mod ecan be 0 (none), 1 (HW, 2 (SW, 3 (HW+SW). */
Vkadaba 17:2f0028880874 1615 MeasSetupReg.Chop_Mode = pFilterConfig->chopMode;
Vkadaba 23:bb685f35b08b 1616
Vkadaba 6:9d393a9677f4 1617 if(pFilterConfig->notch1p2)
Vkadaba 6:9d393a9677f4 1618 MeasSetupReg.NOTCH_EN_2 = 1;
Vkadaba 6:9d393a9677f4 1619 else
Vkadaba 6:9d393a9677f4 1620 MeasSetupReg.NOTCH_EN_2 = 0;
Vkadaba 23:bb685f35b08b 1621
Vkadaba 6:9d393a9677f4 1622 WRITE_REG_U32(hDevice, MeasSetupReg.VALUE32, CORE_MEASUREMENT_SETUPn(eChannelId));
ADIJake 0:85855ecd3257 1623
Vkadaba 5:0728bde67bdb 1624 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1625 }
ADIJake 0:85855ecd3257 1626
Vkadaba 5:0728bde67bdb 1627 static ADMW_RESULT admw_SetChannelAdcCurrentConfig(
Vkadaba 5:0728bde67bdb 1628 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1629 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1630 ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
ADIJake 0:85855ecd3257 1631 {
Vkadaba 8:2f2775c34640 1632 ADMW_CORE_Channel_Excitation_t channelExcitationReg;
ADIJake 0:85855ecd3257 1633
Vkadaba 6:9d393a9677f4 1634 channelExcitationReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
Vkadaba 6:9d393a9677f4 1635
Vkadaba 18:cbf514cce921 1636 if (pCurrentConfig->outputLevel == ADMW1001_ADC_NO_EXTERNAL_EXC_CURRENT)
Vkadaba 18:cbf514cce921 1637 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_NONE;
Vkadaba 18:cbf514cce921 1638 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_EXTERNAL)
Vkadaba 6:9d393a9677f4 1639 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_EXTERNAL;
Vkadaba 18:cbf514cce921 1640 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA)
Vkadaba 6:9d393a9677f4 1641 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA;
Vkadaba 6:9d393a9677f4 1642 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA)
Vkadaba 6:9d393a9677f4 1643 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA;
Vkadaba 6:9d393a9677f4 1644 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA)
Vkadaba 6:9d393a9677f4 1645 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA;
Vkadaba 6:9d393a9677f4 1646 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA)
Vkadaba 6:9d393a9677f4 1647 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA;
Vkadaba 6:9d393a9677f4 1648 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA)
Vkadaba 6:9d393a9677f4 1649 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA;
Vkadaba 23:bb685f35b08b 1650 else {
Vkadaba 6:9d393a9677f4 1651 ADMW_LOG_ERROR("Invalid ADC excitation current %d specified",
Vkadaba 6:9d393a9677f4 1652 pCurrentConfig->outputLevel);
Vkadaba 6:9d393a9677f4 1653 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1654 }
ADIJake 0:85855ecd3257 1655
Vkadaba 6:9d393a9677f4 1656 WRITE_REG_U16(hDevice, channelExcitationReg.VALUE16, CORE_CHANNEL_EXCITATIONn(eChannelId));
ADIJake 0:85855ecd3257 1657
Vkadaba 5:0728bde67bdb 1658 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1659 }
ADIJake 0:85855ecd3257 1660
Vkadaba 5:0728bde67bdb 1661 ADMW_RESULT admw_SetAdcChannelConfig(
Vkadaba 5:0728bde67bdb 1662 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1663 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1664 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1665 {
Vkadaba 5:0728bde67bdb 1666 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1667 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
ADIJake 0:85855ecd3257 1668 &pChannelConfig->adcChannelConfig;
ADIJake 0:85855ecd3257 1669
Vkadaba 5:0728bde67bdb 1670 eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1671 pAdcChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1672 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1673 ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1674 eChannelId);
ADIJake 0:85855ecd3257 1675 return eRet;
ADIJake 0:85855ecd3257 1676 }
ADIJake 0:85855ecd3257 1677
Vkadaba 5:0728bde67bdb 1678 eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1679 pChannelConfig);
Vkadaba 23:bb685f35b08b 1680 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1681 ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1682 eChannelId);
ADIJake 0:85855ecd3257 1683 return eRet;
ADIJake 0:85855ecd3257 1684 }
ADIJake 0:85855ecd3257 1685
Vkadaba 33:df7a00f1b8e1 1686 eRet = admw_SetChannelAdcMeasurementSetup(hDevice, eChannelId,
Vkadaba 41:df78b7d7b675 1687 pAdcChannelConfig);
Vkadaba 23:bb685f35b08b 1688 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1689 ADMW_LOG_ERROR("Failed to set ADC filter for channel %d",
Vkadaba 23:bb685f35b08b 1690 eChannelId);
ADIJake 0:85855ecd3257 1691 return eRet;
ADIJake 0:85855ecd3257 1692 }
ADIJake 0:85855ecd3257 1693
Vkadaba 5:0728bde67bdb 1694 eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1695 &pAdcChannelConfig->current);
Vkadaba 23:bb685f35b08b 1696 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1697 ADMW_LOG_ERROR("Failed to set ADC current for channel %d",
Vkadaba 23:bb685f35b08b 1698 eChannelId);
ADIJake 0:85855ecd3257 1699 return eRet;
ADIJake 0:85855ecd3257 1700 }
ADIJake 0:85855ecd3257 1701
Vkadaba 5:0728bde67bdb 1702 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1703 }
ADIJake 0:85855ecd3257 1704
Vkadaba 5:0728bde67bdb 1705 static ADMW_RESULT admw_SetChannelDigitalSensorDetails(
Vkadaba 5:0728bde67bdb 1706 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1707 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1708 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1709 {
Vkadaba 8:2f2775c34640 1710 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1711
ADIJake 0:85855ecd3257 1712 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1713
Vkadaba 23:bb685f35b08b 1714 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1715 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1716 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1717 } else {
Vkadaba 5:0728bde67bdb 1718 ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor");
Vkadaba 5:0728bde67bdb 1719 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1720 }
ADIJake 0:85855ecd3257 1721
Vkadaba 23:bb685f35b08b 1722 if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) {
Vkadaba 5:0728bde67bdb 1723 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 23:bb685f35b08b 1724 } else {
Vkadaba 5:0728bde67bdb 1725 ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel");
Vkadaba 5:0728bde67bdb 1726 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1727 }
ADIJake 0:85855ecd3257 1728
ADIJake 0:85855ecd3257 1729 if (pChannelConfig->disablePublishing)
ADIJake 0:85855ecd3257 1730 sensorDetailsReg.Do_Not_Publish = 1;
ADIJake 0:85855ecd3257 1731 else
ADIJake 0:85855ecd3257 1732 sensorDetailsReg.Do_Not_Publish = 0;
ADIJake 0:85855ecd3257 1733
ADIJake 0:85855ecd3257 1734 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1735
Vkadaba 5:0728bde67bdb 1736 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1737 }
ADIJake 0:85855ecd3257 1738
Vkadaba 5:0728bde67bdb 1739 static ADMW_RESULT admw_SetDigitalSensorFormat(
Vkadaba 5:0728bde67bdb 1740 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1741 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1742 ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat)
ADIJake 0:85855ecd3257 1743 {
Vkadaba 8:2f2775c34640 1744 ADMW_CORE_Digital_Sensor_Config_t sensorConfigReg;
ADIJake 0:85855ecd3257 1745
ADIJake 0:85855ecd3257 1746 sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn);
ADIJake 0:85855ecd3257 1747
Vkadaba 23:bb685f35b08b 1748 if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) {
Vkadaba 23:bb685f35b08b 1749 if (pDataFormat->frameLength == 0) {
Vkadaba 5:0728bde67bdb 1750 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1751 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1752 }
Vkadaba 23:bb685f35b08b 1753 if (pDataFormat->numDataBits == 0) {
Vkadaba 5:0728bde67bdb 1754 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1755 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1756 }
ADIJake 0:85855ecd3257 1757
ADIJake 0:85855ecd3257 1758 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES,
ADIJake 0:85855ecd3257 1759 pDataFormat->frameLength - 1);
ADIJake 0:85855ecd3257 1760 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS,
ADIJake 0:85855ecd3257 1761 pDataFormat->numDataBits - 1);
ADIJake 0:85855ecd3257 1762 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET,
ADIJake 0:85855ecd3257 1763 pDataFormat->bitOffset);
ADIJake 0:85855ecd3257 1764
ADIJake 0:85855ecd3257 1765 sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1;
ADIJake 0:85855ecd3257 1766 sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1;
ADIJake 0:85855ecd3257 1767 sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset;
ADIJake 0:85855ecd3257 1768 sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0;
ADIJake 0:85855ecd3257 1769 sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0;
ADIJake 0:85855ecd3257 1770
Vkadaba 23:bb685f35b08b 1771 switch (pDataFormat->coding) {
Vkadaba 23:bb685f35b08b 1772 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR:
Vkadaba 23:bb685f35b08b 1773 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR;
Vkadaba 23:bb685f35b08b 1774 break;
Vkadaba 23:bb685f35b08b 1775 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT:
Vkadaba 23:bb685f35b08b 1776 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL;
Vkadaba 23:bb685f35b08b 1777 break;
Vkadaba 23:bb685f35b08b 1778 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY:
Vkadaba 23:bb685f35b08b 1779 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY;
Vkadaba 23:bb685f35b08b 1780 break;
Vkadaba 23:bb685f35b08b 1781 default:
Vkadaba 23:bb685f35b08b 1782 ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format");
Vkadaba 23:bb685f35b08b 1783 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1784 }
Vkadaba 23:bb685f35b08b 1785 } else {
Vkadaba 5:0728bde67bdb 1786 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE;
ADIJake 0:85855ecd3257 1787 }
ADIJake 0:85855ecd3257 1788
ADIJake 0:85855ecd3257 1789 WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16,
ADIJake 0:85855ecd3257 1790 CORE_DIGITAL_SENSOR_CONFIGn(eChannelId));
ADIJake 0:85855ecd3257 1791
ADIJake 0:85855ecd3257 1792
Vkadaba 5:0728bde67bdb 1793 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1794 }
ADIJake 0:85855ecd3257 1795
Vkadaba 5:0728bde67bdb 1796 static ADMW_RESULT admw_SetDigitalCalibrationParam(
Vkadaba 23:bb685f35b08b 1797 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 23:bb685f35b08b 1798 ADMW1001_CH_ID eChannelId,
Vkadaba 23:bb685f35b08b 1799 ADMW1001_DIGITAL_CALIBRATION_COMMAND *pCalibrationParam)
ADIJake 0:85855ecd3257 1800 {
Vkadaba 32:52445bef314d 1801 // ADMW_CORE_Calibration_Parameter_t calibrationParamReg;
Vkadaba 32:52445bef314d 1802 //
Vkadaba 32:52445bef314d 1803 // calibrationParamReg.VALUE32 = REG_RESET_VAL(CORE_CALIBRATION_PARAMETERn);
Vkadaba 32:52445bef314d 1804 //
Vkadaba 32:52445bef314d 1805 // if (pCalibrationParam->enableCalibrationParam == false)
Vkadaba 32:52445bef314d 1806 // calibrationParamReg.Calibration_Parameter_Enable = 0;
Vkadaba 32:52445bef314d 1807 // else
Vkadaba 32:52445bef314d 1808 // calibrationParamReg.Calibration_Parameter_Enable = 1;
Vkadaba 32:52445bef314d 1809 //
Vkadaba 32:52445bef314d 1810 // CHECK_REG_FIELD_VAL(CORE_CALIBRATION_PARAMETER_CALIBRATION_PARAMETER,
Vkadaba 32:52445bef314d 1811 // pCalibrationParam->calibrationParam);
Vkadaba 32:52445bef314d 1812 //
Vkadaba 32:52445bef314d 1813 // calibrationParamReg.Calibration_Parameter = pCalibrationParam->calibrationParam;
Vkadaba 32:52445bef314d 1814 //
Vkadaba 32:52445bef314d 1815 // WRITE_REG_U32(hDevice, calibrationParamReg.VALUE32,
Vkadaba 32:52445bef314d 1816 // CORE_CALIBRATION_PARAMETERn(eChannelId));
Vkadaba 32:52445bef314d 1817 //
Vkadaba 5:0728bde67bdb 1818 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1819 }
ADIJake 0:85855ecd3257 1820
Vkadaba 5:0728bde67bdb 1821 static ADMW_RESULT admw_SetChannelI2cSensorType(
Vkadaba 5:0728bde67bdb 1822 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1823 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1824 ADMW1001_I2C_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1825 {
Vkadaba 8:2f2775c34640 1826 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1827
ADIJake 0:85855ecd3257 1828 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1829
ADIJake 0:85855ecd3257 1830 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1831 switch(sensorType) {
Vkadaba 8:2f2775c34640 1832 case ADMW1001_I2C_SENSOR_HUMIDITY_A:
Vkadaba 8:2f2775c34640 1833 case ADMW1001_I2C_SENSOR_HUMIDITY_B:
Vkadaba 50:d84305e5e1c0 1834 case ADMW1001_I2C_SENSOR_TEMPERATURE_ADT742X:
Vkadaba 8:2f2775c34640 1835 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 8:2f2775c34640 1836 break;
Vkadaba 8:2f2775c34640 1837 default:
Vkadaba 8:2f2775c34640 1838 ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
Vkadaba 8:2f2775c34640 1839 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1840 }
ADIJake 0:85855ecd3257 1841
ADIJake 0:85855ecd3257 1842 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1843
Vkadaba 5:0728bde67bdb 1844 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1845 }
ADIJake 0:85855ecd3257 1846
Vkadaba 5:0728bde67bdb 1847 static ADMW_RESULT admw_SetChannelI2cSensorAddress(
Vkadaba 5:0728bde67bdb 1848 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1849 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1850 uint32_t deviceAddress)
ADIJake 0:85855ecd3257 1851 {
ADIJake 0:85855ecd3257 1852 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
ADIJake 0:85855ecd3257 1853 WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
ADIJake 0:85855ecd3257 1854
Vkadaba 5:0728bde67bdb 1855 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1856 }
ADIJake 0:85855ecd3257 1857
Vkadaba 5:0728bde67bdb 1858 static ADMW_RESULT admw_SetDigitalChannelComms(
Vkadaba 5:0728bde67bdb 1859 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1860 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1861 ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms)
ADIJake 0:85855ecd3257 1862 {
Vkadaba 8:2f2775c34640 1863 ADMW_CORE_Digital_Sensor_Comms_t digitalSensorComms;
ADIJake 0:85855ecd3257 1864
ADIJake 0:85855ecd3257 1865 digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn);
ADIJake 0:85855ecd3257 1866
Vkadaba 23:bb685f35b08b 1867 if(pDigitalComms->useCustomCommsConfig) {
ADIJake 0:85855ecd3257 1868
Vkadaba 23:bb685f35b08b 1869 if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) {
Vkadaba 5:0728bde67bdb 1870 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K;
Vkadaba 23:bb685f35b08b 1871 } else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) {
Vkadaba 5:0728bde67bdb 1872 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K;
Vkadaba 23:bb685f35b08b 1873 } else {
Vkadaba 5:0728bde67bdb 1874 ADMW_LOG_ERROR("Invalid I2C clock speed %d specified",
Vkadaba 23:bb685f35b08b 1875 pDigitalComms->i2cClockSpeed);
Vkadaba 5:0728bde67bdb 1876 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1877 }
ADIJake 0:85855ecd3257 1878
Vkadaba 23:bb685f35b08b 1879 if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_0) {
Vkadaba 5:0728bde67bdb 1880 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_0;
Vkadaba 23:bb685f35b08b 1881 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_1) {
Vkadaba 5:0728bde67bdb 1882 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_1;
Vkadaba 23:bb685f35b08b 1883 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_2) {
Vkadaba 5:0728bde67bdb 1884 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_2;
Vkadaba 23:bb685f35b08b 1885 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_3) {
Vkadaba 5:0728bde67bdb 1886 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_3;
Vkadaba 23:bb685f35b08b 1887 } else {
Vkadaba 5:0728bde67bdb 1888 ADMW_LOG_ERROR("Invalid SPI mode %d specified",
Vkadaba 23:bb685f35b08b 1889 pDigitalComms->spiMode);
Vkadaba 5:0728bde67bdb 1890 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1891 }
ADIJake 0:85855ecd3257 1892
Vkadaba 23:bb685f35b08b 1893 switch (pDigitalComms->spiClock) {
Vkadaba 23:bb685f35b08b 1894 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_8MHZ:
Vkadaba 23:bb685f35b08b 1895 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_8MHZ;
Vkadaba 23:bb685f35b08b 1896 break;
Vkadaba 23:bb685f35b08b 1897 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_4MHZ:
Vkadaba 23:bb685f35b08b 1898 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_4MHZ;
Vkadaba 23:bb685f35b08b 1899 break;
Vkadaba 23:bb685f35b08b 1900 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_2MHZ:
Vkadaba 23:bb685f35b08b 1901 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_2MHZ;
Vkadaba 23:bb685f35b08b 1902 break;
Vkadaba 23:bb685f35b08b 1903 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1MHZ:
Vkadaba 23:bb685f35b08b 1904 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1MHZ;
Vkadaba 23:bb685f35b08b 1905 break;
Vkadaba 23:bb685f35b08b 1906 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_500KHZ:
Vkadaba 23:bb685f35b08b 1907 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_500KHZ;
Vkadaba 23:bb685f35b08b 1908 break;
Vkadaba 23:bb685f35b08b 1909 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_250KHZ:
Vkadaba 23:bb685f35b08b 1910 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_250KHZ;
Vkadaba 23:bb685f35b08b 1911 break;
Vkadaba 23:bb685f35b08b 1912 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_125KHZ:
Vkadaba 23:bb685f35b08b 1913 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_125KHZ;
Vkadaba 23:bb685f35b08b 1914 break;
Vkadaba 23:bb685f35b08b 1915 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_62P5KHZ:
Vkadaba 23:bb685f35b08b 1916 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_62P5KHZ;
Vkadaba 23:bb685f35b08b 1917 break;
Vkadaba 23:bb685f35b08b 1918 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_31P3KHZ:
Vkadaba 23:bb685f35b08b 1919 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_31P3KHZ;
Vkadaba 23:bb685f35b08b 1920 break;
Vkadaba 23:bb685f35b08b 1921 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_15P6KHZ:
Vkadaba 23:bb685f35b08b 1922 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_15P6KHZ;
Vkadaba 23:bb685f35b08b 1923 break;
Vkadaba 23:bb685f35b08b 1924 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_7P8KHZ:
Vkadaba 23:bb685f35b08b 1925 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_7P8KHZ;
Vkadaba 23:bb685f35b08b 1926 break;
Vkadaba 23:bb685f35b08b 1927 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3P9KHZ:
Vkadaba 23:bb685f35b08b 1928 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3P9KHZ;
Vkadaba 23:bb685f35b08b 1929 break;
Vkadaba 23:bb685f35b08b 1930 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1P9KHZ:
Vkadaba 23:bb685f35b08b 1931 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1P9KHZ;
Vkadaba 23:bb685f35b08b 1932 break;
Vkadaba 23:bb685f35b08b 1933 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_977HZ:
Vkadaba 23:bb685f35b08b 1934 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_977HZ;
Vkadaba 23:bb685f35b08b 1935 break;
Vkadaba 23:bb685f35b08b 1936 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_488HZ:
Vkadaba 23:bb685f35b08b 1937 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_488HZ;
Vkadaba 23:bb685f35b08b 1938 break;
Vkadaba 23:bb685f35b08b 1939 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_244HZ:
Vkadaba 23:bb685f35b08b 1940 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_244HZ;
Vkadaba 23:bb685f35b08b 1941 break;
Vkadaba 23:bb685f35b08b 1942 default:
Vkadaba 23:bb685f35b08b 1943 ADMW_LOG_ERROR("Invalid SPI clock %d specified",
Vkadaba 23:bb685f35b08b 1944 pDigitalComms->spiClock);
Vkadaba 23:bb685f35b08b 1945 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1946 }
ADIJake 0:85855ecd3257 1947 }
ADIJake 0:85855ecd3257 1948
Vkadaba 50:d84305e5e1c0 1949
ADIJake 0:85855ecd3257 1950 WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId));
ADIJake 0:85855ecd3257 1951
Vkadaba 5:0728bde67bdb 1952 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1953 }
ADIJake 0:85855ecd3257 1954
Vkadaba 5:0728bde67bdb 1955 ADMW_RESULT admw_SetI2cChannelConfig(
Vkadaba 5:0728bde67bdb 1956 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1957 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1958 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1959 {
Vkadaba 5:0728bde67bdb 1960 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1961 ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig =
ADIJake 0:85855ecd3257 1962 &pChannelConfig->i2cChannelConfig;
ADIJake 0:85855ecd3257 1963
Vkadaba 5:0728bde67bdb 1964 eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1965 pI2cChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1966 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1967 ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1968 eChannelId);
ADIJake 0:85855ecd3257 1969 return eRet;
ADIJake 0:85855ecd3257 1970 }
ADIJake 0:85855ecd3257 1971
Vkadaba 5:0728bde67bdb 1972 eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1973 pI2cChannelConfig->deviceAddress);
Vkadaba 23:bb685f35b08b 1974 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1975 ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d",
Vkadaba 23:bb685f35b08b 1976 eChannelId);
ADIJake 0:85855ecd3257 1977 return eRet;
ADIJake 0:85855ecd3257 1978 }
ADIJake 0:85855ecd3257 1979
Vkadaba 5:0728bde67bdb 1980 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1981 pChannelConfig);
Vkadaba 23:bb685f35b08b 1982 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1983 ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1984 eChannelId);
ADIJake 0:85855ecd3257 1985 return eRet;
ADIJake 0:85855ecd3257 1986 }
ADIJake 0:85855ecd3257 1987
Vkadaba 5:0728bde67bdb 1988 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1989 &pI2cChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 1990 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1991 ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 1992 eChannelId);
ADIJake 0:85855ecd3257 1993 return eRet;
ADIJake 0:85855ecd3257 1994 }
ADIJake 0:85855ecd3257 1995
Vkadaba 5:0728bde67bdb 1996 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1997 &pI2cChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 1998 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1999 ADMW_LOG_ERROR("Failed to set I2C digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 2000 eChannelId);
ADIJake 0:85855ecd3257 2001 return eRet;
ADIJake 0:85855ecd3257 2002 }
ADIJake 0:85855ecd3257 2003
Vkadaba 5:0728bde67bdb 2004 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2005 &pI2cChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 2006 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2007 ADMW_LOG_ERROR("Failed to set I2C comms for channel %d",
Vkadaba 23:bb685f35b08b 2008 eChannelId);
ADIJake 0:85855ecd3257 2009 return eRet;
ADIJake 0:85855ecd3257 2010 }
ADIJake 0:85855ecd3257 2011
Vkadaba 5:0728bde67bdb 2012 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2013 }
ADIJake 0:85855ecd3257 2014
Vkadaba 5:0728bde67bdb 2015 static ADMW_RESULT admw_SetChannelSpiSensorType(
Vkadaba 5:0728bde67bdb 2016 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2017 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2018 ADMW1001_SPI_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 2019 {
Vkadaba 8:2f2775c34640 2020 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 2021
ADIJake 0:85855ecd3257 2022 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 2023
ADIJake 0:85855ecd3257 2024 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 2025 switch(sensorType) {
Vkadaba 23:bb685f35b08b 2026 case ADMW1001_SPI_SENSOR_PRESSURE_A:
Vkadaba 23:bb685f35b08b 2027 case ADMW1001_SPI_SENSOR_ACCELEROMETER_A:
Vkadaba 23:bb685f35b08b 2028 case ADMW1001_SPI_SENSOR_ACCELEROMETER_B:
Vkadaba 23:bb685f35b08b 2029
Vkadaba 23:bb685f35b08b 2030 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 23:bb685f35b08b 2031 break;
Vkadaba 23:bb685f35b08b 2032 default:
Vkadaba 23:bb685f35b08b 2033 ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
Vkadaba 23:bb685f35b08b 2034 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2035 }
ADIJake 0:85855ecd3257 2036
ADIJake 0:85855ecd3257 2037 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 2038
Vkadaba 5:0728bde67bdb 2039 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2040 }
ADIJake 0:85855ecd3257 2041
Vkadaba 5:0728bde67bdb 2042 ADMW_RESULT admw_SetSpiChannelConfig(
Vkadaba 5:0728bde67bdb 2043 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2044 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2045 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 2046 {
Vkadaba 5:0728bde67bdb 2047 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2048 ADMW1001_SPI_CHANNEL_CONFIG *pSpiChannelConfig =
ADIJake 0:85855ecd3257 2049 &pChannelConfig->spiChannelConfig;
ADIJake 0:85855ecd3257 2050
Vkadaba 5:0728bde67bdb 2051 eRet = admw_SetChannelSpiSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2052 pSpiChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 2053 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2054 ADMW_LOG_ERROR("Failed to set SPI sensor type for channel %d",
Vkadaba 23:bb685f35b08b 2055 eChannelId);
ADIJake 0:85855ecd3257 2056 return eRet;
ADIJake 0:85855ecd3257 2057 }
ADIJake 0:85855ecd3257 2058
Vkadaba 5:0728bde67bdb 2059 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2060 pChannelConfig);
Vkadaba 23:bb685f35b08b 2061 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2062 ADMW_LOG_ERROR("Failed to set SPI sensor details for channel %d",
Vkadaba 23:bb685f35b08b 2063 eChannelId);
ADIJake 0:85855ecd3257 2064 return eRet;
ADIJake 0:85855ecd3257 2065 }
ADIJake 0:85855ecd3257 2066
Vkadaba 5:0728bde67bdb 2067 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2068 &pSpiChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 2069 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2070 ADMW_LOG_ERROR("Failed to set SPI sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 2071 eChannelId);
ADIJake 0:85855ecd3257 2072 return eRet;
ADIJake 0:85855ecd3257 2073 }
ADIJake 0:85855ecd3257 2074
Vkadaba 5:0728bde67bdb 2075 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2076 &pSpiChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 2077 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2078 ADMW_LOG_ERROR("Failed to set SPI digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 2079 eChannelId);
ADIJake 0:85855ecd3257 2080 return eRet;
ADIJake 0:85855ecd3257 2081 }
ADIJake 0:85855ecd3257 2082
Vkadaba 5:0728bde67bdb 2083 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2084 &pSpiChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 2085 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2086 ADMW_LOG_ERROR("Failed to set SPI comms for channel %d",
Vkadaba 23:bb685f35b08b 2087 eChannelId);
ADIJake 0:85855ecd3257 2088 return eRet;
ADIJake 0:85855ecd3257 2089 }
ADIJake 0:85855ecd3257 2090
Vkadaba 5:0728bde67bdb 2091 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2092 }
ADIJake 0:85855ecd3257 2093
Vkadaba 5:0728bde67bdb 2094 ADMW_RESULT admw1001_SetChannelThresholdLimits(
Vkadaba 5:0728bde67bdb 2095 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2096 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2097 float32_t fHighThresholdLimit,
ADIJake 0:85855ecd3257 2098 float32_t fLowThresholdLimit)
ADIJake 0:85855ecd3257 2099 {
ADIJake 0:85855ecd3257 2100 /*
ADIJake 0:85855ecd3257 2101 * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
ADIJake 0:85855ecd3257 2102 * that they are unset, or not required, and use infinity defaults instead
ADIJake 0:85855ecd3257 2103 */
Vkadaba 23:bb685f35b08b 2104 if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) {
ADIJake 0:85855ecd3257 2105 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 2106 fLowThresholdLimit = -INFINITY;
Vkadaba 23:bb685f35b08b 2107 } else {
ADIJake 0:85855ecd3257 2108 if (isnan(fHighThresholdLimit))
ADIJake 0:85855ecd3257 2109 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 2110 if (isnan(fLowThresholdLimit))
ADIJake 0:85855ecd3257 2111 fLowThresholdLimit = -INFINITY;
ADIJake 0:85855ecd3257 2112 }
ADIJake 0:85855ecd3257 2113
ADIJake 0:85855ecd3257 2114 WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
ADIJake 0:85855ecd3257 2115 CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 2116 WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
ADIJake 0:85855ecd3257 2117 CORE_LOW_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 2118
Vkadaba 5:0728bde67bdb 2119 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2120 }
ADIJake 0:85855ecd3257 2121
Vkadaba 5:0728bde67bdb 2122 ADMW_RESULT admw1001_SetOffsetGain(
Vkadaba 5:0728bde67bdb 2123 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2124 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2125 float32_t fOffsetAdjustment,
ADIJake 0:85855ecd3257 2126 float32_t fGainAdjustment)
ADIJake 0:85855ecd3257 2127 {
ADIJake 0:85855ecd3257 2128 /* Replace with default values if NaNs are specified (or 0.0 for gain) */
ADIJake 0:85855ecd3257 2129 if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f))
ADIJake 0:85855ecd3257 2130 fGainAdjustment = 1.0f;
ADIJake 0:85855ecd3257 2131 if (isnan(fOffsetAdjustment))
ADIJake 0:85855ecd3257 2132 fOffsetAdjustment = 0.0f;
ADIJake 0:85855ecd3257 2133
ADIJake 0:85855ecd3257 2134 WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
ADIJake 0:85855ecd3257 2135 WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
ADIJake 0:85855ecd3257 2136
Vkadaba 5:0728bde67bdb 2137 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2138 }
ADIJake 0:85855ecd3257 2139
Vkadaba 5:0728bde67bdb 2140 ADMW_RESULT admw1001_SetSensorParameter(
Vkadaba 5:0728bde67bdb 2141 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2142 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2143 float32_t fSensorParam)
ADIJake 0:85855ecd3257 2144 {
ADIJake 0:85855ecd3257 2145 if (fSensorParam == 0.0f)
ADIJake 0:85855ecd3257 2146 fSensorParam = NAN;
ADIJake 0:85855ecd3257 2147
Vkadaba 32:52445bef314d 2148 //WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId));
ADIJake 0:85855ecd3257 2149
Vkadaba 5:0728bde67bdb 2150 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2151 }
ADIJake 0:85855ecd3257 2152
Vkadaba 5:0728bde67bdb 2153 ADMW_RESULT admw1001_SetChannelSettlingTime(
Vkadaba 5:0728bde67bdb 2154 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2155 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2156 uint32_t nSettlingTime)
ADIJake 0:85855ecd3257 2157 {
Vkadaba 8:2f2775c34640 2158 ADMW_CORE_Settling_Time_t settlingTimeReg;
ADIJake 0:85855ecd3257 2159
ADIJake 0:85855ecd3257 2160 CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
ADIJake 0:85855ecd3257 2161 settlingTimeReg.Settling_Time = nSettlingTime;
ADIJake 0:85855ecd3257 2162
ADIJake 0:85855ecd3257 2163 WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId));
ADIJake 0:85855ecd3257 2164
Vkadaba 5:0728bde67bdb 2165 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2166 }
ADIJake 0:85855ecd3257 2167
Vkadaba 5:0728bde67bdb 2168 ADMW_RESULT admw1001_SetChannelConfig(
Vkadaba 5:0728bde67bdb 2169 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2170 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2171 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 2172 {
Vkadaba 5:0728bde67bdb 2173 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2174
Vkadaba 23:bb685f35b08b 2175 if (! ADMW1001_CHANNEL_IS_VIRTUAL(eChannelId)) {
Vkadaba 5:0728bde67bdb 2176 eRet = admw1001_SetChannelCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2177 pChannelConfig->enableChannel ?
Vkadaba 23:bb685f35b08b 2178 pChannelConfig->measurementsPerCycle : 0);
Vkadaba 23:bb685f35b08b 2179 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2180 ADMW_LOG_ERROR("Failed to set measurement count for channel %d",
Vkadaba 23:bb685f35b08b 2181 eChannelId);
ADIJake 0:85855ecd3257 2182 return eRet;
ADIJake 0:85855ecd3257 2183 }
ADIJake 0:85855ecd3257 2184
Vkadaba 5:0728bde67bdb 2185 eRet = admw1001_SetChannelOptions(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2186 pChannelConfig->priority);
Vkadaba 23:bb685f35b08b 2187 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2188 ADMW_LOG_ERROR("Failed to set priority for channel %d",
Vkadaba 23:bb685f35b08b 2189 eChannelId);
ADIJake 0:85855ecd3257 2190 return eRet;
ADIJake 0:85855ecd3257 2191 }
ADIJake 0:85855ecd3257 2192
ADIJake 0:85855ecd3257 2193 /* If the channel is not enabled, we can skip the following steps */
Vkadaba 23:bb685f35b08b 2194 if (pChannelConfig->enableChannel) {
Vkadaba 5:0728bde67bdb 2195 eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2196 pChannelConfig->cycleSkipCount);
Vkadaba 23:bb685f35b08b 2197 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2198 ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d",
Vkadaba 23:bb685f35b08b 2199 eChannelId);
ADIJake 0:85855ecd3257 2200 return eRet;
ADIJake 0:85855ecd3257 2201 }
ADIJake 0:85855ecd3257 2202
Vkadaba 23:bb685f35b08b 2203 switch (eChannelId) {
Vkadaba 23:bb685f35b08b 2204 case ADMW1001_CH_ID_ANLG_1_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2205 case ADMW1001_CH_ID_ANLG_2_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2206 case ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2207 case ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2208 eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2209 break;
Vkadaba 23:bb685f35b08b 2210 case ADMW1001_CH_ID_DIG_I2C_0:
Vkadaba 23:bb685f35b08b 2211 case ADMW1001_CH_ID_DIG_I2C_1:
Vkadaba 23:bb685f35b08b 2212 eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2213 break;
Vkadaba 23:bb685f35b08b 2214 case ADMW1001_CH_ID_DIG_SPI_0:
Vkadaba 23:bb685f35b08b 2215 eRet = admw_SetSpiChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2216 break;
Vkadaba 23:bb685f35b08b 2217 default:
Vkadaba 23:bb685f35b08b 2218 ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
Vkadaba 32:52445bef314d 2219 eRet = ADMW_INVALID_PARAM;
Vkadaba 32:52445bef314d 2220 #if 0
Vkadaba 32:52445bef314d 2221 /* when using i2c sensors there is an error ( dataformat->length=0)
Vkadaba 32:52445bef314d 2222 the code below catches this error and this causes further problems.*/
Vkadaba 32:52445bef314d 2223 break;
Vkadaba 32:52445bef314d 2224 }
Vkadaba 32:52445bef314d 2225 if (eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 2226 ADMW_LOG_ERROR("Failed to set config for channel %d",
Vkadaba 32:52445bef314d 2227 eChannelId);
Vkadaba 32:52445bef314d 2228 return eRet;
Vkadaba 32:52445bef314d 2229 #endif
ADIJake 0:85855ecd3257 2230 }
ADIJake 0:85855ecd3257 2231
Vkadaba 5:0728bde67bdb 2232 eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2233 pChannelConfig->extraSettlingTime);
Vkadaba 23:bb685f35b08b 2234 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2235 ADMW_LOG_ERROR("Failed to set settling time for channel %d",
Vkadaba 23:bb685f35b08b 2236 eChannelId);
ADIJake 0:85855ecd3257 2237 return eRet;
ADIJake 0:85855ecd3257 2238 }
ADIJake 0:85855ecd3257 2239 }
ADIJake 0:85855ecd3257 2240 }
ADIJake 0:85855ecd3257 2241
Vkadaba 23:bb685f35b08b 2242 if (pChannelConfig->enableChannel) {
ADIJake 0:85855ecd3257 2243 /* Threshold limits can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2244 eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2245 pChannelConfig->highThreshold,
Vkadaba 23:bb685f35b08b 2246 pChannelConfig->lowThreshold);
Vkadaba 23:bb685f35b08b 2247 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2248 ADMW_LOG_ERROR("Failed to set threshold limits for channel %d",
Vkadaba 23:bb685f35b08b 2249 eChannelId);
ADIJake 0:85855ecd3257 2250 return eRet;
ADIJake 0:85855ecd3257 2251 }
ADIJake 0:85855ecd3257 2252
ADIJake 0:85855ecd3257 2253 /* Offset and gain can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2254 eRet = admw1001_SetOffsetGain(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2255 pChannelConfig->offsetAdjustment,
Vkadaba 23:bb685f35b08b 2256 pChannelConfig->gainAdjustment);
Vkadaba 23:bb685f35b08b 2257 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2258 ADMW_LOG_ERROR("Failed to set offset/gain for channel %d",
Vkadaba 23:bb685f35b08b 2259 eChannelId);
ADIJake 0:85855ecd3257 2260 return eRet;
ADIJake 0:85855ecd3257 2261 }
ADIJake 0:85855ecd3257 2262
ADIJake 0:85855ecd3257 2263 /* Set sensor specific parameter */
Vkadaba 5:0728bde67bdb 2264 eRet = admw1001_SetSensorParameter(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2265 pChannelConfig->sensorParameter);
Vkadaba 23:bb685f35b08b 2266 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2267 ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d",
Vkadaba 23:bb685f35b08b 2268 eChannelId);
ADIJake 0:85855ecd3257 2269 return eRet;
ADIJake 0:85855ecd3257 2270 }
ADIJake 0:85855ecd3257 2271 }
ADIJake 0:85855ecd3257 2272
Vkadaba 5:0728bde67bdb 2273 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2274 }
ADIJake 0:85855ecd3257 2275
Vkadaba 5:0728bde67bdb 2276 ADMW_RESULT admw_SetConfig(
Vkadaba 5:0728bde67bdb 2277 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2278 ADMW_CONFIG * const pConfig)
ADIJake 0:85855ecd3257 2279 {
Vkadaba 5:0728bde67bdb 2280 ADMW1001_CONFIG *pDeviceConfig;
Vkadaba 5:0728bde67bdb 2281 ADMW_PRODUCT_ID productId;
Vkadaba 5:0728bde67bdb 2282 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2283
Vkadaba 23:bb685f35b08b 2284 if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) {
Vkadaba 5:0728bde67bdb 2285 ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
Vkadaba 23:bb685f35b08b 2286 pConfig->productId, ADMW_PRODUCT_ID_ADMW1001);
Vkadaba 5:0728bde67bdb 2287 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2288 }
Vkadaba 23:bb685f35b08b 2289
Vkadaba 23:bb685f35b08b 2290 if (!((pConfig->versionId.major==VERSIONID_MAJOR) &&
Vkadaba 23:bb685f35b08b 2291 (pConfig->versionId.minor==VERSIONID_MINOR))) {
Vkadaba 23:bb685f35b08b 2292 ADMW_LOG_ERROR("Configuration Version ID (0x%X) is not supported",
Vkadaba 23:bb685f35b08b 2293 pConfig->versionId);
Vkadaba 6:9d393a9677f4 2294 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 2295 }
Vkadaba 23:bb685f35b08b 2296
Vkadaba 23:bb685f35b08b 2297
ADIJake 0:85855ecd3257 2298 /* Check that the actual Product ID is a match? */
Vkadaba 5:0728bde67bdb 2299 eRet = admw_GetProductID(hDevice, &productId);
Vkadaba 23:bb685f35b08b 2300 if (eRet) {
Vkadaba 5:0728bde67bdb 2301 ADMW_LOG_ERROR("Failed to read device Product ID register");
ADIJake 0:85855ecd3257 2302 return eRet;
ADIJake 0:85855ecd3257 2303 }
Vkadaba 23:bb685f35b08b 2304 if (pConfig->productId != productId) {
Vkadaba 5:0728bde67bdb 2305 ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
Vkadaba 8:2f2775c34640 2306 pConfig->productId, productId);
Vkadaba 5:0728bde67bdb 2307 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2308 }
ADIJake 0:85855ecd3257 2309
Vkadaba 5:0728bde67bdb 2310 pDeviceConfig = &pConfig->admw1001;
Vkadaba 5:0728bde67bdb 2311
Vkadaba 5:0728bde67bdb 2312 eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power);
Vkadaba 23:bb685f35b08b 2313 if (eRet) {
Vkadaba 5:0728bde67bdb 2314 ADMW_LOG_ERROR("Failed to set power configuration");
ADIJake 0:85855ecd3257 2315 return eRet;
ADIJake 0:85855ecd3257 2316 }
ADIJake 0:85855ecd3257 2317
Vkadaba 5:0728bde67bdb 2318 eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
Vkadaba 23:bb685f35b08b 2319 if (eRet) {
Vkadaba 5:0728bde67bdb 2320 ADMW_LOG_ERROR("Failed to set measurement configuration");
ADIJake 0:85855ecd3257 2321 return eRet;
ADIJake 0:85855ecd3257 2322 }
ADIJake 0:85855ecd3257 2323
Vkadaba 36:54e2418e7620 2324 eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
Vkadaba 41:df78b7d7b675 2325 if (eRet) {
Vkadaba 36:54e2418e7620 2326 ADMW_LOG_ERROR("Failed to set diagnostics configuration");
Vkadaba 36:54e2418e7620 2327 return eRet;
Vkadaba 36:54e2418e7620 2328 }
ADIJake 0:85855ecd3257 2329
Vkadaba 8:2f2775c34640 2330 for (ADMW1001_CH_ID id = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 2331 id < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 2332 id++) {
Vkadaba 5:0728bde67bdb 2333 eRet = admw1001_SetChannelConfig(hDevice, id,
Vkadaba 23:bb685f35b08b 2334 &pDeviceConfig->channels[id]);
Vkadaba 23:bb685f35b08b 2335 if (eRet) {
Vkadaba 5:0728bde67bdb 2336 ADMW_LOG_ERROR("Failed to set channel %d configuration", id);
ADIJake 0:85855ecd3257 2337 return eRet;
ADIJake 0:85855ecd3257 2338 }
ADIJake 0:85855ecd3257 2339 }
ADIJake 0:85855ecd3257 2340
Vkadaba 5:0728bde67bdb 2341 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2342 }
ADIJake 0:85855ecd3257 2343
Vkadaba 5:0728bde67bdb 2344 ADMW_RESULT admw1001_SetLutData(
Vkadaba 8:2f2775c34640 2345 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2346 ADMW1001_LUT * const pLutData)
ADIJake 0:85855ecd3257 2347 {
Vkadaba 5:0728bde67bdb 2348 ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header;
Vkadaba 8:2f2775c34640 2349 ADMW1001_LUT_TABLE *pLutTable = pLutData->tables;
Vkadaba 50:d84305e5e1c0 2350
ADIJake 0:85855ecd3257 2351 unsigned actualLength = 0;
ADIJake 0:85855ecd3257 2352
Vkadaba 23:bb685f35b08b 2353 if (pLutData->header.signature != ADMW_LUT_SIGNATURE) {
Vkadaba 5:0728bde67bdb 2354 ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
Vkadaba 23:bb685f35b08b 2355 ADMW_LUT_SIGNATURE, pLutHeader->signature);
Vkadaba 5:0728bde67bdb 2356 return ADMW_INVALID_SIGNATURE;
ADIJake 0:85855ecd3257 2357 }
Vkadaba 50:d84305e5e1c0 2358 if ((pLutData->tables->descriptor.geometry!= ADMW1001_LUT_GEOMETRY_NES_1D) &&
Vkadaba 50:d84305e5e1c0 2359 (pLutData->tables->data.lut1dNes.nElements > MAX_LUT_NUM_ENTRIES)) {
Vkadaba 50:d84305e5e1c0 2360 return ADMW_INVALID_PARAM;
Vkadaba 50:d84305e5e1c0 2361 }
Vkadaba 23:bb685f35b08b 2362 for (unsigned i = 0; i < pLutHeader->numTables; i++) {
Vkadaba 5:0728bde67bdb 2363 ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
Vkadaba 5:0728bde67bdb 2364 ADMW1001_LUT_TABLE_DATA *pData = &pLutTable->data;
ADIJake 0:85855ecd3257 2365 unsigned short calculatedCrc;
ADIJake 0:85855ecd3257 2366
Vkadaba 23:bb685f35b08b 2367 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2368 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2369 switch (pDesc->equation) {
Vkadaba 23:bb685f35b08b 2370 case ADMW1001_LUT_EQUATION_POLYN:
Vkadaba 23:bb685f35b08b 2371 case ADMW1001_LUT_EQUATION_POLYNEXP:
Vkadaba 23:bb685f35b08b 2372 case ADMW1001_LUT_EQUATION_QUADRATIC:
Vkadaba 23:bb685f35b08b 2373 case ADMW1001_LUT_EQUATION_STEINHART:
Vkadaba 23:bb685f35b08b 2374 case ADMW1001_LUT_EQUATION_LOGARITHMIC:
Vkadaba 23:bb685f35b08b 2375 case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN:
Vkadaba 23:bb685f35b08b 2376 break;
Vkadaba 23:bb685f35b08b 2377 default:
Vkadaba 23:bb685f35b08b 2378 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2379 pDesc->equation, i);
Vkadaba 23:bb685f35b08b 2380 return ADMW_INVALID_PARAM;
Vkadaba 23:bb685f35b08b 2381 }
ADIJake 0:85855ecd3257 2382 break;
Vkadaba 23:bb685f35b08b 2383 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2384 break;
Vkadaba 23:bb685f35b08b 2385 default:
Vkadaba 23:bb685f35b08b 2386 ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2387 pDesc->geometry, i);
Vkadaba 23:bb685f35b08b 2388 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2389 }
ADIJake 0:85855ecd3257 2390
Vkadaba 23:bb685f35b08b 2391 switch (pDesc->dataType) {
Vkadaba 23:bb685f35b08b 2392 case ADMW1001_LUT_DATA_TYPE_FLOAT32:
Vkadaba 23:bb685f35b08b 2393 case ADMW1001_LUT_DATA_TYPE_FLOAT64:
Vkadaba 23:bb685f35b08b 2394 break;
Vkadaba 23:bb685f35b08b 2395 default:
Vkadaba 23:bb685f35b08b 2396 ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2397 pDesc->dataType, i);
Vkadaba 23:bb685f35b08b 2398 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2399 }
ADIJake 0:85855ecd3257 2400
Vkadaba 5:0728bde67bdb 2401 calculatedCrc = admw_crc16_ccitt(pData, pDesc->length);
Vkadaba 23:bb685f35b08b 2402 if (calculatedCrc != pDesc->crc16) {
Vkadaba 5:0728bde67bdb 2403 ADMW_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)",
Vkadaba 23:bb685f35b08b 2404 i, pDesc->crc16, calculatedCrc);
Vkadaba 5:0728bde67bdb 2405 return ADMW_CRC_ERROR;
ADIJake 0:85855ecd3257 2406 }
ADIJake 0:85855ecd3257 2407
ADIJake 0:85855ecd3257 2408 actualLength += sizeof(*pDesc) + pDesc->length;
ADIJake 0:85855ecd3257 2409
ADIJake 0:85855ecd3257 2410 /* Move to the next look-up table */
Vkadaba 5:0728bde67bdb 2411 pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
ADIJake 0:85855ecd3257 2412 }
ADIJake 0:85855ecd3257 2413
Vkadaba 23:bb685f35b08b 2414 if (actualLength != pLutHeader->totalLength) {
Vkadaba 5:0728bde67bdb 2415 ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
Vkadaba 23:bb685f35b08b 2416 pLutHeader->totalLength, actualLength);
Vkadaba 5:0728bde67bdb 2417 return ADMW_WRONG_SIZE;
ADIJake 0:85855ecd3257 2418 }
ADIJake 0:85855ecd3257 2419
Vkadaba 23:bb685f35b08b 2420 if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE) {
Vkadaba 5:0728bde67bdb 2421 ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
Vkadaba 23:bb685f35b08b 2422 ADMW_LUT_MAX_SIZE);
Vkadaba 5:0728bde67bdb 2423 return ADMW_WRONG_SIZE;
ADIJake 0:85855ecd3257 2424 }
ADIJake 0:85855ecd3257 2425
ADIJake 0:85855ecd3257 2426 /* Write the LUT data to the device */
ADIJake 0:85855ecd3257 2427 unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
ADIJake 0:85855ecd3257 2428 WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
ADIJake 0:85855ecd3257 2429 WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
ADIJake 0:85855ecd3257 2430
Vkadaba 5:0728bde67bdb 2431 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2432 }
Vkadaba 5:0728bde67bdb 2433 ADMW_RESULT admw1001_SetLutDataRaw(
Vkadaba 5:0728bde67bdb 2434 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2435 ADMW1001_LUT_RAW * const pLutData)
ADIJake 0:85855ecd3257 2436 {
Vkadaba 5:0728bde67bdb 2437 return admw1001_SetLutData(hDevice,
Vkadaba 23:bb685f35b08b 2438 (ADMW1001_LUT *)pLutData);
ADIJake 0:85855ecd3257 2439 }
ADIJake 0:85855ecd3257 2440
Vkadaba 5:0728bde67bdb 2441 static ADMW_RESULT getLutTableSize(
Vkadaba 5:0728bde67bdb 2442 ADMW1001_LUT_DESCRIPTOR * const pDesc,
Vkadaba 5:0728bde67bdb 2443 ADMW1001_LUT_TABLE_DATA * const pData,
ADIJake 0:85855ecd3257 2444 unsigned *pLength)
ADIJake 0:85855ecd3257 2445 {
Vkadaba 23:bb685f35b08b 2446 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2447 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2448 if (pDesc->equation == ADMW1001_LUT_EQUATION_BIVARIATE_POLYN)
Vkadaba 23:bb685f35b08b 2449 *pLength = ADMW1001_LUT_COEFF_LIST_SIZE(pData->coeffList);
Vkadaba 23:bb685f35b08b 2450 break;
Vkadaba 23:bb685f35b08b 2451 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2452 *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes);
Vkadaba 23:bb685f35b08b 2453 break;
Vkadaba 23:bb685f35b08b 2454 default:
Vkadaba 23:bb685f35b08b 2455 ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
Vkadaba 23:bb685f35b08b 2456 pDesc->geometry);
Vkadaba 23:bb685f35b08b 2457 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2458 }
ADIJake 0:85855ecd3257 2459
Vkadaba 5:0728bde67bdb 2460 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2461 }
ADIJake 0:85855ecd3257 2462
Vkadaba 5:0728bde67bdb 2463 ADMW_RESULT admw1001_AssembleLutData(
Vkadaba 5:0728bde67bdb 2464 ADMW1001_LUT * pLutBuffer,
ADIJake 0:85855ecd3257 2465 unsigned nLutBufferSize,
ADIJake 0:85855ecd3257 2466 unsigned const nNumTables,
Vkadaba 5:0728bde67bdb 2467 ADMW1001_LUT_DESCRIPTOR * const ppDesc[],
Vkadaba 5:0728bde67bdb 2468 ADMW1001_LUT_TABLE_DATA * const ppData[])
ADIJake 0:85855ecd3257 2469 {
Vkadaba 5:0728bde67bdb 2470 ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header;
ADIJake 0:85855ecd3257 2471 uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
ADIJake 0:85855ecd3257 2472
Vkadaba 23:bb685f35b08b 2473 if (sizeof(*pHdr) > nLutBufferSize) {
Vkadaba 5:0728bde67bdb 2474 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2475 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2476 }
ADIJake 0:85855ecd3257 2477
ADIJake 0:85855ecd3257 2478 /* First initialise the top-level header */
Vkadaba 5:0728bde67bdb 2479 pHdr->signature = ADMW_LUT_SIGNATURE;
ADIJake 0:85855ecd3257 2480 pHdr->version.major = 1;
ADIJake 0:85855ecd3257 2481 pHdr->version.minor = 0;
ADIJake 0:85855ecd3257 2482 pHdr->numTables = 0;
ADIJake 0:85855ecd3257 2483 pHdr->totalLength = 0;
ADIJake 0:85855ecd3257 2484
ADIJake 0:85855ecd3257 2485 /*
ADIJake 0:85855ecd3257 2486 * Walk through the list of table pointers provided, appending the table
ADIJake 0:85855ecd3257 2487 * descriptor+data from each one to the provided LUT buffer
ADIJake 0:85855ecd3257 2488 */
Vkadaba 23:bb685f35b08b 2489 for (unsigned i = 0; i < nNumTables; i++) {
Vkadaba 5:0728bde67bdb 2490 ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
Vkadaba 5:0728bde67bdb 2491 ADMW1001_LUT_TABLE_DATA * const pData = ppData[i];
Vkadaba 5:0728bde67bdb 2492 ADMW_RESULT res;
ADIJake 0:85855ecd3257 2493 unsigned dataLength = 0;
ADIJake 0:85855ecd3257 2494
ADIJake 0:85855ecd3257 2495 /* Calculate the length of the table data */
ADIJake 0:85855ecd3257 2496 res = getLutTableSize(pDesc, pData, &dataLength);
Vkadaba 5:0728bde67bdb 2497 if (res != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 2498 return res;
ADIJake 0:85855ecd3257 2499
ADIJake 0:85855ecd3257 2500 /* Fill in the table descriptor length and CRC fields */
ADIJake 0:85855ecd3257 2501 pDesc->length = dataLength;
Vkadaba 5:0728bde67bdb 2502 pDesc->crc16 = admw_crc16_ccitt(pData, dataLength);
ADIJake 0:85855ecd3257 2503
Vkadaba 23:bb685f35b08b 2504 if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize) {
Vkadaba 5:0728bde67bdb 2505 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2506 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2507 }
ADIJake 0:85855ecd3257 2508
ADIJake 0:85855ecd3257 2509 /* Append the table to the LUT buffer (desc + data) */
ADIJake 0:85855ecd3257 2510 memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
ADIJake 0:85855ecd3257 2511 pHdr->totalLength += sizeof(*pDesc);
ADIJake 0:85855ecd3257 2512 memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
ADIJake 0:85855ecd3257 2513 pHdr->totalLength += dataLength;
ADIJake 0:85855ecd3257 2514
ADIJake 0:85855ecd3257 2515 pHdr->numTables++;
ADIJake 0:85855ecd3257 2516 }
ADIJake 0:85855ecd3257 2517
Vkadaba 5:0728bde67bdb 2518 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2519 }