a
Dependencies: HCSR04_2 MPU6050_2 mbed SDFileSystem3
Fork of Autoflight2018_12 by
BMP280.cpp
00001 /** 00002 * BMP280 Combined humidity and pressure sensor library 00003 * 00004 * @author Toyomasa Watarai 00005 * @version 1.0 00006 * @date 06-April-2015 00007 * 00008 * Library for "BMP280 temperature, humidity and pressure sensor module" from Switch Science 00009 * https://www.switch-science.com/catalog/2236/ 00010 * 00011 * For more information about the BMP280: 00012 * http://ae-bst.resource.bosch.com/media/products/dokumente/BMP280/BST-BMP280_DS001-10.pdf 00013 */ 00014 00015 #include "mbed.h" 00016 #include "BMP280.h" 00017 00018 BMP280::BMP280(PinName sda, PinName scl, char slave_adr) 00019 : 00020 i2c_p(new I2C(sda, scl)), 00021 i2c(*i2c_p), 00022 address(slave_adr), 00023 t_fine(0) 00024 { 00025 initialize(); 00026 } 00027 00028 BMP280::BMP280(I2C &i2c_obj, char slave_adr) 00029 : 00030 i2c_p(NULL), 00031 i2c(i2c_obj), 00032 address(slave_adr), 00033 t_fine(0) 00034 { 00035 initialize(); 00036 } 00037 00038 BMP280::~BMP280() 00039 { 00040 if (NULL != i2c_p) 00041 delete i2c_p; 00042 } 00043 00044 void BMP280::initialize() 00045 { 00046 char cmd[18]; 00047 00048 cmd[0] = 0xf2; // ctrl_hum 00049 cmd[1] = 0x01; // Humidity oversampling x1 00050 i2c.write(address, cmd, 2); 00051 00052 cmd[0] = 0xf4; // ctrl_meas 00053 cmd[1] = 0x27; // Temparature oversampling x1, Pressure oversampling x1, Normal mode 00054 i2c.write(address, cmd, 2); 00055 00056 cmd[0] = 0xf5; // config 00057 cmd[1] = 0xa0; // Standby 1000ms, Filter off 00058 i2c.write(address, cmd, 2); 00059 00060 cmd[0] = 0x88; // read dig_T regs 00061 i2c.write(address, cmd, 1); 00062 i2c.read(address, cmd, 6); 00063 00064 dig_T1 = (cmd[1] << 8) | cmd[0]; 00065 dig_T2 = (cmd[3] << 8) | cmd[2]; 00066 dig_T3 = (cmd[5] << 8) | cmd[4]; 00067 00068 DEBUG_PRINT("dig_T = 0x%x, 0x%x, 0x%x\n", dig_T1, dig_T2, dig_T3); 00069 00070 cmd[0] = 0x8E; // read dig_P regs 00071 i2c.write(address, cmd, 1); 00072 i2c.read(address, cmd, 18); 00073 00074 dig_P1 = (cmd[ 1] << 8) | cmd[ 0]; 00075 dig_P2 = (cmd[ 3] << 8) | cmd[ 2]; 00076 dig_P3 = (cmd[ 5] << 8) | cmd[ 4]; 00077 dig_P4 = (cmd[ 7] << 8) | cmd[ 6]; 00078 dig_P5 = (cmd[ 9] << 8) | cmd[ 8]; 00079 dig_P6 = (cmd[11] << 8) | cmd[10]; 00080 dig_P7 = (cmd[13] << 8) | cmd[12]; 00081 dig_P8 = (cmd[15] << 8) | cmd[14]; 00082 dig_P9 = (cmd[17] << 8) | cmd[16]; 00083 00084 DEBUG_PRINT("dig_P = 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", dig_P1, dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9); 00085 00086 /* cmd[0] = 0xA1; // read dig_H regs 00087 i2c.write(address, cmd, 1); 00088 i2c.read(address, cmd, 1); 00089 cmd[1] = 0xE1; // read dig_H regs 00090 i2c.write(address, &cmd[1], 1); 00091 i2c.read(address, &cmd[1], 7); 00092 00093 dig_H1 = cmd[0]; 00094 dig_H2 = (cmd[2] << 8) | cmd[1]; 00095 dig_H3 = cmd[3]; 00096 dig_H4 = (cmd[4] << 4) | (cmd[5] & 0x0f); 00097 dig_H5 = (cmd[6] << 4) | ((cmd[5]>>4) & 0x0f); 00098 dig_H6 = cmd[7]; 00099 00100 DEBUG_PRINT("dig_H = 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", dig_H1, dig_H2, dig_H3, dig_H4, dig_H5, dig_H6); 00101 */ 00102 } 00103 00104 float BMP280::getTemperature() 00105 { 00106 uint32_t temp_raw; 00107 float tempf; 00108 char cmd[4]; 00109 00110 cmd[0] = 0xfa; // temp_msb 00111 i2c.write(address, cmd, 1); 00112 i2c.read(address, &cmd[1], 3); 00113 00114 temp_raw = (cmd[1] << 12) | (cmd[2] << 4) | (cmd[3] >> 4); 00115 00116 int32_t temp; 00117 00118 temp = 00119 (((((temp_raw >> 3) - (dig_T1 << 1))) * dig_T2) >> 11) + 00120 ((((((temp_raw >> 4) - dig_T1) * ((temp_raw >> 4) - dig_T1)) >> 12) * dig_T3) >> 14); 00121 00122 t_fine = temp; 00123 temp = (temp * 5 + 128) >> 8; 00124 tempf = (float)temp; 00125 00126 return (tempf/100.0f); 00127 } 00128 00129 float BMP280::getPressure() 00130 { 00131 uint32_t press_raw; 00132 float pressf; 00133 char cmd[4]; 00134 00135 cmd[0] = 0xf7; // press_msb 00136 i2c.write(address, cmd, 1); 00137 i2c.read(address, &cmd[1], 3); 00138 00139 press_raw = (cmd[1] << 12) | (cmd[2] << 4) | (cmd[3] >> 4); 00140 00141 int32_t var1, var2; 00142 uint32_t press; 00143 00144 var1 = (t_fine >> 1) - 64000; 00145 var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * dig_P6; 00146 var2 = var2 + ((var1 * dig_P5) << 1); 00147 var2 = (var2 >> 2) + (dig_P4 << 16); 00148 var1 = (((dig_P3 * (((var1 >> 2)*(var1 >> 2)) >> 13)) >> 3) + ((dig_P2 * var1) >> 1)) >> 18; 00149 var1 = ((32768 + var1) * dig_P1) >> 15; 00150 if (var1 == 0) { 00151 return 0; 00152 } 00153 press = (((1048576 - press_raw) - (var2 >> 12))) * 3125; 00154 if(press < 0x80000000) { 00155 press = (press << 1) / var1; 00156 } else { 00157 press = (press / var1) * 2; 00158 } 00159 var1 = ((int32_t)dig_P9 * ((int32_t)(((press >> 3) * (press >> 3)) >> 13))) >> 12; 00160 var2 = (((int32_t)(press >> 2)) * (int32_t)dig_P8) >> 13; 00161 press = (press + ((var1 + var2 + dig_P7) >> 4)); 00162 00163 pressf = (float)press; 00164 return (pressf/100.0f); 00165 }
Generated on Sat Jul 23 2022 07:34:10 by 1.7.2