Important changes to forums and questions
All forums and questions are now archived. To start a new conversation or read the latest updates go to forums.mbed.com.
9 years, 10 months ago.
Configuring MPU9250 magnometer
Hello,
I am using a FRDM K22F which is connected to a MPU9250 using SPI.
I can get data by polling but not using FIFO.
To be more precise I CAN get accel and gyro data but NOT magnometer data.
This is driving me crazy....
Here is a sample result :
<<block>> count= 18, 1072 us, 932.836 Hz,ax= 688,ay=-16136,az= -1120,gx= 324,gy= 417,gz= 45,mx= 0,my= 0,mz= 0 count= 18, 989 us, 1011.122 Hz,ax= 628,ay=-16172,az= -1160,gx= 306,gy= 399,gz= 33,mx= 0,my= 0,mz= 0 count= 18, 989 us, 1011.122 Hz,ax= 732,ay=-16216,az= -1124,gx= 332,gy= 422,gz= 35,mx= 0,my= 0,mz= 0 count= 18, 989 us, 1011.122 Hz,ax= 768,ay=-16152,az= -1032,gx= 350,gy= 393,gz= 46,mx= 0,my= 0,mz= 0 count= 18, 989 us, 1011.122 Hz,ax= 764,ay=-16188,az= -1232,gx= 359,gy= 397,gz= 60,mx= 0,my= 0,mz= 0 count= 18, 1072 us, 932.836 Hz,ax= 792,ay=-16236,az= -1072,gx= 350,gy= 405,gz= 66,mx= 0,my= 0,mz= 0 count= 18, 989 us, 1011.122 Hz,ax= 712,ay=-16196,az= -1084,gx= 350,gy= 398,gz= 86,mx= 0,my= 0,mz= 0 count= 18, 988 us, 1012.146 Hz,ax= 636,ay=-16280,az= -1060,gx= 341,gy= 376,gz= 47,mx= 0,my= 0,mz= 0 count= 18, 988 us, 1012.146 Hz,ax= 644,ay=-16252,az= -1128,gx= 332,gy= 399,gz= 80,mx= 0,my= 0,mz= 0 count= 18, 989 us, 1011.122 Hz,ax= 688,ay=-16212,az= -1060,gx= 308,gy= 412,gz= 50,mx= 0,my= 0,mz= 0 <</block>>
Source code used :
mpu9250 on FRDM K22F board using spi and FIFO
#include "mbed.h" // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map // //Magnetometer Registers #define AK8963_ADDRESS 0x0C #define WHO_AM_I_AK8963 0x00 // should return 0x48 #define INFO 0x01 #define AK8963_ST1 0x02 // data ready status bit 0 #define AK8963_XOUT_L 0x03 // data #define AK8963_XOUT_H 0x04 #define AK8963_YOUT_L 0x05 #define AK8963_YOUT_H 0x06 #define AK8963_ZOUT_L 0x07 #define AK8963_ZOUT_H 0x08 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 #define AK8963_CNTL1 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 #define AK8963_CNTL2 0x0B #define AK8963_ASTC 0x0C // Self test control #define AK8963_I2CDIS 0x0F // I2C disable #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value #define SELF_TEST_X_GYRO 0x00 #define SELF_TEST_Y_GYRO 0x01 #define SELF_TEST_Z_GYRO 0x02 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain #define Y_FINE_GAIN 0x04 #define Z_FINE_GAIN 0x05 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer #define XA_OFFSET_L_TC 0x07 #define YA_OFFSET_H 0x08 #define YA_OFFSET_L_TC 0x09 #define ZA_OFFSET_H 0x0A #define ZA_OFFSET_L_TC 0x0B */ #define SELF_TEST_X_ACCEL 0x0D #define SELF_TEST_Y_ACCEL 0x0E #define SELF_TEST_Z_ACCEL 0x0F #define SELF_TEST_A 0x10 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope #define XG_OFFSET_L 0x14 #define YG_OFFSET_H 0x15 #define YG_OFFSET_L 0x16 #define ZG_OFFSET_H 0x17 #define ZG_OFFSET_L 0x18 #define SMPLRT_DIV 0x19 #define CONFIG 0x1A #define GYRO_CONFIG 0x1B #define ACCEL_CONFIG 0x1C #define ACCEL_CONFIG2 0x1D #define LP_ACCEL_ODR 0x1E #define WOM_THR 0x1F #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms #define FIFO_EN 0x23 #define I2C_MST_CTRL 0x24 #define I2C_SLV0_ADDR 0x25 #define I2C_SLV0_REG 0x26 #define I2C_SLV0_CTRL 0x27 #define I2C_SLV1_ADDR 0x28 #define I2C_SLV1_REG 0x29 #define I2C_SLV1_CTRL 0x2A #define I2C_SLV2_ADDR 0x2B #define I2C_SLV2_REG 0x2C #define I2C_SLV2_CTRL 0x2D #define I2C_SLV3_ADDR 0x2E #define I2C_SLV3_REG 0x2F #define I2C_SLV3_CTRL 0x30 #define I2C_SLV4_ADDR 0x31 #define I2C_SLV4_REG 0x32 #define I2C_SLV4_DO 0x33 #define I2C_SLV4_CTRL 0x34 #define I2C_SLV4_DI 0x35 #define I2C_MST_STATUS 0x36 #define INT_PIN_CFG 0x37 #define INT_ENABLE 0x38 #define DMP_INT_STATUS 0x39 // Check DMP interrupt #define INT_STATUS 0x3A #define ACCEL_XOUT_H 0x3B #define ACCEL_XOUT_L 0x3C #define ACCEL_YOUT_H 0x3D #define ACCEL_YOUT_L 0x3E #define ACCEL_ZOUT_H 0x3F #define ACCEL_ZOUT_L 0x40 #define TEMP_OUT_H 0x41 #define TEMP_OUT_L 0x42 #define GYRO_XOUT_H 0x43 #define GYRO_XOUT_L 0x44 #define GYRO_YOUT_H 0x45 #define GYRO_YOUT_L 0x46 #define GYRO_ZOUT_H 0x47 #define GYRO_ZOUT_L 0x48 #define EXT_SENS_DATA_00 0x49 #define EXT_SENS_DATA_01 0x4A #define EXT_SENS_DATA_02 0x4B #define EXT_SENS_DATA_03 0x4C #define EXT_SENS_DATA_04 0x4D #define EXT_SENS_DATA_05 0x4E #define EXT_SENS_DATA_06 0x4F #define EXT_SENS_DATA_07 0x50 #define EXT_SENS_DATA_08 0x51 #define EXT_SENS_DATA_09 0x52 #define EXT_SENS_DATA_10 0x53 #define EXT_SENS_DATA_11 0x54 #define EXT_SENS_DATA_12 0x55 #define EXT_SENS_DATA_13 0x56 #define EXT_SENS_DATA_14 0x57 #define EXT_SENS_DATA_15 0x58 #define EXT_SENS_DATA_16 0x59 #define EXT_SENS_DATA_17 0x5A #define EXT_SENS_DATA_18 0x5B #define EXT_SENS_DATA_19 0x5C #define EXT_SENS_DATA_20 0x5D #define EXT_SENS_DATA_21 0x5E #define EXT_SENS_DATA_22 0x5F #define EXT_SENS_DATA_23 0x60 #define MOT_DETECT_STATUS 0x61 #define I2C_SLV0_DO 0x63 #define I2C_SLV1_DO 0x64 #define I2C_SLV2_DO 0x65 #define I2C_SLV3_DO 0x66 #define I2C_MST_DELAY_CTRL 0x67 #define SIGNAL_PATH_RESET 0x68 #define MOT_DETECT_CTRL 0x69 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode #define PWR_MGMT_2 0x6C #define DMP_BANK 0x6D // Activates a specific bank in the DMP #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank #define DMP_REG 0x6F // Register in DMP from which to read or to which to write #define DMP_REG_1 0x70 #define DMP_REG_2 0x71 #define FIFO_COUNTH 0x72 #define FIFO_COUNTL 0x73 #define FIFO_R_W 0x74 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71 #define XA_OFFSET_H 0x77 #define XA_OFFSET_L 0x78 #define YA_OFFSET_H 0x7A #define YA_OFFSET_L 0x7B #define ZA_OFFSET_H 0x7D #define ZA_OFFSET_L 0x7E #define READ_FLAG 0x80 DigitalOut cs(PTD4); DigitalOut myled(LED1); Serial pc(USBTX, USBRX); SPI spi(PTD6,PTD7,PTD5); Timer timer; void select() { //Set CS low to start transmission (interrupts conversion) cs = 0; } void deselect() { //Set CS high to stop transmission (restarts conversion) cs = 1; } unsigned int writeByte( uint8_t WriteAddr, uint8_t WriteData ) { unsigned int temp_val; select(); spi.write(WriteAddr); temp_val=spi.write(WriteData); deselect(); wait_us(50); return temp_val; } unsigned int readByte( uint8_t WriteAddr, uint8_t WriteData ) { return writeByte(WriteAddr | 0x80,WriteData); } void readBytes( uint8_t ReadAddr, uint8_t *ReadBuf, unsigned int Bytes ) { unsigned int i = 0; select(); spi.write(ReadAddr | 0x80); for(i=0; i<Bytes; i++) ReadBuf[i] = spi.write(0x00); deselect(); wait_us(50); } #define PACKET_SIZE 18 uint8_t AK8963ReadByte(uint8_t reg) { uint8_t response; writeByte(I2C_SLV0_ADDR,AK8963_ADDRESS|READ_FLAG); //Set the I2C slave addres of AK8963 and set for read. writeByte(I2C_SLV0_REG, reg); //I2C slave 0 register address from where to begin data transfer writeByte(I2C_SLV0_CTRL, 0x81); //Read 1 byte from the magnetometer wait(0.001); response=readByte(EXT_SENS_DATA_00,0x00); //Read I2C return response; } int main() { timer.start(); pc.baud(230400); uint8_t data[PACKET_SIZE]; // data array to hold accelerometer and gyro x, y, z, data uint16_t ii, packet_count, fifo_count; // reset device writeByte( PWR_MGMT_1, 0x80); // toggle reset device wait_ms(100); // get stable time source; Auto select clock source to be PLL gyroscope reference if ready // else use the internal oscillator, bits 2:0 = 001 writeByte( PWR_MGMT_1, 0x01); writeByte( PWR_MGMT_2, 0x00); wait_ms(200); // Configure device for bias calculation writeByte( FIFO_EN, 0x00); // Disable FIFO writeByte( PWR_MGMT_1, 0x00); // Turn on internal clock source writeByte( CONFIG, 0x01); // Set low-pass filter to 188 Hz writeByte( SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz writeByte( GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity writeByte( ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity writeByte(USER_CTRL,0x20); // I2C Master mode writeByte(I2C_MST_CTRL,0x0D); printf("\n\nAK8963Whoami=%3d\n",AK8963ReadByte(WHO_AM_I_AK8963)); // Configure magnometer : writeByte(USER_CTRL,0x20); // I2C Master mode writeByte(I2C_MST_CTRL,0x0D); writeByte(I2C_SLV0_ADDR,AK8963_ADDRESS); writeByte(I2C_SLV0_REG,AK8963_CNTL2); writeByte(I2C_SLV0_CTRL,0x81); writeByte(I2C_SLV0_DO,0x01); // reset device writeByte(I2C_SLV0_CTRL,0x81); wait_ms(500); writeByte(I2C_SLV0_ADDR,AK8963_ADDRESS); writeByte(I2C_SLV0_REG,AK8963_CNTL1); writeByte(I2C_SLV0_CTRL,0x81); // Enable i2c and write 1 bytes writeByte(I2C_SLV0_DO,0x12); writeByte(I2C_SLV0_CTRL,0x81); // Enable i2c and write 1 bytes //writeByte(I2C_SLV0_CTRL,0x81); // Enable i2c and write 1 bytes wait(0.001); printf("CNTL1=%3d\n",AK8963ReadByte(AK8963_CNTL1)); printf("ASAX=%3d\n",AK8963ReadByte(AK8963_ASAX)); printf("ASAY=%3d\n",AK8963ReadByte(AK8963_ASAY)); printf("ASAZ=%3d\n",AK8963ReadByte(AK8963_ASAZ)); wait_ms(3000); writeByte(I2C_SLV1_ADDR,AK8963_ADDRESS|READ_FLAG); // Magneto address writeByte(I2C_SLV1_REG,AK8963_CNTL1); writeByte(I2C_SLV1_CTRL,0x81); // Enable i2c and write 1 bytes writeByte(I2C_SLV1_DO,0x12); writeByte(I2C_SLV1_CTRL,0x81); // Enable i2c and write 1 bytes writeByte(I2C_SLV1_REG,AK8963_XOUT_L); // Address of the first data register writeByte(I2C_SLV1_CTRL,0x86); // Enable reading and read 6 bytes int lastTime=timer.read_us(); int lastTimePrint=timer.read_us(); int now=lastTime; writeByte( USER_CTRL, 0x0C); // Reset FIFO and DMP wait_ms(150); // Configure FIFO to capture accelerometer and gyro data for bias calculation writeByte( USER_CTRL, 0b01000000); // Enable FIFO writeByte( FIFO_EN, 0b01111010); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150) while(1) { readBytes(FIFO_COUNTH,data,2); // read FIFO sample count fifo_count = ((uint16_t)data[0] << 8) | data[1]; packet_count = fifo_count/PACKET_SIZE;// How many sets of full gyro and accelerometer data for averaging for (ii = 0; ii < packet_count; ii++) { int16_t accel[3] = {0, 0, 0}; int16_t gyro[3] = {0, 0, 0}; int16_t mag[3] = {0, 0, 0}; readBytes( FIFO_R_W, data,PACKET_SIZE); // read data for averaging accel[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO accel[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; accel[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; gyro[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; gyro[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; gyro[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; if(PACKET_SIZE==18) { mag[0] = (int16_t) (((int16_t)data[12] << 8) | data[13] ) ; mag[1] = (int16_t) (((int16_t)data[14] << 8) | data[15] ) ; mag[2] = (int16_t) (((int16_t)data[16] << 8) | data[17]) ; } now=timer.read_us(); if(now-lastTimePrint>10000) { if(PACKET_SIZE==18) { printf("count=%3d,%6d us,%9.3f Hz,ax=%6d,ay=%6d,az=%6d,gx=%6d,gy=%6d,gz=%6d,mx=%6d,my=%6d,mz=%6d\n", fifo_count, now-lastTime, 1.0/((now-lastTime)*1e-6), accel[0], accel[1], accel[2], gyro[0], gyro[1], gyro[2], mag[0], mag[1], mag[2] ); } else if(PACKET_SIZE==12) { printf("count=%3d,%6d us,%8.3f Hz,ax=%6d,ay=%6d,az=%6d,gx=%6d,gy=%6d,gz=%6d\n", fifo_count, now-lastTime, 1.0/((now-lastTime)*1e-6), accel[0], accel[1], accel[2], gyro[0], gyro[1], gyro[2] ); } lastTimePrint=now; } lastTime=now; } } }
1 Answer
8 years, 6 months ago.
Were you able to solve this issue? I'm struggling with the same problem
I fixed it!
The problem was you need big delays after changing modes, for example, after a reset I set 1ms and after entering fuse mode 2ms and that did it!
This of course is nowhere to be found on the spec, because you supposedly only need 100us after switching modes (as per the AK8963 spec) but who knows how long it takes for the I2C Master to communicate with the AK8963 when it receives a command.
Hope this helps!
posted by 09 Jul 2016
Have you tried using the driver from the components section that comes with a hello world program? ( http://developer.mbed.org/components/MPU-9250/ )
posted by Austin Blackstone 21 Apr 2015Jacques wants to use SPI, the components section driver uses I2C
posted by Simon Wright 04 Oct 2016