wolfSSL SSL/TLS library, support up to TLS1.3

Dependents:   CyaSSL-Twitter-OAuth4Tw Example-client-tls-cert TwitterReader TweetTest ... more

Revision:
13:f67a6c6013ca
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/wolfcrypt/src/hc128.c	Tue Aug 22 10:48:22 2017 +0000
@@ -0,0 +1,431 @@
+/* hc128.c
+ *
+ * Copyright (C) 2006-2016 wolfSSL Inc.
+ *
+ * This file is part of wolfSSL.
+ *
+ * wolfSSL is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * wolfSSL is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
+ */
+
+
+#ifdef HAVE_CONFIG_H
+    #include <config.h>
+#endif
+
+#include <wolfssl/wolfcrypt/settings.h>
+
+#ifdef HAVE_HC128
+
+#include <wolfssl/wolfcrypt/hc128.h>
+#include <wolfssl/wolfcrypt/error-crypt.h>
+#include <wolfssl/wolfcrypt/logging.h>
+#ifdef NO_INLINE
+    #include <wolfssl/wolfcrypt/hc128.h>
+		#include <wolfssl/wolfcrypt/misc.h>
+#else
+    #define WOLFSSL_MISC_INCLUDED
+    #include <wolfcrypt/src/misc.c>
+#endif
+
+
+#ifdef BIG_ENDIAN_ORDER
+    #define LITTLE32(x) ByteReverseWord32(x)
+#else
+    #define LITTLE32(x) (x)
+#endif
+
+
+/*h1 function*/
+#define h1(ctx, x, y) {                         \
+     byte a,c;                                  \
+     a = (byte) (x);                            \
+     c = (byte) ((x) >> 16);                    \
+     y = (ctx->T[512+a])+(ctx->T[512+256+c]);   \
+}
+
+/*h2 function*/
+#define h2(ctx, x, y) {                         \
+     byte a,c;                                  \
+     a = (byte) (x);                            \
+     c = (byte) ((x) >> 16);                    \
+     y = (ctx->T[a])+(ctx->T[256+c]);           \
+}
+
+/*one step of HC-128, update P and generate 32 bits keystream*/
+#define step_P(ctx,u,v,a,b,c,d,n){              \
+     word32 tem0,tem1,tem2,tem3;                \
+     h1((ctx),(ctx->X[(d)]),tem3);              \
+     tem0 = rotrFixed((ctx->T[(v)]),23);        \
+     tem1 = rotrFixed((ctx->X[(c)]),10);        \
+     tem2 = rotrFixed((ctx->X[(b)]),8);         \
+     (ctx->T[(u)]) += tem2+(tem0 ^ tem1);       \
+     (ctx->X[(a)]) = (ctx->T[(u)]);             \
+     (n) = tem3 ^ (ctx->T[(u)]) ;               \
+}       
+
+/*one step of HC-128, update Q and generate 32 bits keystream*/
+#define step_Q(ctx,u,v,a,b,c,d,n){              \
+     word32 tem0,tem1,tem2,tem3;                \
+     h2((ctx),(ctx->Y[(d)]),tem3);              \
+     tem0 = rotrFixed((ctx->T[(v)]),(32-23));   \
+     tem1 = rotrFixed((ctx->Y[(c)]),(32-10));   \
+     tem2 = rotrFixed((ctx->Y[(b)]),(32-8));    \
+     (ctx->T[(u)]) += tem2 + (tem0 ^ tem1);     \
+     (ctx->Y[(a)]) = (ctx->T[(u)]);             \
+     (n) = tem3 ^ (ctx->T[(u)]) ;               \
+}   
+
+/*16 steps of HC-128, generate 512 bits keystream*/
+static void generate_keystream(HC128* ctx, word32* keystream)  
+{
+   word32 cc,dd;
+   cc = ctx->counter1024 & 0x1ff;
+   dd = (cc+16)&0x1ff;
+
+   if (ctx->counter1024 < 512)	
+   {   		
+      ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
+      step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]);
+      step_P(ctx, cc+1, cc+2, 1, 7, 14,5, keystream[1]);
+      step_P(ctx, cc+2, cc+3, 2, 8, 15,6, keystream[2]);
+      step_P(ctx, cc+3, cc+4, 3, 9, 0, 7, keystream[3]);
+      step_P(ctx, cc+4, cc+5, 4, 10,1, 8, keystream[4]);
+      step_P(ctx, cc+5, cc+6, 5, 11,2, 9, keystream[5]);
+      step_P(ctx, cc+6, cc+7, 6, 12,3, 10,keystream[6]);
+      step_P(ctx, cc+7, cc+8, 7, 13,4, 11,keystream[7]);
+      step_P(ctx, cc+8, cc+9, 8, 14,5, 12,keystream[8]);
+      step_P(ctx, cc+9, cc+10,9, 15,6, 13,keystream[9]);
+      step_P(ctx, cc+10,cc+11,10,0, 7, 14,keystream[10]);
+      step_P(ctx, cc+11,cc+12,11,1, 8, 15,keystream[11]);
+      step_P(ctx, cc+12,cc+13,12,2, 9, 0, keystream[12]);
+      step_P(ctx, cc+13,cc+14,13,3, 10,1, keystream[13]);
+      step_P(ctx, cc+14,cc+15,14,4, 11,2, keystream[14]);
+      step_P(ctx, cc+15,dd+0, 15,5, 12,3, keystream[15]);
+   }
+   else				    
+   {
+	  ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
+      step_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]);
+      step_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]);
+      step_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]);
+      step_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]);
+      step_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]);
+      step_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]);
+      step_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]);
+      step_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]);
+      step_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]);
+      step_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]);
+      step_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]);
+      step_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]);
+      step_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]);
+      step_Q(ctx, 512+cc+13,512+cc+14,13,3, 10,1, keystream[13]);
+      step_Q(ctx, 512+cc+14,512+cc+15,14,4, 11,2, keystream[14]);
+      step_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]);
+   }
+}
+
+
+/* The following defines the initialization functions */
+#define f1(x)  (rotrFixed((x),7)  ^ rotrFixed((x),18) ^ ((x) >> 3))
+#define f2(x)  (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10))
+
+/*update table P*/
+#define update_P(ctx,u,v,a,b,c,d){                  \
+     word32 tem0,tem1,tem2,tem3;                    \
+     tem0 = rotrFixed((ctx->T[(v)]),23);            \
+     tem1 = rotrFixed((ctx->X[(c)]),10);            \
+     tem2 = rotrFixed((ctx->X[(b)]),8);             \
+     h1((ctx),(ctx->X[(d)]),tem3);                  \
+     (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3;     \
+     (ctx->X[(a)]) = (ctx->T[(u)]);                 \
+}  
+
+/*update table Q*/
+#define update_Q(ctx,u,v,a,b,c,d){                  \
+     word32 tem0,tem1,tem2,tem3;                    \
+     tem0 = rotrFixed((ctx->T[(v)]),(32-23));       \
+     tem1 = rotrFixed((ctx->Y[(c)]),(32-10));       \
+     tem2 = rotrFixed((ctx->Y[(b)]),(32-8));        \
+     h2((ctx),(ctx->Y[(d)]),tem3);                  \
+     (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3;     \
+     (ctx->Y[(a)]) = (ctx->T[(u)]);                 \
+}     
+
+/*16 steps of HC-128, without generating keystream, */
+/*but use the outputs to update P and Q*/
+static void setup_update(HC128* ctx)  /*each time 16 steps*/
+{
+   word32 cc,dd;
+   cc = ctx->counter1024 & 0x1ff;
+   dd = (cc+16)&0x1ff;
+
+   if (ctx->counter1024 < 512)	
+   {   		
+      ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
+      update_P(ctx, cc+0, cc+1, 0, 6, 13, 4);
+      update_P(ctx, cc+1, cc+2, 1, 7, 14, 5);
+      update_P(ctx, cc+2, cc+3, 2, 8, 15, 6);
+      update_P(ctx, cc+3, cc+4, 3, 9, 0,  7);
+      update_P(ctx, cc+4, cc+5, 4, 10,1,  8);
+      update_P(ctx, cc+5, cc+6, 5, 11,2,  9);
+      update_P(ctx, cc+6, cc+7, 6, 12,3,  10);
+      update_P(ctx, cc+7, cc+8, 7, 13,4,  11);
+      update_P(ctx, cc+8, cc+9, 8, 14,5,  12);
+      update_P(ctx, cc+9, cc+10,9, 15,6,  13);
+      update_P(ctx, cc+10,cc+11,10,0, 7,  14);
+      update_P(ctx, cc+11,cc+12,11,1, 8,  15);
+      update_P(ctx, cc+12,cc+13,12,2, 9,  0);
+      update_P(ctx, cc+13,cc+14,13,3, 10, 1);
+      update_P(ctx, cc+14,cc+15,14,4, 11, 2);
+      update_P(ctx, cc+15,dd+0, 15,5, 12, 3);   
+   }
+   else				    
+   {
+      ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff;
+      update_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13, 4);
+      update_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14, 5);
+      update_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15, 6);
+      update_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0,  7);
+      update_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1,  8);
+      update_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2,  9);
+      update_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3,  10);
+      update_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4,  11);
+      update_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5,  12);
+      update_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6,  13);
+      update_Q(ctx, 512+cc+10,512+cc+11,10,0, 7,  14);
+      update_Q(ctx, 512+cc+11,512+cc+12,11,1, 8,  15);
+      update_Q(ctx, 512+cc+12,512+cc+13,12,2, 9,  0);
+      update_Q(ctx, 512+cc+13,512+cc+14,13,3, 10, 1);
+      update_Q(ctx, 512+cc+14,512+cc+15,14,4, 11, 2);
+      update_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12, 3); 
+   }       
+}
+
+
+/* for the 128-bit key:  key[0]...key[15]
+*  key[0] is the least significant byte of ctx->key[0] (K_0);
+*  key[3] is the most significant byte of ctx->key[0]  (K_0);
+*  ...
+*  key[12] is the least significant byte of ctx->key[3] (K_3)
+*  key[15] is the most significant byte of ctx->key[3]  (K_3)
+*
+*  for the 128-bit iv:  iv[0]...iv[15]
+*  iv[0] is the least significant byte of ctx->iv[0] (IV_0);
+*  iv[3] is the most significant byte of ctx->iv[0]  (IV_0);
+*  ...
+*  iv[12] is the least significant byte of ctx->iv[3] (IV_3)
+*  iv[15] is the most significant byte of ctx->iv[3]  (IV_3)
+*/
+
+
+
+static void Hc128_SetIV(HC128* ctx, const byte* inIv)
+{ 
+    word32 i;
+    word32 iv[4];
+
+    if (inIv)
+        XMEMCPY(iv, inIv, sizeof(iv));
+    else
+        XMEMSET(iv,    0, sizeof(iv));
+    
+	for (i = 0; i < (128 >> 5); i++)
+        ctx->iv[i] = LITTLE32(iv[i]);
+	
+    for (; i < 8; i++) ctx->iv[i] = ctx->iv[i-4];
+  
+    /* expand the key and IV into the table T */ 
+    /* (expand the key and IV into the table P and Q) */ 
+	
+	for (i = 0; i < 8;  i++)   ctx->T[i] = ctx->key[i];
+	for (i = 8; i < 16; i++)   ctx->T[i] = ctx->iv[i-8];
+
+    for (i = 16; i < (256+16); i++) 
+		ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) +
+                                                       ctx->T[i-16]+i;
+    
+	for (i = 0; i < 16;  i++)  ctx->T[i] = ctx->T[256+i];
+
+	for (i = 16; i < 1024; i++) 
+		ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) +
+                                                       ctx->T[i-16]+256+i;
+    
+    /* initialize counter1024, X and Y */
+	ctx->counter1024 = 0;
+	for (i = 0; i < 16; i++) ctx->X[i] = ctx->T[512-16+i];
+    for (i = 0; i < 16; i++) ctx->Y[i] = ctx->T[512+512-16+i];
+    
+    /* run the cipher 1024 steps before generating the output */
+	for (i = 0; i < 64; i++)  setup_update(ctx);  
+}
+
+
+static INLINE int DoKey(HC128* ctx, const byte* key, const byte* iv)
+{ 
+  word32 i;  
+
+  /* Key size in bits 128 */ 
+  for (i = 0; i < (128 >> 5); i++)
+      ctx->key[i] = LITTLE32(((word32*)key)[i]);
+ 
+  for ( ; i < 8 ; i++) ctx->key[i] = ctx->key[i-4];
+
+  Hc128_SetIV(ctx, iv);
+
+  return 0;
+}
+
+
+int wc_Hc128_SetHeap(HC128* ctx, void* heap)
+{
+    if (ctx == NULL) {
+        return BAD_FUNC_ARG;
+    }
+
+#ifdef XSTREAM_ALIGN
+    ctx->heap = heap;
+#endif
+
+    (void)heap;
+    return 0;
+}
+
+/* Key setup */
+int wc_Hc128_SetKey(HC128* ctx, const byte* key, const byte* iv)
+{
+    if (ctx == NULL || key == NULL) {
+        return BAD_FUNC_ARG;
+    }
+
+#ifdef XSTREAM_ALIGN
+    /* default heap to NULL or heap test value */
+    #ifdef WOLFSSL_HEAP_TEST
+        ctx->heap = (void*)WOLFSSL_HEAP_TEST;
+    #else
+        ctx->heap = NULL;
+    #endif /* WOLFSSL_HEAP_TEST */
+
+    if ((wolfssl_word)key % 4) {
+        int alignKey[4];
+
+        /* iv gets aligned in SetIV */
+        WOLFSSL_MSG("Hc128SetKey unaligned key");
+
+        XMEMCPY(alignKey, key, sizeof(alignKey));
+
+        return DoKey(ctx, (const byte*)alignKey, iv);
+    }
+#endif /* XSTREAM_ALIGN */
+
+    return DoKey(ctx, key, iv);
+}
+
+
+
+/* The following defines the encryption of data stream */
+static INLINE int DoProcess(HC128* ctx, byte* output, const byte* input,
+                            word32 msglen)
+{
+  word32 i, keystream[16];
+
+  for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64)
+  {
+	  generate_keystream(ctx, keystream);
+
+      /* unroll loop */
+	  ((word32*)output)[0]  = ((word32*)input)[0]  ^ LITTLE32(keystream[0]);
+	  ((word32*)output)[1]  = ((word32*)input)[1]  ^ LITTLE32(keystream[1]);
+	  ((word32*)output)[2]  = ((word32*)input)[2]  ^ LITTLE32(keystream[2]);
+	  ((word32*)output)[3]  = ((word32*)input)[3]  ^ LITTLE32(keystream[3]);
+	  ((word32*)output)[4]  = ((word32*)input)[4]  ^ LITTLE32(keystream[4]);
+	  ((word32*)output)[5]  = ((word32*)input)[5]  ^ LITTLE32(keystream[5]);
+	  ((word32*)output)[6]  = ((word32*)input)[6]  ^ LITTLE32(keystream[6]);
+	  ((word32*)output)[7]  = ((word32*)input)[7]  ^ LITTLE32(keystream[7]);
+	  ((word32*)output)[8]  = ((word32*)input)[8]  ^ LITTLE32(keystream[8]);
+	  ((word32*)output)[9]  = ((word32*)input)[9]  ^ LITTLE32(keystream[9]);
+	  ((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]);
+	  ((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]);
+	  ((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]);
+	  ((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]);
+	  ((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]);
+	  ((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]);
+  }
+
+  if (msglen > 0)
+  {
+      XMEMSET(keystream, 0, sizeof(keystream)); /* hush the static analysis */
+      generate_keystream(ctx, keystream);
+
+#ifdef BIG_ENDIAN_ORDER
+      {
+          word32 wordsLeft = msglen / sizeof(word32);
+          if (msglen % sizeof(word32)) wordsLeft++;
+          
+          ByteReverseWords(keystream, keystream, wordsLeft * sizeof(word32));
+      }
+#endif
+
+      for (i = 0; i < msglen; i++)
+	      output[i] = input[i] ^ ((byte*)keystream)[i];
+  }
+
+  return 0;
+}
+
+
+/* Encrypt/decrypt a message of any size */
+int wc_Hc128_Process(HC128* ctx, byte* output, const byte* input, word32 msglen)
+{
+    if (ctx == NULL || output == NULL || input == NULL) {
+        return BAD_FUNC_ARG;
+    }
+
+#ifdef XSTREAM_ALIGN
+    if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) {
+        #ifndef NO_WOLFSSL_ALLOC_ALIGN
+            byte* tmp;
+            WOLFSSL_MSG("Hc128Process unaligned");
+
+            tmp = (byte*)XMALLOC(msglen, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
+            if (tmp == NULL) return MEMORY_E;
+
+            XMEMCPY(tmp, input, msglen);
+            DoProcess(ctx, tmp, tmp, msglen);
+            XMEMCPY(output, tmp, msglen);
+
+            XFREE(tmp, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
+
+            return 0;
+        #else
+            return BAD_ALIGN_E;
+        #endif
+    }
+#endif /* XSTREAM_ALIGN */
+
+    return DoProcess(ctx, output, input, msglen);
+}
+
+
+#else  /* HAVE_HC128 */
+
+
+#ifdef _MSC_VER
+    /* 4206 warning for blank file */
+    #pragma warning(disable: 4206)
+#endif
+
+
+#endif /* HAVE_HC128 */
+