1

Dependencies:   mbed-dev-f303 FastPWM3

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers Position_Torque_Sensor.cpp Source File

Position_Torque_Sensor.cpp

00001 
00002 #include "mbed.h"
00003 #include "Position_Torque_Sensor.h"
00004 #include "../math_ops.h"
00005 //#include "offset_lut.h"
00006 //#include <math.h>
00007 
00008 SensorAM5147::SensorAM5147(int CPR, float offset, int ppairs){
00009     //_CPR = CPR;
00010     _CPR = CPR;
00011     _ppairs = ppairs;
00012     ElecOffset = offset;
00013     rotations = 0;
00014     spi = new SPI(PB_15, PB_14, PB_13);  //MOSI    MISO    SCK (Electrical Board spi2)
00015     spi->format(16, 1);                                                          // mbed v>127 breaks 16-bit spi, so transaction is broken into 2 8-bit words
00016     spi->frequency(25000000); 
00017     //spi->frequency(10000000); 
00018     
00019     cs2 = new DigitalOut(PB_12);  //spi2 CS2
00020     cs1 = new DigitalOut(PB_10);  //spi2 CS1
00021     cs1->write(1);
00022     readAngleCmd = 0xffff;   
00023     MechOffset = offset;
00024     modPosition = 0;
00025     oldModPosition = 0;
00026     oldVel = 0;
00027     raw = 0;
00028     }
00029     
00030 void SensorAM5147::Sample(float dt){
00031     GPIOB->ODR &= ~(1 << 10);
00032     
00033     raw = spi->write(readAngleCmd);
00034     raw &= 0x3FFF;   
00035     //raw = spi->write(0);
00036     //raw = raw>>1;                                                             //Extract last 14 bits
00037     GPIOB->ODR |= (1 << 10);
00038     int off_1 = offset_lut[raw>>7];
00039     int off_2 = offset_lut[((raw>>7)+1)%128];
00040     int off_interp = off_1 + ((off_2 - off_1)*(raw - ((raw>>7)<<7))>>7);        // Interpolate between lookup table entries
00041     int angle = raw + off_interp;                                               // Correct for nonlinearity with lookup table from calibration
00042     if(angle - old_counts > _CPR/2){
00043         rotations -= 1;
00044         }
00045     else if (angle - old_counts < -_CPR/2){
00046         rotations += 1;
00047         }
00048     
00049     old_counts = angle;
00050     oldModPosition = modPosition;
00051     modPosition = ((2.0f*PI * ((float) angle))/ (float)_CPR);
00052     position = (2.0f*PI * ((float) angle+(_CPR*rotations)))/ (float)_CPR;
00053     MechPosition = position - MechOffset;
00054     float elec = ((2.0f*PI/(float)_CPR) * (float) ((_ppairs*angle)%_CPR)) + ElecOffset;
00055     if(elec < 0) elec += 2.0f*PI;
00056     else if(elec > 2.0f*PI) elec -= 2.0f*PI ; 
00057     ElecPosition = elec;
00058     
00059     float vel;
00060     //if(modPosition<.1f && oldModPosition>6.1f){
00061 
00062     if((modPosition-oldModPosition) < -3.0f){
00063         vel = (modPosition - oldModPosition + 2.0f*PI)/dt;
00064         }
00065     //else if(modPosition>6.1f && oldModPosition<0.1f){
00066     else if((modPosition - oldModPosition) > 3.0f){
00067         vel = (modPosition - oldModPosition - 2.0f*PI)/dt;
00068         }
00069     else{
00070         vel = (modPosition-oldModPosition)/dt;
00071     }    
00072     
00073     int n = 40;
00074     float sum = vel;
00075     for (int i = 1; i < (n); i++){
00076         velVec[n - i] = velVec[n-i-1];
00077         sum += velVec[n-i];
00078         }
00079     velVec[0] = vel;
00080     MechVelocity =  sum/((float)n);
00081     ElecVelocity = MechVelocity*_ppairs;
00082     ElecVelocityFilt = 0.99f*ElecVelocityFilt + 0.01f*ElecVelocity;
00083     }
00084 
00085 int SensorAM5147::GetRawPosition(){
00086     return raw;
00087     }
00088 
00089 float SensorAM5147::GetMechPositionFixed(){
00090     return MechPosition+MechOffset;
00091     }
00092     
00093 float SensorAM5147::GetMechPosition(){
00094     return MechPosition;
00095     }
00096 
00097 float SensorAM5147::GetElecPosition(){
00098     return ElecPosition;
00099     }
00100 
00101 float SensorAM5147::GetElecVelocity(){
00102     return ElecVelocity;
00103     }
00104 
00105 float SensorAM5147::GetMechVelocity(){
00106     return MechVelocity;
00107     }
00108 
00109 void SensorAM5147::ZeroPosition(){
00110     rotations = 0;
00111     MechOffset = 0;
00112     Sample(.00025f);
00113     MechOffset = GetMechPosition();
00114     }
00115     
00116 void SensorAM5147::SetElecOffset(float offset){
00117     ElecOffset = offset;
00118     }
00119 void SensorAM5147::SetMechOffset(float offset){
00120     MechOffset = offset;
00121     }
00122 
00123 int SensorAM5147::GetCPR(){
00124     return _CPR;
00125     }
00126 
00127 
00128 void SensorAM5147::WriteLUT(int new_lut[128]){
00129     memcpy(offset_lut, new_lut, sizeof(offset_lut));
00130     }
00131     
00132 
00133 
00134 SensorEncoder::SensorEncoder(int CPR, float offset, int ppairs) {
00135     _ppairs = ppairs;
00136     _CPR = CPR;
00137     _offset = offset;
00138     MechPosition = 0;
00139     out_old = 0;
00140     oldVel = 0;
00141     raw = 0;
00142     
00143     // Enable clock for GPIOA
00144     __GPIOA_CLK_ENABLE(); //equivalent from hal_rcc.h
00145  
00146     GPIOA->MODER   |= GPIO_MODER_MODER6_1 | GPIO_MODER_MODER7_1 ;           //PA6 & PA7 as Alternate Function   /*!< GPIO port mode register,               Address offset: 0x00      */
00147     GPIOA->OTYPER  |= GPIO_OTYPER_OT_6 | GPIO_OTYPER_OT_7 ;                 //PA6 & PA7 as Inputs               /*!< GPIO port output type register,        Address offset: 0x04      */
00148     GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR6 | GPIO_OSPEEDER_OSPEEDR7 ;     //Low speed                         /*!< GPIO port output speed register,       Address offset: 0x08      */
00149     GPIOA->PUPDR   |= GPIO_PUPDR_PUPDR6_1 | GPIO_PUPDR_PUPDR7_1 ;           //Pull Down                         /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */
00150     GPIOA->AFR[0]  |= 0x22000000 ;                                          //AF02 for PA6 & PA7                /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
00151     GPIOA->AFR[1]  |= 0x00000000 ;                                          //nibbles here refer to gpio8..15   /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
00152    
00153     // configure TIM3 as Encoder input
00154     // Enable clock for TIM3
00155     __TIM3_CLK_ENABLE();
00156  
00157     TIM3->CR1   = 0x0001;                                                   // CEN(Counter ENable)='1'     < TIM control register 1
00158     TIM3->SMCR  = TIM_ENCODERMODE_TI12;                                     // SMS='011' (Encoder mode 3)  < TIM slave mode control register
00159     TIM3->CCMR1 = 0x1111;                                                   // CC1S='01' CC2S='01'         < TIM capture/compare mode register 1, maximum digital filtering
00160     TIM3->CCMR2 = 0x0000;                                                   //                             < TIM capture/compare mode register 2
00161     TIM3->CCER  = 0x0011;                                                   // CC1P CC2P                   < TIM capture/compare enable register
00162     TIM3->PSC   = 0x0000;                                                   // Prescaler = (0+1)           < TIM prescaler
00163     TIM3->ARR   = CPR;                                                      // IM auto-reload register
00164   
00165     TIM3->CNT = 0x000;  //reset the counter before we use it  
00166     
00167     // Extra Timer for velocity measurement
00168     
00169     __TIM2_CLK_ENABLE();
00170     TIM3->CR2 = 0x030;                                                      //MMS = 101
00171     
00172     TIM2->PSC = 0x03;
00173     //TIM2->CR2 |= TIM_CR2_TI1S;
00174     TIM2->SMCR = 0x24;                                                      //TS = 010 for ITR2, SMS = 100 (reset counter at edge)
00175     TIM2->CCMR1 = 0x3;                                                      // CC1S = 11, IC1 mapped on TRC
00176     
00177     //TIM2->CR2 |= TIM_CR2_TI1S;
00178     TIM2->CCER |= TIM_CCER_CC1P;
00179     //TIM2->CCER |= TIM_CCER_CC1NP;
00180     TIM2->CCER |= TIM_CCER_CC1E;
00181     
00182     
00183     TIM2->CR1 = 0x01;                                                       //CEN,  enable timer
00184     
00185     TIM3->CR1   = 0x01;                                                     // CEN
00186     ZPulse = new InterruptIn(PC_4);
00187     ZSense = new DigitalIn(PC_4);
00188     //ZPulse = new InterruptIn(PB_0);
00189     //ZSense = new DigitalIn(PB_0);
00190     ZPulse->enable_irq();
00191     ZPulse->rise(this, &SensorEncoder::ZeroEncoderCount);
00192     //ZPulse->fall(this, &PositionSensorEncoder::ZeroEncoderCountDown);
00193     ZPulse->mode(PullDown);
00194     flag = 0;
00195 
00196     
00197     //ZTest = new DigitalOut(PC_2);
00198     //ZTest->write(1);
00199     }
00200     
00201 void SensorEncoder::Sample(float dt){
00202     
00203     }
00204 
00205  
00206 float SensorEncoder::GetMechPosition() {                            //returns rotor angle in radians.
00207     int raw = TIM3->CNT;
00208     float unsigned_mech = (6.28318530718f/(float)_CPR) * (float) ((raw)%_CPR);
00209     return (float) unsigned_mech;// + 6.28318530718f* (float) rotations;
00210 }
00211 
00212 float SensorEncoder::GetElecPosition() {                            //returns rotor electrical angle in radians.
00213     int raw = TIM3->CNT;
00214     float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*raw)%_CPR)) - _offset;
00215     if(elec < 0) elec += 6.28318530718f;
00216     return elec;
00217 }
00218 
00219 
00220     
00221 float SensorEncoder::GetMechVelocity(){
00222 
00223     float out = 0;
00224     float rawPeriod = TIM2->CCR1; //Clock Ticks
00225     int currentTime = TIM2->CNT;
00226     if(currentTime > 2000000){rawPeriod = currentTime;}
00227     float  dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f;    // +/- 1
00228     float meas = dir*180000000.0f*(6.28318530718f/(float)_CPR)/rawPeriod; 
00229     if(isinf(meas)){ meas = 1;}
00230     out = meas;
00231     //if(meas == oldVel){
00232      //   out = .9f*out_old;
00233      //   }
00234     
00235  
00236     oldVel = meas;
00237     out_old = out;
00238     int n = 16;
00239     float sum = out;
00240     for (int i = 1; i < (n); i++){
00241         velVec[n - i] = velVec[n-i-1];
00242         sum += velVec[n-i];
00243         }
00244     velVec[0] = out;
00245     return sum/(float)n;
00246     }
00247     
00248 float SensorEncoder::GetElecVelocity(){
00249     return _ppairs*GetMechVelocity();
00250     }
00251     
00252 void SensorEncoder::ZeroEncoderCount(void){
00253     if (ZSense->read() == 1 & flag == 0){
00254         if (ZSense->read() == 1){
00255             GPIOC->ODR ^= (1 << 4);   
00256             TIM3->CNT = 0x000;
00257             //state = !state;
00258             //ZTest->write(state);
00259             GPIOC->ODR ^= (1 << 4);
00260             //flag = 1;
00261         }
00262         }
00263     }
00264 
00265 void SensorEncoder::ZeroPosition(void){
00266     
00267     }
00268     
00269 void SensorEncoder::ZeroEncoderCountDown(void){
00270     if (ZSense->read() == 0){
00271         if (ZSense->read() == 0){
00272             GPIOC->ODR ^= (1 << 4);
00273             flag = 0;
00274             float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f;
00275             if(dir != dir){
00276                 dir = dir;
00277                 rotations +=  dir;
00278                 }
00279 
00280             GPIOC->ODR ^= (1 << 4);
00281 
00282         }
00283         }
00284     }
00285 void SensorEncoder::SetElecOffset(float offset){
00286     
00287     }
00288     
00289 int SensorEncoder::GetRawPosition(void){
00290     return 0;
00291     }
00292     
00293 int SensorEncoder::GetCPR(){
00294     return _CPR;
00295     }
00296     
00297 
00298 void SensorEncoder::WriteLUT(int new_lut[128]){
00299     memcpy(offset_lut, new_lut, sizeof(offset_lut));
00300     }