Aded CMSIS5 DSP and NN folder. Needs some work

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers arm_sin_f32.c Source File

arm_sin_f32.c

00001 /* ----------------------------------------------------------------------
00002  * Project:      CMSIS DSP Library
00003  * Title:        arm_sin_f32.c
00004  * Description:  Fast sine calculation for floating-point values
00005  *
00006  * $Date:        27. January 2017
00007  * $Revision:    V.1.5.1
00008  *
00009  * Target Processor: Cortex-M cores
00010  * -------------------------------------------------------------------- */
00011 /*
00012  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
00013  *
00014  * SPDX-License-Identifier: Apache-2.0
00015  *
00016  * Licensed under the Apache License, Version 2.0 (the License); you may
00017  * not use this file except in compliance with the License.
00018  * You may obtain a copy of the License at
00019  *
00020  * www.apache.org/licenses/LICENSE-2.0
00021  *
00022  * Unless required by applicable law or agreed to in writing, software
00023  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
00024  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00025  * See the License for the specific language governing permissions and
00026  * limitations under the License.
00027  */
00028 
00029 #include "arm_math.h"
00030 #include "arm_common_tables.h"
00031 #include <math.h>
00032 
00033 /**
00034  * @ingroup groupFastMath
00035  */
00036 
00037 /**
00038  * @defgroup sin Sine
00039  *
00040  * Computes the trigonometric sine function using a combination of table lookup
00041  * and linear interpolation.  There are separate functions for
00042  * Q15, Q31, and floating-point data types.
00043  * The input to the floating-point version is in radians and in the range [0 2*pi) while the
00044  * fixed-point Q15 and Q31 have a scaled input with the range
00045  * [0 +0.9999] mapping to [0 2*pi).  The fixed-point range is chosen so that a
00046  * value of 2*pi wraps around to 0.
00047  *
00048  * The implementation is based on table lookup using 256 values together with linear interpolation.
00049  * The steps used are:
00050  *  -# Calculation of the nearest integer table index
00051  *  -# Compute the fractional portion (fract) of the table index.
00052  *  -# The final result equals <code>(1.0f-fract)*a + fract*b;</code>
00053  *
00054  * where
00055  * <pre>
00056  *    b=Table[index+0];
00057  *    c=Table[index+1];
00058  * </pre>
00059  */
00060 
00061 /**
00062  * @addtogroup sin
00063  * @{
00064  */
00065 
00066 /**
00067  * @brief  Fast approximation to the trigonometric sine function for floating-point data.
00068  * @param[in] x input value in radians.
00069  * @return  sin(x).
00070  */
00071 
00072 float32_t arm_sin_f32(
00073   float32_t x)
00074 {
00075   float32_t sinVal, fract, in;                           /* Temporary variables for input, output */
00076   uint16_t index;                                        /* Index variable */
00077   float32_t a, b;                                        /* Two nearest output values */
00078   int32_t n;
00079   float32_t findex;
00080 
00081   /* Special case for small negative inputs */
00082   if ((x < 0.0f) && (x >= -1.9e-7f)) {
00083      return x;
00084   }
00085 
00086   /* input x is in radians */
00087   /* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
00088   in = x * 0.159154943092f;
00089 
00090   /* Calculation of floor value of input */
00091   n = (int32_t) in;
00092 
00093   /* Make negative values towards -infinity */
00094   if (x < 0.0f)
00095   {
00096     n--;
00097   }
00098 
00099   /* Map input value to [0 1] */
00100   in = in - (float32_t) n;
00101 
00102   /* Calculation of index of the table */
00103   findex = (float32_t) FAST_MATH_TABLE_SIZE * in;
00104 
00105   index = ((uint16_t)findex) & 0x1ff;
00106 
00107   /* fractional value calculation */
00108   fract = findex - (float32_t) index;
00109 
00110   /* Read two nearest values of input value from the sin table */
00111   a = sinTable_f32[index];
00112   b = sinTable_f32[index+1];
00113 
00114   /* Linear interpolation process */
00115   sinVal = (1.0f-fract)*a + fract*b;
00116 
00117   /* Return the output value */
00118   return (sinVal);
00119 }
00120 
00121 /**
00122  * @} end of sin group
00123  */
00124