Aded CMSIS5 DSP and NN folder. Needs some work

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers arm_shift_q15.c Source File

arm_shift_q15.c

00001 /* ----------------------------------------------------------------------
00002  * Project:      CMSIS DSP Library
00003  * Title:        arm_shift_q15.c
00004  * Description:  Shifts the elements of a Q15 vector by a specified number of bits
00005  *
00006  * $Date:        27. January 2017
00007  * $Revision:    V.1.5.1
00008  *
00009  * Target Processor: Cortex-M cores
00010  * -------------------------------------------------------------------- */
00011 /*
00012  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
00013  *
00014  * SPDX-License-Identifier: Apache-2.0
00015  *
00016  * Licensed under the Apache License, Version 2.0 (the License); you may
00017  * not use this file except in compliance with the License.
00018  * You may obtain a copy of the License at
00019  *
00020  * www.apache.org/licenses/LICENSE-2.0
00021  *
00022  * Unless required by applicable law or agreed to in writing, software
00023  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
00024  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00025  * See the License for the specific language governing permissions and
00026  * limitations under the License.
00027  */
00028 
00029 #include "arm_math.h"
00030 
00031 /**
00032  * @ingroup groupMath
00033  */
00034 
00035 /**
00036  * @addtogroup shift
00037  * @{
00038  */
00039 
00040 /**
00041  * @brief  Shifts the elements of a Q15 vector a specified number of bits.
00042  * @param[in]  *pSrc points to the input vector
00043  * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
00044  * @param[out]  *pDst points to the output vector
00045  * @param[in]  blockSize number of samples in the vector
00046  * @return none.
00047  *
00048  * <b>Scaling and Overflow Behavior:</b>
00049  * \par
00050  * The function uses saturating arithmetic.
00051  * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
00052  */
00053 
00054 void arm_shift_q15(
00055   q15_t * pSrc,
00056   int8_t shiftBits,
00057   q15_t * pDst,
00058   uint32_t blockSize)
00059 {
00060   uint32_t blkCnt;                               /* loop counter */
00061   uint8_t sign;                                  /* Sign of shiftBits */
00062 
00063 #if defined (ARM_MATH_DSP)
00064 
00065 /* Run the below code for Cortex-M4 and Cortex-M3 */
00066 
00067   q15_t in1, in2;                                /* Temporary variables */
00068 
00069 
00070   /*loop Unrolling */
00071   blkCnt = blockSize >> 2U;
00072 
00073   /* Getting the sign of shiftBits */
00074   sign = (shiftBits & 0x80);
00075 
00076   /* If the shift value is positive then do right shift else left shift */
00077   if (sign == 0U)
00078   {
00079     /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
00080      ** a second loop below computes the remaining 1 to 3 samples. */
00081     while (blkCnt > 0U)
00082     {
00083       /* Read 2 inputs */
00084       in1 = *pSrc++;
00085       in2 = *pSrc++;
00086       /* C = A << shiftBits */
00087       /* Shift the inputs and then store the results in the destination buffer. */
00088 #ifndef  ARM_MATH_BIG_ENDIAN
00089 
00090       *__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
00091                                   __SSAT((in2 << shiftBits), 16), 16);
00092 
00093 #else
00094 
00095       *__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
00096                                   __SSAT((in1 << shiftBits), 16), 16);
00097 
00098 #endif /* #ifndef  ARM_MATH_BIG_ENDIAN    */
00099 
00100       in1 = *pSrc++;
00101       in2 = *pSrc++;
00102 
00103 #ifndef  ARM_MATH_BIG_ENDIAN
00104 
00105       *__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
00106                                   __SSAT((in2 << shiftBits), 16), 16);
00107 
00108 #else
00109 
00110       *__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
00111                                   __SSAT((in1 << shiftBits), 16), 16);
00112 
00113 #endif /* #ifndef  ARM_MATH_BIG_ENDIAN    */
00114 
00115       /* Decrement the loop counter */
00116       blkCnt--;
00117     }
00118 
00119     /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
00120      ** No loop unrolling is used. */
00121     blkCnt = blockSize % 0x4U;
00122 
00123     while (blkCnt > 0U)
00124     {
00125       /* C = A << shiftBits */
00126       /* Shift and then store the results in the destination buffer. */
00127       *pDst++ = __SSAT((*pSrc++ << shiftBits), 16);
00128 
00129       /* Decrement the loop counter */
00130       blkCnt--;
00131     }
00132   }
00133   else
00134   {
00135     /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
00136      ** a second loop below computes the remaining 1 to 3 samples. */
00137     while (blkCnt > 0U)
00138     {
00139       /* Read 2 inputs */
00140       in1 = *pSrc++;
00141       in2 = *pSrc++;
00142 
00143       /* C = A >> shiftBits */
00144       /* Shift the inputs and then store the results in the destination buffer. */
00145 #ifndef  ARM_MATH_BIG_ENDIAN
00146 
00147       *__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
00148                                   (in2 >> -shiftBits), 16);
00149 
00150 #else
00151 
00152       *__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
00153                                   (in1 >> -shiftBits), 16);
00154 
00155 #endif /* #ifndef  ARM_MATH_BIG_ENDIAN    */
00156 
00157       in1 = *pSrc++;
00158       in2 = *pSrc++;
00159 
00160 #ifndef  ARM_MATH_BIG_ENDIAN
00161 
00162       *__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
00163                                   (in2 >> -shiftBits), 16);
00164 
00165 #else
00166 
00167       *__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
00168                                   (in1 >> -shiftBits), 16);
00169 
00170 #endif /* #ifndef  ARM_MATH_BIG_ENDIAN    */
00171 
00172       /* Decrement the loop counter */
00173       blkCnt--;
00174     }
00175 
00176     /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
00177      ** No loop unrolling is used. */
00178     blkCnt = blockSize % 0x4U;
00179 
00180     while (blkCnt > 0U)
00181     {
00182       /* C = A >> shiftBits */
00183       /* Shift the inputs and then store the results in the destination buffer. */
00184       *pDst++ = (*pSrc++ >> -shiftBits);
00185 
00186       /* Decrement the loop counter */
00187       blkCnt--;
00188     }
00189   }
00190 
00191 #else
00192 
00193   /* Run the below code for Cortex-M0 */
00194 
00195   /* Getting the sign of shiftBits */
00196   sign = (shiftBits & 0x80);
00197 
00198   /* If the shift value is positive then do right shift else left shift */
00199   if (sign == 0U)
00200   {
00201     /* Initialize blkCnt with number of samples */
00202     blkCnt = blockSize;
00203 
00204     while (blkCnt > 0U)
00205     {
00206       /* C = A << shiftBits */
00207       /* Shift and then store the results in the destination buffer. */
00208       *pDst++ = __SSAT(((q31_t) * pSrc++ << shiftBits), 16);
00209 
00210       /* Decrement the loop counter */
00211       blkCnt--;
00212     }
00213   }
00214   else
00215   {
00216     /* Initialize blkCnt with number of samples */
00217     blkCnt = blockSize;
00218 
00219     while (blkCnt > 0U)
00220     {
00221       /* C = A >> shiftBits */
00222       /* Shift the inputs and then store the results in the destination buffer. */
00223       *pDst++ = (*pSrc++ >> -shiftBits);
00224 
00225       /* Decrement the loop counter */
00226       blkCnt--;
00227     }
00228   }
00229 
00230 #endif /* #if defined (ARM_MATH_DSP) */
00231 
00232 }
00233 
00234 /**
00235  * @} end of shift group
00236  */
00237