X-TOUCH to djay bridge

Dependencies:   mbed mbed-rtos FATFileSystem

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers USBHost.cpp Source File

USBHost.cpp

00001 /* mbed USBHost Library
00002  * Copyright (c) 2006-2013 ARM Limited
00003  *
00004  * Licensed under the Apache License, Version 2.0 (the "License");
00005  * you may not use this file except in compliance with the License.
00006  * You may obtain a copy of the License at
00007  *
00008  *     http://www.apache.org/licenses/LICENSE-2.0
00009  *
00010  * Unless required by applicable law or agreed to in writing, software
00011  * distributed under the License is distributed on an "AS IS" BASIS,
00012  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00013  * See the License for the specific language governing permissions and
00014  * limitations under the License.
00015  */
00016 
00017 
00018 #include "USBHost.h"
00019 #include "USBHostHub.h"
00020 
00021 USBHost * USBHost::instHost = NULL;
00022 
00023 #define DEVICE_CONNECTED_EVENT      (1 << 0)
00024 #define DEVICE_DISCONNECTED_EVENT   (1 << 1)
00025 #define TD_PROCESSED_EVENT          (1 << 2)
00026 
00027 #define MAX_TRY_ENUMERATE_HUB       3
00028 
00029 #define MIN(a, b) ((a > b) ? b : a)
00030 
00031 /**
00032 * How interrupts are processed:
00033 *    - new device connected:
00034 *       - a message is queued in queue_usb_event with the id DEVICE_CONNECTED_EVENT
00035 *       - when the usb_thread receives the event, it:
00036 *           - resets the device
00037 *           - reads the device descriptor
00038 *           - sets the address of the device
00039 *           - if it is a hub, enumerates it
00040 *   - device disconnected:
00041 *       - a message is queued in queue_usb_event with the id DEVICE_DISCONNECTED_EVENT
00042 *       - when the usb_thread receives the event, it:
00043 *           - free the device and all its children (hub)
00044 *   - td processed
00045 *       - a message is queued in queue_usb_event with the id TD_PROCESSED_EVENT
00046 *       - when the usb_thread receives the event, it:
00047 *           - call the callback attached to the endpoint where the td is attached
00048 */
00049 void USBHost::usb_process()
00050 {
00051 
00052     bool controlListState;
00053     bool bulkListState;
00054     bool interruptListState;
00055     USBEndpoint * ep;
00056     uint8_t i, j, res, timeout_set_addr = 10;
00057     uint8_t buf[8];
00058     bool too_many_hub;
00059     int idx;
00060 
00061 #if DEBUG_TRANSFER
00062     uint8_t * buf_transfer;
00063 #endif
00064 
00065 #if MAX_HUB_NB
00066     uint8_t k;
00067 #endif
00068 
00069     while(1) {
00070         osEvent evt = mail_usb_event.get();
00071 
00072         if (evt.status == osEventMail) {
00073 
00074             message_t * usb_msg = (message_t*)evt.value.p;
00075 
00076             switch (usb_msg->event_id) {
00077 
00078                 // a new device has been connected
00079                 case DEVICE_CONNECTED_EVENT:
00080                     too_many_hub = false;
00081                     buf[4] = 0;
00082 
00083                     do {
00084                         Lock lock(this);
00085                         bool hub_unplugged = true;
00086 
00087                         int idx = findDevice(usb_msg->hub, usb_msg->port, (USBHostHub *)(usb_msg->hub_parent));
00088                         /*  check that hub is connected to root port  */
00089                         if (usb_msg->hub_parent) {
00090                             /*  a hub device must be present */
00091                             for (k = 0; k < MAX_HUB_NB; k++) {
00092                                 if ((&hubs[k] == usb_msg->hub_parent) && (hub_in_use[k])) {
00093                                     hub_unplugged=false;
00094                                 }
00095                             }
00096                         } else {
00097                             hub_unplugged = false;
00098                         }
00099 
00100                         if (((idx!=-1) && deviceInUse[idx] ) || ((idx == -1) && hub_unplugged)) {
00101                             break;
00102                         }
00103 
00104                         for (i =0 ; i < MAX_DEVICE_CONNECTED; i++) {
00105                             if (!deviceInUse[i]) {
00106                                 USB_DBG_EVENT("new device connected: %p\r\n", &devices[i]);
00107                                 devices[i].init(usb_msg->hub, usb_msg->port, usb_msg->lowSpeed);
00108                                 deviceReset[i] = false;
00109                                 deviceInited[i] = true;
00110                                 break;
00111                             }
00112                         }
00113 
00114                         if (i == MAX_DEVICE_CONNECTED) {
00115                             USB_ERR("Too many device connected!!\r\n");
00116                             continue;
00117                         }
00118 
00119                         if (!controlEndpointAllocated) {
00120                             control = newEndpoint(CONTROL_ENDPOINT, OUT, 0x08, 0x00);
00121                             addEndpoint(NULL, 0, (USBEndpoint*)control);
00122                             controlEndpointAllocated = true;
00123                         }
00124 
00125 #if MAX_HUB_NB
00126                         if (usb_msg->hub_parent) {
00127                             devices[i].setHubParent((USBHostHub *)(usb_msg->hub_parent));
00128                         }
00129 #endif
00130 
00131                         for (j = 0; j < timeout_set_addr; j++) {
00132 
00133                             resetDevice(&devices[i]);
00134 
00135                             // set size of control endpoint
00136                             devices[i].setSizeControlEndpoint(8);
00137 
00138                             devices[i].activeAddress(false);
00139 
00140                             // get first 8 bit of device descriptor
00141                             // and check if we deal with a hub
00142                             USB_DBG("usb_thread read device descriptor on dev: %p\r\n", &devices[i]);
00143                             res = getDeviceDescriptor(&devices[i], buf, 8);
00144 
00145                             if (res != USB_TYPE_OK) {
00146                                 USB_ERR("usb_thread could not read dev descr");
00147                                 continue;
00148                             }
00149 
00150                             // set size of control endpoint
00151                             devices[i].setSizeControlEndpoint(buf[7]);
00152 
00153                             // second step: set an address to the device
00154                             res = setAddress(&devices[i], devices[i].getAddress());
00155 
00156                             if (res != USB_TYPE_OK) {
00157                                 USB_ERR("SET ADDR FAILED");
00158                                 continue;
00159                             }
00160                             devices[i].activeAddress(true);
00161                             USB_DBG("Address of %p: %d", &devices[i], devices[i].getAddress());
00162 
00163                             // try to read again the device descriptor to check if the device
00164                             // answers to its new address
00165                             res = getDeviceDescriptor(&devices[i], buf, 8);
00166 
00167                             if (res == USB_TYPE_OK) {
00168                                 break;
00169                             }
00170 
00171                             Thread::wait(100);
00172                         }
00173 
00174                         USB_INFO("New device connected: %p [hub: %d - port: %d]", &devices[i], usb_msg->hub, usb_msg->port);
00175 
00176 #if MAX_HUB_NB
00177                         if (buf[4] == HUB_CLASS) {
00178                             for (k = 0; k < MAX_HUB_NB; k++) {
00179                                 if (hub_in_use[k] == false) {
00180                                     for (uint8_t j = 0; j < MAX_TRY_ENUMERATE_HUB; j++) {
00181                                         if (hubs[k].connect(&devices[i])) {
00182                                             devices[i].hub = &hubs[k];
00183                                             hub_in_use[k] = true;
00184                                             break;
00185                                         }
00186                                     }
00187                                     if (hub_in_use[k] == true) {
00188                                         break;
00189                                     }
00190                                 }
00191                             }
00192 
00193                             if (k == MAX_HUB_NB) {
00194                                 USB_ERR("Too many hubs connected!!\r\n");
00195                                 too_many_hub = true;
00196                             }
00197                         }
00198 
00199                         if (usb_msg->hub_parent) {
00200                             ((USBHostHub *)(usb_msg->hub_parent))->deviceConnected(&devices[i]);
00201                         }
00202 #endif
00203 
00204                         if ((i < MAX_DEVICE_CONNECTED) && !too_many_hub) {
00205                             deviceInUse[i] = true;
00206                         }
00207 
00208                     } while(0);
00209 
00210                     break;
00211 
00212                 // a device has been disconnected
00213                 case DEVICE_DISCONNECTED_EVENT:
00214 
00215                     do {
00216                         Lock lock(this);
00217 
00218                         controlListState = disableList(CONTROL_ENDPOINT);
00219                         bulkListState = disableList(BULK_ENDPOINT);
00220                         interruptListState = disableList(INTERRUPT_ENDPOINT);
00221 
00222                         idx = findDevice(usb_msg->hub, usb_msg->port, (USBHostHub *)(usb_msg->hub_parent));
00223                         if (idx != -1) {
00224                             freeDevice((USBDeviceConnected*)&devices[idx]);
00225                             deviceInited[idx]=false;
00226                         }
00227 
00228                         if (controlListState) {
00229                             enableList(CONTROL_ENDPOINT);
00230                         }
00231                         if (bulkListState) {
00232                             enableList(BULK_ENDPOINT);
00233                         }
00234                         if (interruptListState) {
00235                             enableList(INTERRUPT_ENDPOINT);
00236                         }
00237 
00238                     } while(0);
00239 
00240                     break;
00241 
00242                 // a td has been processed
00243                 // call callback on the ed associated to the td
00244                 // we are not in ISR -> users can use printf in their callback method
00245                 case TD_PROCESSED_EVENT:
00246                     ep = (USBEndpoint *) ((HCTD *)usb_msg->td_addr)->ep;
00247                     if (usb_msg->td_state == USB_TYPE_IDLE) {
00248                         USB_DBG_EVENT("call callback on td %p [ep: %p state: %s - dev: %p - %s]", usb_msg->td_addr, ep, ep->getStateString(), ep->dev, ep->dev->getName(ep->getIntfNb()));
00249 
00250 #if DEBUG_TRANSFER
00251                         if (ep->getDir() == IN) {
00252                             buf_transfer = ep->getBufStart();
00253                             printf("READ SUCCESS [%d bytes transferred - td: 0x%08X] on ep: [%p - addr: %02X]: ",  ep->getLengthTransferred(), usb_msg->td_addr, ep, ep->getAddress());
00254                             for (int i = 0; i < ep->getLengthTransferred(); i++) {
00255                                 printf("%02X ", buf_transfer[i]);
00256                             }
00257                             printf("\r\n\r\n");
00258                         }
00259 #endif
00260                         ep->call();
00261                     } else {
00262                         idx = findDevice(ep->dev);
00263                         if (idx != -1) {
00264                             if (deviceInUse[idx]) {
00265                                 USB_WARN("td %p processed but not in idle state: %s [ep: %p - dev: %p - %s]", usb_msg->td_addr, ep->getStateString(), ep, ep->dev, ep->dev->getName(ep->getIntfNb()));
00266                                 ep->setState(USB_TYPE_IDLE);
00267                                 /* as error, on interrupt endpoint can be
00268                                  * reported, call the call back registered ,
00269                                  * if  device still in use, this call back
00270                                  * shall ask again an interrupt request.
00271                                  */
00272                                 ep->call();
00273                             }
00274                         }
00275                     }
00276                     break;
00277             }
00278 
00279             mail_usb_event.free(usb_msg);
00280         }
00281     }
00282 }
00283 
00284 USBHost::USBHost() : usbThread(osPriorityNormal, USB_THREAD_STACK)
00285 {
00286 #ifndef USBHOST_OTHER
00287     headControlEndpoint = NULL;
00288     headBulkEndpoint = NULL;
00289     headInterruptEndpoint = NULL;
00290     tailControlEndpoint = NULL;
00291     tailBulkEndpoint = NULL;
00292     tailInterruptEndpoint = NULL;
00293 #endif
00294     lenReportDescr = 0;
00295 
00296     controlEndpointAllocated = false;
00297 
00298     for (uint8_t i = 0; i < MAX_DEVICE_CONNECTED; i++) {
00299         deviceInUse[i] = false;
00300         devices[i].setAddress(i + 1);
00301         deviceReset[i] = false;
00302         deviceInited[i] = false;
00303         for (uint8_t j = 0; j < MAX_INTF; j++) {
00304             deviceAttachedDriver[i][j] = false;
00305         }
00306     }
00307 
00308 #if MAX_HUB_NB
00309     for (uint8_t i = 0; i < MAX_HUB_NB; i++) {
00310         hubs[i].setHost(this);
00311         hub_in_use[i] = false;
00312     }
00313 #endif
00314 
00315     usbThread.start(this, &USBHost::usb_process);
00316 }
00317 
00318 USBHost::Lock::Lock(USBHost* pHost) : m_pHost(pHost)
00319 {
00320     m_pHost->usb_mutex.lock();
00321 }
00322 
00323 USBHost::Lock::~Lock()
00324 {
00325     m_pHost->usb_mutex.unlock();
00326 }
00327 
00328 void USBHost::transferCompleted(volatile uint32_t addr)
00329 {
00330     uint8_t state;
00331 
00332     if(addr == 0) {
00333         return;
00334     }
00335 
00336     volatile HCTD* tdList = NULL;
00337 
00338     //First we must reverse the list order and dequeue each TD
00339     do {
00340         volatile HCTD* td = (volatile HCTD*)addr;
00341         addr = (uint32_t)td->nextTD; //Dequeue from physical list
00342         td->nextTD = (hcTd*)tdList; //Enqueue into reversed list
00343         tdList = td;
00344     } while(addr);
00345 
00346     while(tdList != NULL) {
00347         volatile HCTD* td = tdList;
00348         tdList = (volatile HCTD*)td->nextTD; //Dequeue element now as it could be modified below
00349         if (td->ep != NULL) {
00350             USBEndpoint * ep = (USBEndpoint *)(td->ep);
00351 
00352 #ifdef USBHOST_OTHER
00353             state =  ((HCTD *)td)->state;
00354             if (state == USB_TYPE_IDLE) {
00355                 ep->setLengthTransferred((uint32_t)td->currBufPtr - (uint32_t)ep->getBufStart());
00356             }
00357 
00358 #else
00359             if (((HCTD *)td)->control >> 28) {
00360                 state = ((HCTD *)td)->control >> 28;
00361             } else {
00362                 if (td->currBufPtr) {
00363                     ep->setLengthTransferred((uint32_t)td->currBufPtr - (uint32_t)ep->getBufStart());
00364                 }
00365                 state = 16 /*USB_TYPE_IDLE*/;
00366             }
00367 #endif
00368             if (state == USB_TYPE_IDLE) {
00369                 ep->setLengthTransferred((uint32_t)td->currBufPtr - (uint32_t)ep->getBufStart());
00370             }
00371 
00372             ep->unqueueTransfer(td);
00373 
00374             if (ep->getType() != CONTROL_ENDPOINT) {
00375                 // callback on the processed td will be called from the usb_thread (not in ISR)
00376                 message_t * usb_msg = mail_usb_event.alloc();
00377                 usb_msg->event_id = TD_PROCESSED_EVENT;
00378                 usb_msg->td_addr = (void *)td;
00379                 usb_msg->td_state = state;
00380                 mail_usb_event.put(usb_msg);
00381             }
00382             ep->setState((USB_TYPE)state);
00383             ep->ep_queue.put((uint8_t*)1);
00384         }
00385     }
00386 }
00387 
00388 USBHost * USBHost::getHostInst()
00389 {
00390     if (instHost == NULL) {
00391         instHost = new USBHost();
00392         instHost->init();
00393     }
00394     return instHost;
00395 }
00396 
00397 
00398 /*
00399  * Called when a device has been connected
00400  * Called in ISR!!!! (no printf)
00401  */
00402 /* virtual */ void USBHost::deviceConnected(int hub, int port, bool lowSpeed, USBHostHub * hub_parent)
00403 {
00404     // be sure that the new device connected is not already connected...
00405     int idx = findDevice(hub, port, hub_parent);
00406     if (idx != -1) {
00407         if (deviceInited[idx]) {
00408             return;
00409         }
00410     }
00411 
00412     message_t * usb_msg = mail_usb_event.alloc();
00413     usb_msg->event_id = DEVICE_CONNECTED_EVENT;
00414     usb_msg->hub = hub;
00415     usb_msg->port = port;
00416     usb_msg->lowSpeed = lowSpeed;
00417     usb_msg->hub_parent = hub_parent;
00418     mail_usb_event.put(usb_msg);
00419 }
00420 
00421 /*
00422  * Called when a device has been disconnected
00423  * Called in ISR!!!! (no printf)
00424  */
00425 /* virtual */ void USBHost::deviceDisconnected(int hub, int port, USBHostHub * hub_parent, volatile uint32_t addr)
00426 {
00427     // be sure that the device disconnected is connected...
00428     int idx = findDevice(hub, port, hub_parent);
00429     if (idx != -1) {
00430         if (!deviceInUse[idx]) {
00431             return;
00432         }
00433     } else {
00434         return;
00435     }
00436 
00437     message_t * usb_msg = mail_usb_event.alloc();
00438     usb_msg->event_id = DEVICE_DISCONNECTED_EVENT;
00439     usb_msg->hub = hub;
00440     usb_msg->port = port;
00441     usb_msg->hub_parent = hub_parent;
00442     mail_usb_event.put(usb_msg);
00443 }
00444 
00445 void USBHost::freeDevice(USBDeviceConnected * dev)
00446 {
00447     USBEndpoint * ep = NULL;
00448     HCED * ed = NULL;
00449 
00450 #if MAX_HUB_NB
00451     if (dev->getClass() == HUB_CLASS) {
00452         if (dev->hub == NULL) {
00453             USB_ERR("HUB NULL!!!!!\r\n");
00454         } else {
00455             dev->hub->hubDisconnected();
00456             for (uint8_t i = 0; i < MAX_HUB_NB; i++) {
00457                 if (dev->hub == &hubs[i]) {
00458                     hub_in_use[i] = false;
00459                     break;
00460                 }
00461             }
00462         }
00463     }
00464 
00465     // notify hub parent that this device has been disconnected
00466     if (dev->getHubParent()) {
00467         dev->getHubParent()->deviceDisconnected(dev);
00468     }
00469 
00470 #endif
00471 
00472     int idx = findDevice(dev);
00473     if (idx != -1) {
00474         deviceInUse[idx] = false;
00475         deviceReset[idx] = false;
00476 
00477         for (uint8_t j = 0; j < MAX_INTF; j++) {
00478             deviceAttachedDriver[idx][j] = false;
00479             if (dev->getInterface(j) != NULL) {
00480                 USB_DBG("FREE INTF %d on dev: %p, %p, nb_endpot: %d, %s", j, (void *)dev->getInterface(j), dev, dev->getInterface(j)->nb_endpoint, dev->getName(j));
00481                 for (int i = 0; i < dev->getInterface(j)->nb_endpoint; i++) {
00482                     if ((ep = dev->getEndpoint(j, i)) != NULL) {
00483 #ifndef USBHOST_OTHER
00484                         ed = (HCED *)ep->getHCED();
00485                         ed->control |= (1 << 14); //sKip bit
00486 #endif
00487                         unqueueEndpoint(ep);
00488 
00489                         freeTD((volatile uint8_t*)ep->getTDList()[0]);
00490                         freeTD((volatile uint8_t*)ep->getTDList()[1]);
00491 
00492                         freeED((uint8_t *)ep->getHCED());
00493                     }
00494                     printList(BULK_ENDPOINT);
00495                     printList(INTERRUPT_ENDPOINT);
00496                 }
00497                 USB_INFO("Device disconnected [%p - %s - hub: %d - port: %d]", dev, dev->getName(j), dev->getHub(), dev->getPort());
00498             }
00499         }
00500         dev->disconnect();
00501     }
00502 }
00503 
00504 
00505 void USBHost::unqueueEndpoint(USBEndpoint * ep)
00506 {
00507 #ifdef USBHOST_OTHER
00508     ep->setState(USB_TYPE_FREE);
00509 #else
00510     USBEndpoint * prec = NULL;
00511     USBEndpoint * current = NULL;
00512 
00513     for (int i = 0; i < 2; i++) {
00514         current = (i == 0) ? (USBEndpoint*)headBulkEndpoint : (USBEndpoint*)headInterruptEndpoint;
00515         prec = current;
00516         while (current != NULL) {
00517             if (current == ep) {
00518                 if (current->nextEndpoint() != NULL) {
00519                     prec->queueEndpoint(current->nextEndpoint());
00520                     if (current == headBulkEndpoint) {
00521                         updateBulkHeadED((uint32_t)current->nextEndpoint()->getHCED());
00522                         headBulkEndpoint = current->nextEndpoint();
00523                     } else if (current == headInterruptEndpoint) {
00524                         updateInterruptHeadED((uint32_t)current->nextEndpoint()->getHCED());
00525                         headInterruptEndpoint = current->nextEndpoint();
00526                     }
00527                 }
00528                 // here we are dequeuing the queue of ed
00529                 // we need to update the tail pointer
00530                 else {
00531                     prec->queueEndpoint(NULL);
00532                     if (current == headBulkEndpoint) {
00533                         updateBulkHeadED(0);
00534                         headBulkEndpoint = current->nextEndpoint();
00535                     } else if (current == headInterruptEndpoint) {
00536                         updateInterruptHeadED(0);
00537                         headInterruptEndpoint = current->nextEndpoint();
00538                     }
00539 
00540                     // modify tail
00541                     switch (current->getType()) {
00542                         case BULK_ENDPOINT:
00543                             tailBulkEndpoint = prec;
00544                             break;
00545                         case INTERRUPT_ENDPOINT:
00546                             tailInterruptEndpoint = prec;
00547                             break;
00548                         default:
00549                             break;
00550                     }
00551                 }
00552                 current->setState(USB_TYPE_FREE);
00553                 return;
00554             }
00555             prec = current;
00556             current = current->nextEndpoint();
00557         }
00558     }
00559 #endif
00560 }
00561 
00562 
00563 USBDeviceConnected * USBHost::getDevice(uint8_t index)
00564 {
00565     if ((index >= MAX_DEVICE_CONNECTED) || (!deviceInUse[index])) {
00566         return NULL;
00567     }
00568     return (USBDeviceConnected*)&devices[index];
00569 }
00570 
00571 // create an USBEndpoint descriptor. the USBEndpoint is not linked
00572 USBEndpoint * USBHost::newEndpoint(ENDPOINT_TYPE type, ENDPOINT_DIRECTION dir, uint32_t size, uint8_t addr)
00573 {
00574     int i = 0;
00575     HCED * ed = (HCED *)getED();
00576     HCTD* td_list[2] = { (HCTD*)getTD(), (HCTD*)getTD() };
00577 
00578     memset((void *)td_list[0], 0x00, sizeof(HCTD));
00579     memset((void *)td_list[1], 0x00, sizeof(HCTD));
00580 
00581     // search a free USBEndpoint
00582     for (i = 0; i < MAX_ENDPOINT; i++) {
00583         if (endpoints[i].getState() == USB_TYPE_FREE) {
00584             endpoints[i].init(ed, type, dir, size, addr, td_list);
00585             USB_DBG("USBEndpoint created (%p): type: %d, dir: %d, size: %d, addr: %d, state: %s", &endpoints[i], type, dir, size, addr, endpoints[i].getStateString());
00586             return &endpoints[i];
00587         }
00588     }
00589     USB_ERR("could not allocate more endpoints!!!!");
00590     return NULL;
00591 }
00592 
00593 
00594 USB_TYPE USBHost::resetDevice(USBDeviceConnected * dev)
00595 {
00596     int index = findDevice(dev);
00597     if (index != -1) {
00598         USB_DBG("Resetting hub %d, port %d\n", dev->getHub(), dev->getPort());
00599         Thread::wait(100);
00600         if (dev->getHub() == 0) {
00601             resetRootHub();
00602         }
00603 #if MAX_HUB_NB
00604         else {
00605             dev->getHubParent()->portReset(dev->getPort());
00606         }
00607 #endif
00608         Thread::wait(100);
00609         deviceReset[index] = true;
00610         return USB_TYPE_OK;
00611     }
00612 
00613     return USB_TYPE_ERROR;
00614 }
00615 
00616 // link the USBEndpoint to the linked list and attach an USBEndpoint to a device
00617 bool USBHost::addEndpoint(USBDeviceConnected * dev, uint8_t intf_nb, USBEndpoint * ep)
00618 {
00619 
00620     if (ep == NULL) {
00621         return false;
00622     }
00623 
00624 #ifndef USBHOST_OTHER
00625     HCED * prevEd;
00626 
00627 #endif
00628     // set device address in the USBEndpoint descriptor
00629     if (dev == NULL) {
00630         ep->setDeviceAddress(0);
00631     } else {
00632         ep->setDeviceAddress(dev->getAddress());
00633     }
00634 
00635     if ((dev != NULL) && dev->getSpeed()) {
00636         ep->setSpeed(dev->getSpeed());
00637     }
00638 
00639     ep->setIntfNb(intf_nb);
00640 
00641 #ifndef USBHOST_OTHER
00642     // queue the new USBEndpoint on the ED list
00643     switch (ep->getType()) {
00644 
00645         case CONTROL_ENDPOINT:
00646             prevEd = ( HCED*) controlHeadED();
00647             if (!prevEd) {
00648                 updateControlHeadED((uint32_t) ep->getHCED());
00649                 USB_DBG_TRANSFER("First control USBEndpoint: %08X", (uint32_t) ep->getHCED());
00650                 headControlEndpoint = ep;
00651                 tailControlEndpoint = ep;
00652                 return true;
00653             }
00654             tailControlEndpoint->queueEndpoint(ep);
00655             tailControlEndpoint = ep;
00656             return true;
00657 
00658         case BULK_ENDPOINT:
00659             prevEd = ( HCED*) bulkHeadED();
00660             if (!prevEd) {
00661                 updateBulkHeadED((uint32_t) ep->getHCED());
00662                 USB_DBG_TRANSFER("First bulk USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED());
00663                 headBulkEndpoint = ep;
00664                 tailBulkEndpoint = ep;
00665                 break;
00666             }
00667             USB_DBG_TRANSFER("Queue BULK Ed %p after %p\r\n",ep->getHCED(), prevEd);
00668             tailBulkEndpoint->queueEndpoint(ep);
00669             tailBulkEndpoint = ep;
00670             break;
00671 
00672         case INTERRUPT_ENDPOINT:
00673             prevEd = ( HCED*) interruptHeadED();
00674             if (!prevEd) {
00675                 updateInterruptHeadED((uint32_t) ep->getHCED());
00676                 USB_DBG_TRANSFER("First interrupt USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED());
00677                 headInterruptEndpoint = ep;
00678                 tailInterruptEndpoint = ep;
00679                 break;
00680             }
00681             USB_DBG_TRANSFER("Queue INTERRUPT Ed %p after %p\r\n",ep->getHCED(), prevEd);
00682             tailInterruptEndpoint->queueEndpoint(ep);
00683             tailInterruptEndpoint = ep;
00684             break;
00685         default:
00686             return false;
00687     }
00688 
00689 #endif
00690     ep->dev = dev;
00691     dev->addEndpoint(intf_nb, ep);
00692 
00693     return true;
00694 }
00695 
00696 
00697 int USBHost::findDevice(USBDeviceConnected * dev)
00698 {
00699     for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) {
00700         if (dev == &devices[i]) {
00701             return i;
00702         }
00703     }
00704     return -1;
00705 }
00706 
00707 int USBHost::findDevice(uint8_t hub, uint8_t port, USBHostHub * hub_parent)
00708 {
00709     for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) {
00710         if (devices[i].getHub() == hub && devices[i].getPort() == port) {
00711             if (hub_parent != NULL) {
00712                 if (hub_parent == devices[i].getHubParent()) {
00713                     return i;
00714                 }
00715             } else {
00716                 return i;
00717             }
00718         }
00719     }
00720     return -1;
00721 }
00722 
00723 void USBHost::printList(ENDPOINT_TYPE type)
00724 {
00725 #if DEBUG_EP_STATE && !defined(USBHOST_OTHER)
00726     volatile HCED * hced;
00727     switch(type) {
00728         case CONTROL_ENDPOINT:
00729             hced = (HCED *)controlHeadED();
00730             break;
00731         case BULK_ENDPOINT:
00732             hced = (HCED *)bulkHeadED();
00733             break;
00734         case INTERRUPT_ENDPOINT:
00735             hced = (HCED *)interruptHeadED();
00736             break;
00737     }
00738     volatile HCTD * hctd = NULL;
00739     const char * type_str = (type == BULK_ENDPOINT) ? "BULK" :
00740                             ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" :
00741                              ((type == CONTROL_ENDPOINT) ? "CONTROL" : "ISOCHRONOUS"));
00742     printf("State of %s:\r\n", type_str);
00743     while (hced != NULL) {
00744         uint8_t dir = ((hced->control & (3 << 11)) >> 11);
00745         printf("hced: %p [ADDR: %d, DIR: %s, EP_NB: 0x%X]\r\n", hced,
00746                hced->control & 0x7f,
00747                (dir == 1) ? "OUT" : ((dir == 0) ? "FROM_TD":"IN"),
00748                (hced->control & (0xf << 7)) >> 7);
00749         hctd = (HCTD *)((uint32_t)(hced->headTD) & ~(0xf));
00750         while (hctd != hced->tailTD) {
00751             printf("\thctd: %p [DIR: %s]\r\n", hctd, ((hctd->control & (3 << 19)) >> 19) == 1 ? "OUT" : "IN");
00752             hctd = hctd->nextTD;
00753         }
00754         printf("\thctd: %p\r\n", hctd);
00755         hced = hced->nextED;
00756     }
00757     printf("\r\n\r\n");
00758 #endif
00759 }
00760 
00761 
00762 // add a transfer on the TD linked list
00763 USB_TYPE USBHost::addTransfer(USBEndpoint * ed, uint8_t * buf, uint32_t len)
00764 {
00765     USB_TYPE ret=USB_TYPE_PROCESSING;
00766     td_mutex.lock();
00767 
00768     // allocate a TD which will be freed in TDcompletion
00769     volatile HCTD * td = ed->getNextTD();
00770     if (td == NULL) {
00771         return USB_TYPE_ERROR;
00772     }
00773 
00774 #ifndef USBHOST_OTHER
00775     uint32_t token = (ed->isSetup() ? TD_SETUP : ( (ed->getDir() == IN) ? TD_IN : TD_OUT ));
00776 
00777     uint32_t td_toggle;
00778 
00779     if (ed->getType() == CONTROL_ENDPOINT) {
00780         if (ed->isSetup()) {
00781             td_toggle = TD_TOGGLE_0;
00782         } else {
00783             td_toggle = TD_TOGGLE_1;
00784         }
00785     } else {
00786         td_toggle = 0;
00787     }
00788 
00789     td->control      = (TD_ROUNDING | token | TD_DELAY_INT(0) | td_toggle | TD_CC);
00790     td->currBufPtr   = buf;
00791     td->bufEnd       = (buf + (len - 1));
00792 
00793     ENDPOINT_TYPE type = ed->getType();
00794 
00795     disableList(type);
00796     ed->queueTransfer();
00797     printList(type);
00798     enableList(type);
00799 #else
00800     /*  call method specific for endpoint  */
00801     td->currBufPtr   = buf;
00802     td->size = len;
00803     ret = ed->queueTransfer();
00804 #endif
00805 
00806     td_mutex.unlock();
00807 
00808     return ret;
00809 }
00810 
00811 
00812 
00813 USB_TYPE USBHost::getDeviceDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_dev_descr)
00814 {
00815     USB_TYPE t = controlRead(  dev,
00816                                USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
00817                                GET_DESCRIPTOR,
00818                                (DEVICE_DESCRIPTOR << 8) | (0),
00819                                0, buf, MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf));
00820     if (len_dev_descr) {
00821         *len_dev_descr = MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf);
00822     }
00823 
00824     return t;
00825 }
00826 
00827 USB_TYPE USBHost::getConfigurationDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_conf_descr)
00828 {
00829     USB_TYPE res;
00830     uint16_t total_conf_descr_length = 0;
00831 
00832     // fourth step: get the beginning of the configuration descriptor to have the total length of the conf descr
00833     res = controlRead(  dev,
00834                         USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
00835                         GET_DESCRIPTOR,
00836                         (CONFIGURATION_DESCRIPTOR << 8) | (0),
00837                         0, buf, CONFIGURATION_DESCRIPTOR_LENGTH);
00838 
00839     if (res != USB_TYPE_OK) {
00840         USB_ERR("GET CONF 1 DESCR FAILED");
00841         return res;
00842     }
00843     total_conf_descr_length = buf[2] | (buf[3] << 8);
00844     total_conf_descr_length = MIN(max_len_buf, total_conf_descr_length);
00845 
00846     if (len_conf_descr) {
00847         *len_conf_descr = total_conf_descr_length;
00848     }
00849 
00850     USB_DBG("TOTAL_LENGTH: %d \t NUM_INTERF: %d", total_conf_descr_length, buf[4]);
00851 
00852     return controlRead(  dev,
00853                          USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
00854                          GET_DESCRIPTOR,
00855                          (CONFIGURATION_DESCRIPTOR << 8) | (0),
00856                          0, buf, total_conf_descr_length);
00857 }
00858 
00859 
00860 USB_TYPE USBHost::setAddress(USBDeviceConnected * dev, uint8_t address)
00861 {
00862     return controlWrite(    dev,
00863                             USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE,
00864                             SET_ADDRESS,
00865                             address,
00866                             0, NULL, 0);
00867 
00868 }
00869 
00870 USB_TYPE USBHost::setConfiguration(USBDeviceConnected * dev, uint8_t conf)
00871 {
00872     return controlWrite( dev,
00873                          USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE,
00874                          SET_CONFIGURATION,
00875                          conf,
00876                          0, NULL, 0);
00877 }
00878 
00879 uint8_t USBHost::numberDriverAttached(USBDeviceConnected * dev)
00880 {
00881     int index = findDevice(dev);
00882     uint8_t cnt = 0;
00883     if (index == -1) {
00884         return 0;
00885     }
00886     for (uint8_t i = 0; i < MAX_INTF; i++) {
00887         if (deviceAttachedDriver[index][i]) {
00888             cnt++;
00889         }
00890     }
00891     return cnt;
00892 }
00893 
00894 // enumerate a device with the control USBEndpoint
00895 USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator)
00896 {
00897     uint16_t total_conf_descr_length = 0;
00898     USB_TYPE res;
00899 
00900     do {
00901         Lock lock(this);
00902 
00903         // don't enumerate a device which all interfaces are registered to a specific driver
00904         int index = findDevice(dev);
00905 
00906         if (index == -1) {
00907             return USB_TYPE_ERROR;
00908         }
00909 
00910         uint8_t nb_intf_attached = numberDriverAttached(dev);
00911         USB_DBG("dev: %p nb_intf: %d", dev, dev->getNbIntf());
00912         USB_DBG("dev: %p nb_intf_attached: %d", dev, nb_intf_attached);
00913         if ((nb_intf_attached != 0) && (dev->getNbIntf() == nb_intf_attached)) {
00914             USB_DBG("Don't enumerate dev: %p because all intf are registered with a driver", dev);
00915             return USB_TYPE_OK;
00916         }
00917 
00918         USB_DBG("Enumerate dev: %p", dev);
00919 
00920         // third step: get the whole device descriptor to see vid, pid
00921         res = getDeviceDescriptor(dev, data, DEVICE_DESCRIPTOR_LENGTH);
00922 
00923         if (res != USB_TYPE_OK) {
00924             USB_DBG("GET DEV DESCR FAILED");
00925             return res;
00926         }
00927 
00928         dev->setClass(data[4]);
00929         dev->setSubClass(data[5]);
00930         dev->setProtocol(data[6]);
00931         dev->setVid(data[8] | (data[9] << 8));
00932         dev->setPid(data[10] | (data[11] << 8));
00933         USB_DBG("CLASS: %02X \t VID: %04X \t PID: %04X", data[4], data[8] | (data[9] << 8), data[10] | (data[11] << 8));
00934 
00935         pEnumerator->setVidPid( data[8] | (data[9] << 8), data[10] | (data[11] << 8) );
00936 
00937         res = getConfigurationDescriptor(dev, data, sizeof(data), &total_conf_descr_length);
00938         if (res != USB_TYPE_OK) {
00939             return res;
00940         }
00941 
00942 #if (DEBUG > 3)
00943         USB_DBG("CONFIGURATION DESCRIPTOR:\r\n");
00944         for (int i = 0; i < total_conf_descr_length; i++) {
00945             printf("%02X ", data[i]);
00946         }
00947         printf("\r\n\r\n");
00948 #endif
00949 
00950         // Parse the configuration descriptor
00951         parseConfDescr(dev, data, total_conf_descr_length, pEnumerator);
00952 
00953         // only set configuration if not enumerated before
00954         if (!dev->isEnumerated()) {
00955 
00956             USB_DBG("Set configuration 1 on dev: %p", dev);
00957             // sixth step: set configuration (only 1 supported)
00958             res = setConfiguration(dev, 1);
00959 
00960             if (res != USB_TYPE_OK) {
00961                 USB_DBG("SET CONF FAILED");
00962                 return res;
00963             }
00964         }
00965 
00966         dev->setEnumerated();
00967 
00968         // Now the device is enumerated!
00969         USB_DBG("dev %p is enumerated\r\n", dev);
00970 
00971     } while(0);
00972 
00973     // Some devices may require this delay
00974     Thread::wait(100);
00975 
00976     return USB_TYPE_OK;
00977 }
00978 // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor.
00979 void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator)
00980 {
00981     uint32_t index = 0;
00982     uint32_t len_desc = 0;
00983     uint8_t id = 0;
00984     int nb_endpoints_used = 0;
00985     USBEndpoint * ep = NULL;
00986     uint8_t intf_nb = 0;
00987     bool parsing_intf = false;
00988     uint8_t current_intf = 0;
00989 
00990     while (index < len) {
00991         len_desc = conf_descr[index];
00992         id = conf_descr[index+1];
00993         switch (id) {
00994             case CONFIGURATION_DESCRIPTOR:
00995                 USB_DBG("dev: %p has %d intf", dev, conf_descr[4]);
00996                 dev->setNbIntf(conf_descr[4]);
00997                 break;
00998             case INTERFACE_DESCRIPTOR:
00999                 if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) {
01000                     if (intf_nb++ <= MAX_INTF) {
01001                         current_intf = conf_descr[index + 2];
01002                         dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]);
01003                         nb_endpoints_used = 0;
01004                         USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]);
01005                     } else {
01006                         USB_DBG("Drop intf...");
01007                     }
01008                     parsing_intf = true;
01009                 } else {
01010                     parsing_intf = false;
01011                 }
01012                 break;
01013             case ENDPOINT_DESCRIPTOR:
01014                 if (parsing_intf && (intf_nb <= MAX_INTF) ) {
01015                     if (nb_endpoints_used < MAX_ENDPOINT_PER_INTERFACE) {
01016                         if( pEnumerator->useEndpoint(current_intf, (ENDPOINT_TYPE)(conf_descr[index + 3] & 0x03), (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1)) ) {
01017                             // if the USBEndpoint is isochronous -> skip it (TODO: fix this)
01018                             if ((conf_descr[index + 3] & 0x03) != ISOCHRONOUS_ENDPOINT) {
01019                                 ep = newEndpoint((ENDPOINT_TYPE)(conf_descr[index+3] & 0x03),
01020                                                  (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1),
01021                                                  conf_descr[index + 4] | (conf_descr[index + 5] << 8),
01022                                                  conf_descr[index + 2] & 0x0f);
01023                                 USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev);
01024                                 if (ep != NULL && dev != NULL) {
01025                                     addEndpoint(dev, current_intf, ep);
01026                                 } else {
01027                                     USB_DBG("EP NULL");
01028                                 }
01029                                 nb_endpoints_used++;
01030                             } else {
01031                                 USB_DBG("ISO USBEndpoint NOT SUPPORTED");
01032                             }
01033                         }
01034                     }
01035                 }
01036                 break;
01037             case HID_DESCRIPTOR:
01038                 lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8);
01039                 break;
01040             default:
01041                 break;
01042         }
01043         index += len_desc;
01044     }
01045 }
01046 
01047 
01048 USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
01049 {
01050     return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, true);
01051 }
01052 
01053 USB_TYPE USBHost::bulkRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
01054 {
01055     return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, false);
01056 }
01057 
01058 USB_TYPE USBHost::interruptWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
01059 {
01060     return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, true);
01061 }
01062 
01063 USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
01064 {
01065     return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, false);
01066 }
01067 
01068 USB_TYPE USBHost::generalTransfer(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking, ENDPOINT_TYPE type, bool write)
01069 {
01070 
01071 #if DEBUG_TRANSFER
01072     const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : "ISOCHRONOUS");
01073     USB_DBG_TRANSFER("----- %s %s [dev: %p - %s - hub: %d - port: %d - addr: %d - ep: %02X]------", type_str, (write) ? "WRITE" : "READ", dev, dev->getName(ep->getIntfNb()), dev->getHub(), dev->getPort(), dev->getAddress(), ep->getAddress());
01074 #endif
01075 
01076     Lock lock(this);
01077 
01078     USB_TYPE res;
01079     ENDPOINT_DIRECTION dir = (write) ? OUT : IN;
01080 
01081     if (dev == NULL) {
01082         USB_ERR("dev NULL");
01083         return USB_TYPE_ERROR;
01084     }
01085 
01086     if (ep == NULL) {
01087         USB_ERR("ep NULL");
01088         return USB_TYPE_ERROR;
01089     }
01090 
01091     if (ep->getState() != USB_TYPE_IDLE) {
01092         USB_WARN("[ep: %p - dev: %p - %s] NOT IDLE: %s", ep, ep->dev, ep->dev->getName(ep->getIntfNb()), ep->getStateString());
01093         return ep->getState();
01094     }
01095 
01096     if ((ep->getDir() != dir) || (ep->getType() != type)) {
01097         USB_ERR("[ep: %p - dev: %p] wrong dir or bad USBEndpoint type", ep, ep->dev);
01098         return USB_TYPE_ERROR;
01099     }
01100 
01101     if (dev->getAddress() != ep->getDeviceAddress()) {
01102         USB_ERR("[ep: %p - dev: %p] USBEndpoint addr and device addr don't match", ep, ep->dev);
01103         return USB_TYPE_ERROR;
01104     }
01105 
01106 #if DEBUG_TRANSFER
01107     if (write) {
01108         USB_DBG_TRANSFER("%s WRITE buffer", type_str);
01109         for (int i = 0; i < ep->getLengthTransferred(); i++) {
01110             printf("%02X ", buf[i]);
01111         }
01112         printf("\r\n\r\n");
01113     }
01114 #endif
01115     res = addTransfer(ep, buf, len);
01116 
01117     if ((blocking)&& (res == USB_TYPE_PROCESSING)) {
01118 #ifdef USBHOST_OTHER
01119         osEvent  event = ep->ep_queue.get(TD_TIMEOUT);
01120         if (event.status == osEventTimeout) {
01121             /*  control endpoint is confusing for merge on b */
01122             disableList(CONTROL_ENDPOINT);
01123             ep->setState(USB_TYPE_ERROR);
01124             ep->ep_queue.get(0);
01125             ep->unqueueTransfer(ep->getProcessedTD());
01126             enableList(CONTROL_ENDPOINT);
01127         }
01128 #else
01129         ep->ep_queue.get();
01130 #endif
01131         res = ep->getState();
01132 
01133         USB_DBG_TRANSFER("%s TRANSFER res: %s on ep: %p\r\n", type_str, ep->getStateString(), ep);
01134 
01135         if (res != USB_TYPE_IDLE) {
01136             return res;
01137         }
01138 
01139         return USB_TYPE_OK;
01140     }
01141 
01142     return res;
01143 
01144 }
01145 
01146 
01147 USB_TYPE USBHost::controlRead(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len)
01148 {
01149     return controlTransfer(dev, requestType, request, value, index, buf, len, false);
01150 }
01151 
01152 USB_TYPE USBHost::controlWrite(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len)
01153 {
01154     return controlTransfer(dev, requestType, request, value, index, buf, len, true);
01155 }
01156 
01157 USB_TYPE USBHost::controlTransfer(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len, bool write)
01158 {
01159     Lock lock(this);
01160     USB_DBG_TRANSFER("----- CONTROL %s [dev: %p - hub: %d - port: %d] ------", (write) ? "WRITE" : "READ", dev, dev->getHub(), dev->getPort());
01161 
01162     int length_transfer = len;
01163     USB_TYPE res;
01164     uint32_t token;
01165 
01166     control->setSpeed(dev->getSpeed());
01167     control->setSize(dev->getSizeControlEndpoint());
01168     if (dev->isActiveAddress()) {
01169         control->setDeviceAddress(dev->getAddress());
01170     } else {
01171         control->setDeviceAddress(0);
01172     }
01173 
01174     USB_DBG_TRANSFER("Control transfer on device: %d\r\n", control->getDeviceAddress());
01175     fillControlBuf(requestType, request, value, index, len);
01176 
01177 #if DEBUG_TRANSFER
01178     USB_DBG_TRANSFER("SETUP PACKET: ");
01179     for (int i = 0; i < 8; i++) {
01180         printf("%01X ", setupPacket[i]);
01181     }
01182     printf("\r\n");
01183 #endif
01184 
01185     control->setNextToken(TD_SETUP);
01186     res = addTransfer(control, (uint8_t*)setupPacket, 8);
01187 
01188     if (res == USB_TYPE_PROCESSING)
01189 #ifdef USBHOST_OTHER
01190     {
01191         osEvent  event = control->ep_queue.get(TD_TIMEOUT_CTRL);
01192         if (event.status == osEventTimeout) {
01193             disableList(CONTROL_ENDPOINT);
01194             control->setState(USB_TYPE_ERROR);
01195             control->ep_queue.get(0);
01196             control->unqueueTransfer(control->getProcessedTD());
01197             enableList(CONTROL_ENDPOINT);
01198         }
01199     }
01200 #else
01201         control->ep_queue.get();
01202 #endif
01203     res = control->getState();
01204 
01205     USB_DBG_TRANSFER("CONTROL setup stage %s", control->getStateString());
01206 
01207     if (res != USB_TYPE_IDLE) {
01208         return res;
01209     }
01210 
01211     if (length_transfer) {
01212         token = (write) ? TD_OUT : TD_IN;
01213         control->setNextToken(token);
01214         res = addTransfer(control, (uint8_t *)buf, length_transfer);
01215 
01216         if (res == USB_TYPE_PROCESSING)
01217 #ifdef USBHOST_OTHER
01218         {
01219             osEvent  event = control->ep_queue.get(TD_TIMEOUT_CTRL);
01220             if (event.status == osEventTimeout) {
01221                 disableList(CONTROL_ENDPOINT);
01222                 control->setState(USB_TYPE_ERROR);
01223                 control->ep_queue.get(0);
01224                 control->unqueueTransfer(control->getProcessedTD());
01225                 enableList(CONTROL_ENDPOINT);
01226             }
01227         }
01228 #else
01229             control->ep_queue.get();
01230 #endif
01231         res = control->getState();
01232 
01233 #if DEBUG_TRANSFER
01234         USB_DBG_TRANSFER("CONTROL %s stage %s", (write) ? "WRITE" : "READ", control->getStateString());
01235         if (write) {
01236             USB_DBG_TRANSFER("CONTROL WRITE buffer");
01237             for (int i = 0; i < control->getLengthTransferred(); i++) {
01238                 printf("%02X ", buf[i]);
01239             }
01240             printf("\r\n\r\n");
01241         } else {
01242             USB_DBG_TRANSFER("CONTROL READ SUCCESS [%d bytes transferred]", control->getLengthTransferred());
01243             for (int i = 0; i < control->getLengthTransferred(); i++) {
01244                 printf("%02X ", buf[i]);
01245             }
01246             printf("\r\n\r\n");
01247         }
01248 #endif
01249 
01250         if (res != USB_TYPE_IDLE) {
01251             return res;
01252         }
01253     }
01254 
01255     token = (write) ? TD_IN : TD_OUT;
01256     control->setNextToken(token);
01257     res = addTransfer(control, NULL, 0);
01258     if (res == USB_TYPE_PROCESSING)
01259 #ifdef USBHOST_OTHER
01260     {
01261         osEvent  event = control->ep_queue.get(TD_TIMEOUT_CTRL);
01262         if (event.status == osEventTimeout) {
01263             disableList(CONTROL_ENDPOINT);
01264             control->setState(USB_TYPE_ERROR);
01265             control->ep_queue.get(0);
01266             control->unqueueTransfer(control->getProcessedTD());
01267             enableList(CONTROL_ENDPOINT);
01268         }
01269     }
01270 #else
01271         control->ep_queue.get();
01272 #endif
01273     res = control->getState();
01274 
01275     USB_DBG_TRANSFER("CONTROL ack stage %s", control->getStateString());
01276 
01277     if (res != USB_TYPE_IDLE) {
01278         return res;
01279     }
01280 
01281     return USB_TYPE_OK;
01282 }
01283 
01284 
01285 void USBHost::fillControlBuf(uint8_t requestType, uint8_t request, uint16_t value, uint16_t index, int len)
01286 {
01287     setupPacket[0] = requestType;
01288     setupPacket[1] = request;
01289     setupPacket[2] = (uint8_t) value;
01290     setupPacket[3] = (uint8_t) (value >> 8);
01291     setupPacket[4] = (uint8_t) index;
01292     setupPacket[5] = (uint8_t) (index >> 8);
01293     setupPacket[6] = (uint8_t) len;
01294     setupPacket[7] = (uint8_t) (len >> 8);
01295 }