Rtos API example

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers main.cpp Source File

main.cpp

00001 #include "mbed.h"
00002 #include "test_env.h"
00003 #include "rtos.h"
00004 
00005 #if defined(MBED_RTOS_SINGLE_THREAD)
00006   #error [NOT_SUPPORTED] test not supported
00007 #endif
00008 
00009 #define THREAD_DELAY     75
00010 #define SEMAPHORE_SLOTS  2
00011 #define SEM_CHANGES      100
00012 
00013 /*
00014  * The stack size is defined in cmsis_os.h mainly dependent on the underlying toolchain and
00015  * the C standard library. For GCC, ARM_STD and IAR it is defined with a size of 2048 bytes
00016  * and for ARM_MICRO 512. Because of reduce RAM size some targets need a reduced stacksize.
00017  */
00018 #if (defined(TARGET_STM32F072RB) || defined(TARGET_STM32F070RB))
00019     #define STACK_SIZE DEFAULT_STACK_SIZE/2
00020 #elif defined(TARGET_STM32F334R8)
00021     #define STACK_SIZE DEFAULT_STACK_SIZE/4
00022 #elif defined(TARGET_STM32F103RB) && defined(TOOLCHAIN_IAR)
00023     #define STACK_SIZE DEFAULT_STACK_SIZE/4
00024 #elif defined(TARGET_STM32F302R8) && defined(TOOLCHAIN_IAR)
00025     #define STACK_SIZE DEFAULT_STACK_SIZE/2
00026 #elif defined(TARGET_STM32F303K8)
00027     #define STACK_SIZE DEFAULT_STACK_SIZE/4
00028 #elif defined(TARGET_STM32F334C8)
00029     #define STACK_SIZE DEFAULT_STACK_SIZE/4
00030 #elif defined(TARGET_STM32L073RZ)
00031     #define STACK_SIZE DEFAULT_STACK_SIZE/4
00032 #elif (defined(TARGET_EFM32HG_STK3400)) && !defined(TOOLCHAIN_ARM_MICRO)
00033     #define STACK_SIZE 512
00034 #elif (defined(TARGET_EFM32LG_STK3600) || defined(TARGET_EFM32WG_STK3800) || defined(TARGET_EFM32PG_STK3401)) && !defined(TOOLCHAIN_ARM_MICRO)
00035     #define STACK_SIZE 768
00036 #elif (defined(TARGET_EFM32GG_STK3700)) && !defined(TOOLCHAIN_ARM_MICRO)
00037     #define STACK_SIZE 1536
00038 #elif defined(TARGET_MCU_NRF51822)
00039     #define STACK_SIZE 768
00040 #else
00041     #define STACK_SIZE DEFAULT_STACK_SIZE
00042 #endif
00043 
00044 void print_char(char c = '*') {
00045     printf("%c", c);
00046     fflush(stdout);
00047 }
00048 
00049 Semaphore two_slots(SEMAPHORE_SLOTS);
00050 
00051 volatile int change_counter = 0;
00052 volatile int sem_counter = 0;
00053 volatile bool sem_defect = false;
00054 
00055 void test_thread(void const *delay) {
00056     const int thread_delay = int(delay);
00057     while (true) {
00058         two_slots.wait();
00059         sem_counter++;
00060         const bool sem_lock_failed = sem_counter > SEMAPHORE_SLOTS;
00061         const char msg = sem_lock_failed ? 'e' : sem_counter + '0';
00062         print_char(msg);
00063         if (sem_lock_failed) {
00064             sem_defect = true;
00065         }
00066         Thread::wait(thread_delay);
00067         print_char('.');
00068         sem_counter--;
00069         change_counter++;
00070         two_slots.release();
00071     }
00072 }
00073 
00074 int main (void) {
00075     MBED_HOSTTEST_TIMEOUT(20);
00076     MBED_HOSTTEST_SELECT(default_auto);
00077     MBED_HOSTTEST_DESCRIPTION(Semaphore resource lock);
00078     MBED_HOSTTEST_START("RTOS_3");
00079 
00080     const int t1_delay = THREAD_DELAY * 1;
00081     const int t2_delay = THREAD_DELAY * 2;
00082     const int t3_delay = THREAD_DELAY * 3;
00083     Thread t1(test_thread, (void *)t1_delay, osPriorityNormal, STACK_SIZE);
00084     Thread t2(test_thread, (void *)t2_delay, osPriorityNormal, STACK_SIZE);
00085     Thread t3(test_thread, (void *)t3_delay, osPriorityNormal, STACK_SIZE);
00086 
00087     while (true) {
00088         if (change_counter >= SEM_CHANGES or sem_defect == true) {
00089             t1.terminate();
00090             t2.terminate();
00091             t3.terminate();
00092             break;
00093         }
00094     }
00095 
00096     fflush(stdout);
00097     MBED_HOSTTEST_RESULT(!sem_defect);
00098     return 0;
00099 }