Using CAN bus with NUCLEO boards (Demo for the CANnucleo library).

Dependencies:   CANnucleo mbed-dev

Dependents:   BMS_2 Can_sniffer_BMS_GER Can_sniffer_bms ECU_1

Using CAN bus with NUCLEO boards

Demo for the CANnucleo library


Information

Because CAN support has been finally implemented into the mbed library also for the STM boards there is no need to use the CANnucleo library anymore (however you may if you want). See the CAN_Hello example which is trying to demonstrate the mbed built-in CAN API using NUCLEO boards.

Two low cost STM32F103C8T6 boards are connected to the same CAN bus via transceivers (MCP2551 or TJA1040, or etc.). CAN transceivers are not part of NUCLEO boards, therefore must be added by you. Remember also that CAN bus (even a short one) must be terminated with 120 Ohm resitors at both ends.

Schematic

Zoom in

/media/uploads/hudakz/can_nucleo_hello.png

Hookup

/media/uploads/hudakz/20150724_080148.jpg Zoom in

The mbed boards in this example are transmitting CAN messages carrying two data items:

uint8_t   counter;  // one byte
float     voltage;  // four bytes

So in this case the total length of payload data is five bytes (must not exceed eight bytes).
For our convenience, the "<<" (append) operator is used to add data to the CAN message.
The usage of "<<" and ">>" operators is similar to the C++ io-streams operators. We can append data one at a time

txMsg << counter;
txMsg << voltage;

or combine all into one expression.

txMsg << counter << voltage;

The actual data length of a CAN message is automatically updated when using "<<" or ">>" operators.
After successful transmission the CAN message is printed to the serial terminal of the connected PC. So we can check the details (ID, type, format, length and raw data). If something goes wrong during transmission a "Transmission error" message is printed to the serial terminal.

On arrival of a CAN message it's also printed to the serial terminal of the connected PC. So we can see the details (ID, type, format, length and raw data). Then its ID is checked. If there is a match with the ID of awaited message then data is extracted from the CAN message (in the same sequence as it was appended before transmitting) using the ">>" (extract) operator one at a time

rxMsg >> counter;
rxMsg >> voltage;

or all in one shot

rxMsg >> counter >> voltage;

Important

Before compiling the project, in the mbed-dev library open the device.h file associated with the selected target board and add #undef DEVICE_CAN as follows:

device.h

#ifndef MBED_DEVICE_H
#define MBED_DEVICE_H

//=======================================
#define DEVICE_ID_LENGTH       24

#undef DEVICE_CAN

#include "objects.h"

#endif

NOTE: Failing to do so will result in compilation errors.

The same source code is used for both boards, but:

  • For board #1 compile the example without any change to main.cpp
  • For board #2 comment out the line #define BOARD1 1 before compiling

Once binaries have been downloaded to the boards, reset board #1.

NOTE:

The code published here was written for the official NUCLEO boards. When using STM32F103C8T6 boards, shown in the picture above (LED1 is connected to pin PC_13 and, via a resistor, to +3.3V),

  • Import the mbed-STM32F103C8T6 library into your project.
  • Include (uncomment) the line #define TARGET_STM32F103C8T6 1
  • Select NUCLEO-F103RB as target platform for the online compiler.

CAN bus related information

Committer:
hudakz
Date:
Tue Mar 07 19:12:22 2017 +0000
Revision:
23:069287e799cd
Parent:
22:f4682a5ddda6
Child:
24:e2907bcba75e
Updated.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
hudakz 0:c5e5d0df6f2a 1 /*
hudakz 16:a86f339d1c25 2 * An example showing how to use the CANnucleo library:
hudakz 0:c5e5d0df6f2a 3 *
hudakz 20:eb1a8042605e 4 * Two affordable (less than $3 on ebay) STM32F103C8T6 boards (20kB SRAM, 64kB Flash),
hudakz 20:eb1a8042605e 5 * (see [https://developer.mbed.org/users/hudakz/code/STM32F103C8T6_Hello/] for more details)
hudakz 6:7ff95ce72f6d 6 * are connected to the same CAN bus via transceivers (MCP2551 or TJA1040, or etc.).
hudakz 6:7ff95ce72f6d 7 * CAN transceivers are not part of NUCLEO boards, therefore must be added by you.
hudakz 6:7ff95ce72f6d 8 * Remember also that CAN bus (even a short one) must be terminated with 120 Ohm resitors at both ends.
hudakz 6:7ff95ce72f6d 9 *
hudakz 16:a86f339d1c25 10 * For more details see the wiki page <https://developer.mbed.org/users/hudakz/code/CANnucleo_Hello/>
hudakz 6:7ff95ce72f6d 11 *
hudakz 21:7120a0dcc8ee 12 * NOTE: If you'd like to use an STM32F103C8T6 board uncomment line 23
hudakz 6:7ff95ce72f6d 13 *
hudakz 6:7ff95ce72f6d 14 * The same code is used for both NUCLEO boards, but:
hudakz 0:c5e5d0df6f2a 15 * For board #1 compile the example without any change.
hudakz 18:22977a898fe9 16 * For board #2 comment out line 23 before compiling
hudakz 4:ccf4ac2deac8 17 *
hudakz 6:7ff95ce72f6d 18 * Once the binaries have been downloaded to the boards reset board #1.
hudakz 0:c5e5d0df6f2a 19 *
hudakz 0:c5e5d0df6f2a 20 */
hudakz 23:069287e799cd 21 #include "CANnucleo.h"
hudakz 0:c5e5d0df6f2a 22
hudakz 22:f4682a5ddda6 23 #define BOARD1 1 // comment out this line when compiling for board #2
hudakz 22:f4682a5ddda6 24 //#define TARGET_STM32F103C8T6 1 // uncomment this line when using STM32F103C8T6 boards!
hudakz 0:c5e5d0df6f2a 25
hudakz 16:a86f339d1c25 26 #if defined(TARGET_STM32F103C8T6)
hudakz 21:7120a0dcc8ee 27 #include "stm32f103c8t6.h"
hudakz 19:872e304d7e17 28 #define LED_PIN PC_13
hudakz 10:66da8731bdb6 29 const int OFF = 1;
hudakz 10:66da8731bdb6 30 const int ON = 0;
hudakz 0:c5e5d0df6f2a 31 #else
hudakz 19:872e304d7e17 32 #define LED_PIN LED1
hudakz 10:66da8731bdb6 33 const int OFF = 0;
hudakz 10:66da8731bdb6 34 const int ON = 1;
hudakz 0:c5e5d0df6f2a 35 #endif
hudakz 0:c5e5d0df6f2a 36
hudakz 10:66da8731bdb6 37 #if defined(BOARD1)
hudakz 10:66da8731bdb6 38 const unsigned int RX_ID = 0x100;
hudakz 10:66da8731bdb6 39 const unsigned int TX_ID = 0x101;
hudakz 6:7ff95ce72f6d 40 #else
hudakz 10:66da8731bdb6 41 const unsigned int RX_ID = 0x101;
hudakz 10:66da8731bdb6 42 const unsigned int TX_ID = 0x100;
hudakz 6:7ff95ce72f6d 43 #endif
hudakz 6:7ff95ce72f6d 44
hudakz 16:a86f339d1c25 45 #include "mbed.h"
hudakz 16:a86f339d1c25 46
hudakz 17:18d4d0ff26a6 47 /*
hudakz 17:18d4d0ff26a6 48 * To avaoid name collision with the CAN and CANMessage classes built into the mbed library
hudakz 17:18d4d0ff26a6 49 * the CANnucleo's CAN and CANMessage classes have been moved into the CANnucleo namespace.
hudakz 20:eb1a8042605e 50 * Remember to qualify them with the CANnucleo namespace.
hudakz 17:18d4d0ff26a6 51 */
hudakz 21:7120a0dcc8ee 52 CANnucleo::CAN* can;
hudakz 17:18d4d0ff26a6 53 CANnucleo::CANMessage rxMsg;
hudakz 17:18d4d0ff26a6 54 CANnucleo::CANMessage txMsg;
hudakz 19:872e304d7e17 55 DigitalOut led(LED_PIN);
hudakz 23:069287e799cd 56 int ledStatus;
hudakz 18:22977a898fe9 57 Timer timer;
hudakz 17:18d4d0ff26a6 58 int counter = 0;
hudakz 17:18d4d0ff26a6 59 volatile bool msgAvailable = false;
hudakz 22:f4682a5ddda6 60 Serial* pc;
hudakz 0:c5e5d0df6f2a 61
hudakz 16:a86f339d1c25 62 /**
hudakz 16:a86f339d1c25 63 * @brief 'CAN receive-complete' interrup handler.
hudakz 16:a86f339d1c25 64 * @note Called on arrival of new CAN message.
hudakz 16:a86f339d1c25 65 * Keep it as short as possible.
hudakz 16:a86f339d1c25 66 * @param
hudakz 16:a86f339d1c25 67 * @retval
hudakz 16:a86f339d1c25 68 */
hudakz 16:a86f339d1c25 69 void onMsgReceived() {
hudakz 16:a86f339d1c25 70 msgAvailable = true;
hudakz 16:a86f339d1c25 71 }
hudakz 16:a86f339d1c25 72
hudakz 16:a86f339d1c25 73 /**
hudakz 16:a86f339d1c25 74 * @brief Main
hudakz 16:a86f339d1c25 75 * @note
hudakz 16:a86f339d1c25 76 * @param
hudakz 16:a86f339d1c25 77 * @retval
hudakz 16:a86f339d1c25 78 */
hudakz 16:a86f339d1c25 79 int main() {
hudakz 21:7120a0dcc8ee 80 #if defined(TARGET_STM32F103C8T6)
hudakz 21:7120a0dcc8ee 81 confSysClock(); //Configure system clock (72MHz HSE clock, 48MHz USB clock)
hudakz 21:7120a0dcc8ee 82 #endif
hudakz 22:f4682a5ddda6 83 pc = new Serial(PA_2, PA_3);
hudakz 23:069287e799cd 84 pc->baud(115200);
hudakz 21:7120a0dcc8ee 85 can = new CANnucleo::CAN(PA_11, PA_12); // CAN Rx pin name, CAN Tx pin name
hudakz 21:7120a0dcc8ee 86 can->frequency(1000000); // set bit rate to 1Mbps
hudakz 21:7120a0dcc8ee 87 can->attach(&onMsgReceived); // attach 'CAN receive-complete' interrupt handler
hudakz 16:a86f339d1c25 88
hudakz 0:c5e5d0df6f2a 89 #if defined(BOARD1)
hudakz 10:66da8731bdb6 90 led = ON; // turn LED on
hudakz 10:66da8731bdb6 91 timer.start(); // start timer
hudakz 22:f4682a5ddda6 92 pc->printf("CANnucleo_Hello board #1\r\n");
hudakz 0:c5e5d0df6f2a 93 #else
hudakz 10:66da8731bdb6 94 led = OFF; // turn LED off
hudakz 22:f4682a5ddda6 95 pc->printf("CANnucleo_Hello board #2\r\n");
hudakz 0:c5e5d0df6f2a 96 #endif
hudakz 0:c5e5d0df6f2a 97
hudakz 0:c5e5d0df6f2a 98 while(1) {
hudakz 23:069287e799cd 99 if(timer.read_ms() >= 1000) { // check for timeout
hudakz 16:a86f339d1c25 100 timer.stop(); // stop timer
hudakz 16:a86f339d1c25 101 timer.reset(); // reset timer
hudakz 16:a86f339d1c25 102 counter++; // increment counter
hudakz 23:069287e799cd 103 ledStatus = led.read(); // get led state
hudakz 16:a86f339d1c25 104 txMsg.clear(); // clear Tx message storage
hudakz 16:a86f339d1c25 105 txMsg.id = TX_ID; // set ID
hudakz 16:a86f339d1c25 106 txMsg << counter; // append first data item
hudakz 23:069287e799cd 107 txMsg << ledStatus; // append second data item (total data lenght must be <= 8 bytes!)
hudakz 16:a86f339d1c25 108 led = OFF; // turn LED off
hudakz 21:7120a0dcc8ee 109 if(can->write(txMsg)) // transmit message
hudakz 22:f4682a5ddda6 110 pc->printf("CAN message sent\r\n");
hudakz 10:66da8731bdb6 111 else
hudakz 22:f4682a5ddda6 112 pc->printf("Transmission error\r\n");
hudakz 0:c5e5d0df6f2a 113 }
hudakz 16:a86f339d1c25 114 if(msgAvailable) {
hudakz 16:a86f339d1c25 115 msgAvailable = false; // reset flag for next use
hudakz 21:7120a0dcc8ee 116 can->read(rxMsg); // read message into Rx message storage
hudakz 22:f4682a5ddda6 117 pc->printf("CAN message received\r\n");
hudakz 22:f4682a5ddda6 118 pc->printf(" ID = 0x%.3x\r\n", rxMsg.id);
hudakz 22:f4682a5ddda6 119 pc->printf(" Type = %d\r\n", rxMsg.type);
hudakz 22:f4682a5ddda6 120 pc->printf(" Format = %d\r\n", rxMsg.format);
hudakz 22:f4682a5ddda6 121 pc->printf(" Length = %d\r\n", rxMsg.len);
hudakz 22:f4682a5ddda6 122 pc->printf(" Data =");
hudakz 2:49c9430860d1 123 for(int i = 0; i < rxMsg.len; i++)
hudakz 22:f4682a5ddda6 124 pc->printf(" %.2x", rxMsg.data[i]);
hudakz 22:f4682a5ddda6 125 pc->printf("\r\n");
hudakz 16:a86f339d1c25 126 // Filtering performed by software:
hudakz 21:7120a0dcc8ee 127 if(rxMsg.id == RX_ID) { // See comments in CANnucleo.cpp for filtering performed by hardware
hudakz 16:a86f339d1c25 128 rxMsg >> counter; // extract first data item
hudakz 23:069287e799cd 129 // rxMsg >> ledStatus; // extract second data item
hudakz 22:f4682a5ddda6 130 pc->printf(" counter = %d\r\n", counter);
hudakz 16:a86f339d1c25 131 led = ON; // turn LED on
hudakz 16:a86f339d1c25 132 timer.start(); // transmission lag
hudakz 0:c5e5d0df6f2a 133 }
hudakz 0:c5e5d0df6f2a 134 }
hudakz 0:c5e5d0df6f2a 135 }
hudakz 0:c5e5d0df6f2a 136 }