Controller Area Network library for NUCLEO boards equipped with CAN peripheral.

Dependents:   Nucleo-Courtois CANBLE CANnucleo_Hello3 Nucleo_Serialprintf ... more

Controller Area Network library for the NUCLEO and DISCOVERY boards equipped with CAN peripheral


Information

Because CAN support has been finally implemented into the mbed library also for the ST boards there is no need to use the CANnucleo library anymore (however you may if you want). The CAN_Hello example is trying to demonstrate the mbed built-in CAN API with NUCLEO boards.


Provides CAN support for the following boards:

with the following features:

  • Easy to use. Delete the mbed library from your project and import the latest mbed-dev and CANnucleo libraries. In the mbed-dev library open the device.h file associated with the selected target board and add #undef DEVICE_CAN as follows:

device.h

#ifndef MBED_DEVICE_H
#define MBED_DEVICE_H

//=======================================
#define DEVICE_ID_LENGTH       24

#undef DEVICE_CAN

#include "objects.h"

#endif

See the CANnucleo_Hello demo for more details.

  • Automatic recovery from bus-off state can be enabled/disabled in the constructor (defaults to ENABLE).
  • Up to 14 filters (0 - 13) are available for the application to set up for message filtering performed by hardware.
    For more details see below or have a look at the comments in CANnucleo.cpp.
  • One CAN channel per NUCLEO board is supported. The CAN peripheral can be connected either to pins PA_11, PA_12 (Receiver, Transmitter) or to pins PB_8, PB_9 (Receiver, Transmitter). This is configured when creating a CAN instance.
  • Simplifies adding/getting data to/from a CAN message by using the << (append) and the >> (extract) operators.

Import programCANnucleo_Hello

Using CAN bus with NUCLEO boards (Demo for the CANnucleo library).



Filtering performed by the built-in CAN controller without disturbing the CPU

CANnucleo supports only mask mode and 32-bit filter scale. Identifier list mode filtering and 16-bit filter scale are not supported. There are 14 filters available (0 - 13) for the application to set up. Each filter is a 32-bit filter defined by a filter ID and a filter mask. If no filter is set up then no CAN message is accepted! That's why filter #0 is set up in the constructor to accept all CAN messages by default. On reception of a message it is compared with filter #0. If there is a match, the message is accepted and stored. If there is no match, the incoming identifier is then compared with the next filter. If the received identifier does not match any of the identifiers configured in the filters, the message is discarded by hardware without disturbing the software.

CAN filter function - designed to setup a CAN filter

int CAN::filter(unsigned int id, unsigned int mask, CANFormat format, int handle)

Parameters

id - 'Filter ID' defines the bit values to be compared with the corresponding received bits.

Mapping of 32-bits (4-bytes) :

STID[10:3]STID[2:0] EXID[17:13]EXID[12:5]EXID[4:0] IDE RTR 0
  • STID - Stardard Identifier bits
  • EXID - Extended Identifier bits
  • [x:y]- bit range
  • IDE - Identifier Extension bit (0 -> Standard Identifier, 1 -> Extended Identifier)
  • RTR - Remote Transmission Request bit (0 -> Remote Transmission Request, 1 -> Standard message)

mask - 'Filter mask' defines which bits of the 'Filter ID' are compared with the received bits and which are disregarded.
Mapping of 32-bits (4-bytes) :

STID[10:3]STID[2:0] EXID[17:13]EXID[12:5]EXID[4:0] IDE RTR 0
  • STID - Stardard Identifier bits
  • EXID - Extended Identifier bits
  • [x:y]- bit range
  • IDE - Identifier Extension bit
  • RTR - Remote Transmission Request bit
  • 1 -> bit is considered
  • 0 -> bit is disregarded

format - This parameter must be CANAny
handle - Selects the filter. This parameter must be a number between 0 and 13.
retval - 0 - successful, 1 - error, 2 - busy, 3 - time out

Example of filter set up and filtering

Let's assume we would like to accept only messages with standard identifier 0x207:

STID[15:0] = 0x207 = 00000010 00000111


We map the STID to filter ID by shifting the bits adequately:

Filter ID = STID << (16 + (15 - 10)) = STID << 21 = 01000000 11100000 00000000 00000000


To compare only the bits representing STID we set the filter mask appropriately:

Filter mask = 11111111 11100000 00000000 00000100 = 0xFFE00004
              |||||||| |||                    |
              -------- ---                    |
                  |     |                     |
           STID[10:3]  STID[2:0]             IDE


Recall that filter #0 has been set up in the constructor to accept all CAN messages by default. So we have to reconfigure it. If we were set up filter #1 here then filter #0 would accept all the messages and no message would reach filter #1!
To reconfigure (set up) filter #0 we call:

can.filter(0x207 << 21, 0xFFE00004, CANAny, 0);


            Only these bits of 'Filter id' (set to 1 here in 'Filter mask') are compared 
            with the corresponding bits of received message (the others are disregarded)
                                |
                 ---------------------------------
                 |||||||| |||                    |
   Filter mask = 11111111 11100000 00000000 00000100 (= 0xFFE00004)
   Filter id   = 01000000 11100000 00000000 00000000 (= 0x40E00000)
                 |||||||| |||                    |
                 ---------------------------------
                                |
            To accept the message the values of these bits must match.
            Otherwise the message is passed to the next filter or
            discarded if this was the last active filter.
                                |
                 ---------------------------------
                 |||||||| |||                    |
   Received id = 01000000 11100000 00000000 00000010 (= 0x40E00002)
                             ||||| |||||||| ||||| ||
                             -----------------------
                                         |
                          These bits (set to 0 in 'Filter mask') are disregarded (masked).
                          They can have arbitrary values.


NOTE: For the meaning of individual bits see the mapping of 32-bits explained above.

We can use the filter function to setup more (up to 14) CAN filters for example as follows:

can.filter(0x207 << 21, 0xFFE00004, CANAny, 0);    // filter #0
can.filter(0x251 << 21, 0xFFE00004, CANAny, 1);    // filter #1
can.filter(0x304 << 21, 0xFFE00004, CANAny, 2);    // filter #2
...
Committer:
hudakz
Date:
Fri Oct 23 19:45:00 2015 +0000
Revision:
6:c5a40d5fd9f1
Parent:
5:b53e5ee15315
Child:
8:5c90d6b9a382
Automatic recovery from bus-off state enabled (by default).

Who changed what in which revision?

UserRevisionLine numberNew contents of line
hudakz 0:e29bc8e0dddd 1 /* mbed Microcontroller Library
hudakz 0:e29bc8e0dddd 2 * Copyright (c) 2006-2013 ARM Limited
hudakz 0:e29bc8e0dddd 3 *
hudakz 0:e29bc8e0dddd 4 * Licensed under the Apache License, Version 2.0 (the "License");
hudakz 0:e29bc8e0dddd 5 * you may not use this file except in compliance with the License.
hudakz 0:e29bc8e0dddd 6 * You may obtain a copy of the License at
hudakz 0:e29bc8e0dddd 7 *
hudakz 0:e29bc8e0dddd 8 * http://www.apache.org/licenses/LICENSE-2.0
hudakz 0:e29bc8e0dddd 9 *
hudakz 0:e29bc8e0dddd 10 * Unless required by applicable law or agreed to in writing, software
hudakz 0:e29bc8e0dddd 11 * distributed under the License is distributed on an "AS IS" BASIS,
hudakz 0:e29bc8e0dddd 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
hudakz 0:e29bc8e0dddd 13 * See the License for the specific language governing permissions and
hudakz 0:e29bc8e0dddd 14 * limitations under the License.
hudakz 0:e29bc8e0dddd 15 *
hudakz 0:e29bc8e0dddd 16 * Modified by Zoltan Hudak <hudakz@inbox.com>
hudakz 0:e29bc8e0dddd 17 *
hudakz 0:e29bc8e0dddd 18 */
hudakz 0:e29bc8e0dddd 19 #include "CAN.h"
hudakz 0:e29bc8e0dddd 20 //#if DEVICE_CAN
hudakz 0:e29bc8e0dddd 21 #include "cmsis.h"
hudakz 0:e29bc8e0dddd 22
hudakz 0:e29bc8e0dddd 23 namespace mbed
hudakz 0:e29bc8e0dddd 24 {
hudakz 0:e29bc8e0dddd 25
hudakz 0:e29bc8e0dddd 26 /**
hudakz 6:c5a40d5fd9f1 27 * @brief Constructor
hudakz 6:c5a40d5fd9f1 28 * @note Constructs an instance of CAN class
hudakz 6:c5a40d5fd9f1 29 * @param rxPin: CAN Rx pin name
hudakz 6:c5a40d5fd9f1 30 * @param txPin: CAN Tx pin name
hudakz 6:c5a40d5fd9f1 31 * @param abom: Automatic recovery from bus-off state (defaults to enabled)
hudakz 0:e29bc8e0dddd 32 * @retval
hudakz 0:e29bc8e0dddd 33 */
hudakz 6:c5a40d5fd9f1 34 CAN::CAN(PinName rxPin, PinName txPin, FunctionalState abom /* = ENABLE */) :
hudakz 0:e29bc8e0dddd 35 _can(),
hudakz 0:e29bc8e0dddd 36 _irq() {
hudakz 6:c5a40d5fd9f1 37 can_init(&_can, rxPin, txPin, abom);
hudakz 0:e29bc8e0dddd 38 can_irq_init(&_can, (&CAN::_irq_handler), (uint32_t)this);
hudakz 0:e29bc8e0dddd 39 }
hudakz 0:e29bc8e0dddd 40
hudakz 0:e29bc8e0dddd 41 /**
hudakz 0:e29bc8e0dddd 42 * @brief
hudakz 0:e29bc8e0dddd 43 * @note
hudakz 0:e29bc8e0dddd 44 * @param
hudakz 0:e29bc8e0dddd 45 * @retval
hudakz 0:e29bc8e0dddd 46 */
hudakz 0:e29bc8e0dddd 47 CAN::~CAN(void) {
hudakz 0:e29bc8e0dddd 48 can_irq_free(&_can);
hudakz 0:e29bc8e0dddd 49 can_free(&_can);
hudakz 0:e29bc8e0dddd 50 }
hudakz 0:e29bc8e0dddd 51
hudakz 0:e29bc8e0dddd 52 /**
hudakz 0:e29bc8e0dddd 53 * @brief
hudakz 0:e29bc8e0dddd 54 * @note
hudakz 0:e29bc8e0dddd 55 * @param
hudakz 0:e29bc8e0dddd 56 * @retval
hudakz 0:e29bc8e0dddd 57 */
hudakz 0:e29bc8e0dddd 58 int CAN::frequency(int f) {
hudakz 0:e29bc8e0dddd 59 return can_frequency(&_can, f);
hudakz 0:e29bc8e0dddd 60 }
hudakz 0:e29bc8e0dddd 61
hudakz 0:e29bc8e0dddd 62 /**
hudakz 0:e29bc8e0dddd 63 * @brief
hudakz 0:e29bc8e0dddd 64 * @note
hudakz 0:e29bc8e0dddd 65 * @param
hudakz 0:e29bc8e0dddd 66 * @retval
hudakz 0:e29bc8e0dddd 67 */
hudakz 0:e29bc8e0dddd 68 int CAN::write(CANMessage msg) {
hudakz 0:e29bc8e0dddd 69 return can_write(&_can, msg, 0);
hudakz 0:e29bc8e0dddd 70 }
hudakz 0:e29bc8e0dddd 71
hudakz 0:e29bc8e0dddd 72 /**
hudakz 0:e29bc8e0dddd 73 * @brief
hudakz 0:e29bc8e0dddd 74 * @note
hudakz 0:e29bc8e0dddd 75 * @param
hudakz 0:e29bc8e0dddd 76 * @retval
hudakz 0:e29bc8e0dddd 77 */
hudakz 0:e29bc8e0dddd 78 int CAN::read(CANMessage& msg, int handle) {
hudakz 0:e29bc8e0dddd 79 return can_read(&_can, &msg, handle);
hudakz 0:e29bc8e0dddd 80 }
hudakz 0:e29bc8e0dddd 81
hudakz 0:e29bc8e0dddd 82 /**
hudakz 0:e29bc8e0dddd 83 * @brief
hudakz 0:e29bc8e0dddd 84 * @note
hudakz 0:e29bc8e0dddd 85 * @param
hudakz 0:e29bc8e0dddd 86 * @retval
hudakz 0:e29bc8e0dddd 87 */
hudakz 0:e29bc8e0dddd 88 void CAN::reset(void) {
hudakz 0:e29bc8e0dddd 89 can_reset(&_can);
hudakz 0:e29bc8e0dddd 90 }
hudakz 0:e29bc8e0dddd 91
hudakz 0:e29bc8e0dddd 92 /**
hudakz 0:e29bc8e0dddd 93 * @brief
hudakz 0:e29bc8e0dddd 94 * @note
hudakz 0:e29bc8e0dddd 95 * @param
hudakz 0:e29bc8e0dddd 96 * @retval
hudakz 0:e29bc8e0dddd 97 */
hudakz 0:e29bc8e0dddd 98 unsigned char CAN::rderror(void) {
hudakz 0:e29bc8e0dddd 99 return can_rderror(&_can);
hudakz 0:e29bc8e0dddd 100 }
hudakz 0:e29bc8e0dddd 101
hudakz 0:e29bc8e0dddd 102 /**
hudakz 0:e29bc8e0dddd 103 * @brief
hudakz 0:e29bc8e0dddd 104 * @note
hudakz 0:e29bc8e0dddd 105 * @param
hudakz 0:e29bc8e0dddd 106 * @retval
hudakz 0:e29bc8e0dddd 107 */
hudakz 0:e29bc8e0dddd 108 unsigned char CAN::tderror(void) {
hudakz 0:e29bc8e0dddd 109 return can_tderror(&_can);
hudakz 0:e29bc8e0dddd 110 }
hudakz 0:e29bc8e0dddd 111
hudakz 0:e29bc8e0dddd 112 /**
hudakz 0:e29bc8e0dddd 113 * @brief
hudakz 0:e29bc8e0dddd 114 * @note
hudakz 0:e29bc8e0dddd 115 * @param
hudakz 0:e29bc8e0dddd 116 * @retval
hudakz 0:e29bc8e0dddd 117 */
hudakz 0:e29bc8e0dddd 118 void CAN::monitor(bool silent) {
hudakz 0:e29bc8e0dddd 119 can_monitor(&_can, (silent) ? 1 : 0);
hudakz 0:e29bc8e0dddd 120 }
hudakz 0:e29bc8e0dddd 121
hudakz 0:e29bc8e0dddd 122 /**
hudakz 0:e29bc8e0dddd 123 * @brief
hudakz 0:e29bc8e0dddd 124 * @note
hudakz 0:e29bc8e0dddd 125 * @param
hudakz 0:e29bc8e0dddd 126 * @retval
hudakz 0:e29bc8e0dddd 127 */
hudakz 0:e29bc8e0dddd 128 int CAN::mode(Mode mode) {
hudakz 0:e29bc8e0dddd 129 return can_mode(&_can, (CanMode) mode);
hudakz 0:e29bc8e0dddd 130 }
hudakz 0:e29bc8e0dddd 131
hudakz 0:e29bc8e0dddd 132 /**
hudakz 0:e29bc8e0dddd 133 * @brief
hudakz 0:e29bc8e0dddd 134 * @note
hudakz 0:e29bc8e0dddd 135 * @param
hudakz 0:e29bc8e0dddd 136 * @retval
hudakz 0:e29bc8e0dddd 137 */
hudakz 0:e29bc8e0dddd 138 int CAN::filter(unsigned int id, unsigned int mask, CANFormat format /* CANAny */, int handle /* 0 */) {
hudakz 0:e29bc8e0dddd 139 return can_filter(&_can, id, mask, format, handle);
hudakz 0:e29bc8e0dddd 140 }
hudakz 0:e29bc8e0dddd 141
hudakz 0:e29bc8e0dddd 142 /**
hudakz 0:e29bc8e0dddd 143 * @brief Attaches handler funcion to CAN1 RX0 Interrupt
hudakz 0:e29bc8e0dddd 144 * @note Only CAN1 RX0 Interrupt supported
hudakz 0:e29bc8e0dddd 145 * @param fptr: pointer to a void (*)(void) function
hudakz 0:e29bc8e0dddd 146 * @param type: not used (only CAN1 RX0 Interrupt supported)
hudakz 0:e29bc8e0dddd 147 * @retval
hudakz 0:e29bc8e0dddd 148 */
hudakz 0:e29bc8e0dddd 149 void CAN::attach(void (*fptr) (void), IrqType type) {
hudakz 0:e29bc8e0dddd 150 HAL_NVIC_DisableIRQ(USB_LP_CAN1_RX0_IRQn);
hudakz 0:e29bc8e0dddd 151 if(fptr) {
hudakz 0:e29bc8e0dddd 152 can_irq_set(fptr);
hudakz 0:e29bc8e0dddd 153 }
hudakz 0:e29bc8e0dddd 154 can_irq_init(&_can, &CAN::_irq_handler, (uint32_t) this);
hudakz 0:e29bc8e0dddd 155 HAL_NVIC_EnableIRQ(USB_LP_CAN1_RX0_IRQn);
hudakz 0:e29bc8e0dddd 156 }
hudakz 0:e29bc8e0dddd 157
hudakz 0:e29bc8e0dddd 158 /**
hudakz 0:e29bc8e0dddd 159 * @brief
hudakz 0:e29bc8e0dddd 160 * @note
hudakz 0:e29bc8e0dddd 161 * @param
hudakz 0:e29bc8e0dddd 162 * @retval
hudakz 0:e29bc8e0dddd 163 */
hudakz 0:e29bc8e0dddd 164 void CAN::_irq_handler(uint32_t id, CanIrqType type) {
hudakz 0:e29bc8e0dddd 165 CAN* handler = (CAN*)id;
hudakz 0:e29bc8e0dddd 166 handler->_irq[type].call();
hudakz 0:e29bc8e0dddd 167 }
hudakz 0:e29bc8e0dddd 168
hudakz 0:e29bc8e0dddd 169 } // namespace mbed
hudakz 0:e29bc8e0dddd 170
hudakz 0:e29bc8e0dddd 171
hudakz 0:e29bc8e0dddd 172
hudakz 5:b53e5ee15315 173
hudakz 6:c5a40d5fd9f1 174