Controller Area Network library for NUCLEO boards equipped with CAN peripheral.

Dependents:   Nucleo-Courtois CANBLE CANnucleo_Hello3 Nucleo_Serialprintf ... more

Controller Area Network library for the NUCLEO and DISCOVERY boards equipped with CAN peripheral


Information

Because CAN support has been finally implemented into the mbed library also for the ST boards there is no need to use the CANnucleo library anymore (however you may if you want). The CAN_Hello example is trying to demonstrate the mbed built-in CAN API with NUCLEO boards.


Provides CAN support for the following boards:

with the following features:

  • Easy to use. Delete the mbed library from your project and import the latest mbed-dev and CANnucleo libraries. In the mbed-dev library open the device.h file associated with the selected target board and add #undef DEVICE_CAN as follows:

device.h

#ifndef MBED_DEVICE_H
#define MBED_DEVICE_H

//=======================================
#define DEVICE_ID_LENGTH       24

#undef DEVICE_CAN

#include "objects.h"

#endif

See the CANnucleo_Hello demo for more details.

  • Automatic recovery from bus-off state can be enabled/disabled in the constructor (defaults to ENABLE).
  • Up to 14 filters (0 - 13) are available for the application to set up for message filtering performed by hardware.
    For more details see below or have a look at the comments in CANnucleo.cpp.
  • One CAN channel per NUCLEO board is supported. The CAN peripheral can be connected either to pins PA_11, PA_12 (Receiver, Transmitter) or to pins PB_8, PB_9 (Receiver, Transmitter). This is configured when creating a CAN instance.
  • Simplifies adding/getting data to/from a CAN message by using the << (append) and the >> (extract) operators.

Import programCANnucleo_Hello

Using CAN bus with NUCLEO boards (Demo for the CANnucleo library).



Filtering performed by the built-in CAN controller without disturbing the CPU

CANnucleo supports only mask mode and 32-bit filter scale. Identifier list mode filtering and 16-bit filter scale are not supported. There are 14 filters available (0 - 13) for the application to set up. Each filter is a 32-bit filter defined by a filter ID and a filter mask. If no filter is set up then no CAN message is accepted! That's why filter #0 is set up in the constructor to accept all CAN messages by default. On reception of a message it is compared with filter #0. If there is a match, the message is accepted and stored. If there is no match, the incoming identifier is then compared with the next filter. If the received identifier does not match any of the identifiers configured in the filters, the message is discarded by hardware without disturbing the software.

CAN filter function - designed to setup a CAN filter

int CAN::filter(unsigned int id, unsigned int mask, CANFormat format, int handle)

Parameters

id - 'Filter ID' defines the bit values to be compared with the corresponding received bits.

Mapping of 32-bits (4-bytes) :

STID[10:3]STID[2:0] EXID[17:13]EXID[12:5]EXID[4:0] IDE RTR 0
  • STID - Stardard Identifier bits
  • EXID - Extended Identifier bits
  • [x:y]- bit range
  • IDE - Identifier Extension bit (0 -> Standard Identifier, 1 -> Extended Identifier)
  • RTR - Remote Transmission Request bit (0 -> Remote Transmission Request, 1 -> Standard message)

mask - 'Filter mask' defines which bits of the 'Filter ID' are compared with the received bits and which are disregarded.
Mapping of 32-bits (4-bytes) :

STID[10:3]STID[2:0] EXID[17:13]EXID[12:5]EXID[4:0] IDE RTR 0
  • STID - Stardard Identifier bits
  • EXID - Extended Identifier bits
  • [x:y]- bit range
  • IDE - Identifier Extension bit
  • RTR - Remote Transmission Request bit
  • 1 -> bit is considered
  • 0 -> bit is disregarded

format - This parameter must be CANAny
handle - Selects the filter. This parameter must be a number between 0 and 13.
retval - 0 - successful, 1 - error, 2 - busy, 3 - time out

Example of filter set up and filtering

Let's assume we would like to accept only messages with standard identifier 0x207:

STID[15:0] = 0x207 = 00000010 00000111


We map the STID to filter ID by shifting the bits adequately:

Filter ID = STID << (16 + (15 - 10)) = STID << 21 = 01000000 11100000 00000000 00000000


To compare only the bits representing STID we set the filter mask appropriately:

Filter mask = 11111111 11100000 00000000 00000100 = 0xFFE00004
              |||||||| |||                    |
              -------- ---                    |
                  |     |                     |
           STID[10:3]  STID[2:0]             IDE


Recall that filter #0 has been set up in the constructor to accept all CAN messages by default. So we have to reconfigure it. If we were set up filter #1 here then filter #0 would accept all the messages and no message would reach filter #1!
To reconfigure (set up) filter #0 we call:

can.filter(0x207 << 21, 0xFFE00004, CANAny, 0);


            Only these bits of 'Filter id' (set to 1 here in 'Filter mask') are compared 
            with the corresponding bits of received message (the others are disregarded)
                                |
                 ---------------------------------
                 |||||||| |||                    |
   Filter mask = 11111111 11100000 00000000 00000100 (= 0xFFE00004)
   Filter id   = 01000000 11100000 00000000 00000000 (= 0x40E00000)
                 |||||||| |||                    |
                 ---------------------------------
                                |
            To accept the message the values of these bits must match.
            Otherwise the message is passed to the next filter or
            discarded if this was the last active filter.
                                |
                 ---------------------------------
                 |||||||| |||                    |
   Received id = 01000000 11100000 00000000 00000010 (= 0x40E00002)
                             ||||| |||||||| ||||| ||
                             -----------------------
                                         |
                          These bits (set to 0 in 'Filter mask') are disregarded (masked).
                          They can have arbitrary values.


NOTE: For the meaning of individual bits see the mapping of 32-bits explained above.

We can use the filter function to setup more (up to 14) CAN filters for example as follows:

can.filter(0x207 << 21, 0xFFE00004, CANAny, 0);    // filter #0
can.filter(0x251 << 21, 0xFFE00004, CANAny, 1);    // filter #1
can.filter(0x304 << 21, 0xFFE00004, CANAny, 2);    // filter #2
...
Committer:
hudakz
Date:
Tue Aug 16 21:09:11 2016 +0000
Revision:
24:353237492903
Parent:
22:ea766d08c9db
Child:
27:eed6929956ea
Updated.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
hudakz 0:e29bc8e0dddd 1 /* mbed Microcontroller Library
hudakz 0:e29bc8e0dddd 2 * Copyright (c) 2006-2013 ARM Limited
hudakz 0:e29bc8e0dddd 3 *
hudakz 0:e29bc8e0dddd 4 * Licensed under the Apache License, Version 2.0 (the "License");
hudakz 0:e29bc8e0dddd 5 * you may not use this file except in compliance with the License.
hudakz 0:e29bc8e0dddd 6 * You may obtain a copy of the License at
hudakz 0:e29bc8e0dddd 7 *
hudakz 0:e29bc8e0dddd 8 * http://www.apache.org/licenses/LICENSE-2.0
hudakz 0:e29bc8e0dddd 9 *
hudakz 0:e29bc8e0dddd 10 * Unless required by applicable law or agreed to in writing, software
hudakz 0:e29bc8e0dddd 11 * distributed under the License is distributed on an "AS IS" BASIS,
hudakz 0:e29bc8e0dddd 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
hudakz 0:e29bc8e0dddd 13 * See the License for the specific language governing permissions and
hudakz 0:e29bc8e0dddd 14 * limitations under the License.
hudakz 0:e29bc8e0dddd 15 *
hudakz 0:e29bc8e0dddd 16 * Modified by Zoltan Hudak <hudakz@inbox.com>
hudakz 0:e29bc8e0dddd 17 *
hudakz 0:e29bc8e0dddd 18 */
hudakz 21:d51e1617975f 19 #include "CANnucleo.h"
hudakz 0:e29bc8e0dddd 20 #include "cmsis.h"
hudakz 0:e29bc8e0dddd 21
hudakz 22:ea766d08c9db 22 namespace CANnucleo
hudakz 0:e29bc8e0dddd 23 {
hudakz 0:e29bc8e0dddd 24
hudakz 0:e29bc8e0dddd 25 /**
hudakz 6:c5a40d5fd9f1 26 * @brief Constructor
hudakz 6:c5a40d5fd9f1 27 * @note Constructs an instance of CAN class
hudakz 6:c5a40d5fd9f1 28 * @param rxPin: CAN Rx pin name
hudakz 6:c5a40d5fd9f1 29 * @param txPin: CAN Tx pin name
hudakz 6:c5a40d5fd9f1 30 * @param abom: Automatic recovery from bus-off state (defaults to enabled)
hudakz 0:e29bc8e0dddd 31 * @retval
hudakz 0:e29bc8e0dddd 32 */
hudakz 6:c5a40d5fd9f1 33 CAN::CAN(PinName rxPin, PinName txPin, FunctionalState abom /* = ENABLE */) :
hudakz 0:e29bc8e0dddd 34 _irq() {
hudakz 20:bcd8161f8f6c 35 can_init(rxPin, txPin, abom);
hudakz 20:bcd8161f8f6c 36 can_irq_init((uint32_t)this, (&CAN::_irq_handler));
hudakz 0:e29bc8e0dddd 37 }
hudakz 0:e29bc8e0dddd 38
hudakz 0:e29bc8e0dddd 39 /**
hudakz 0:e29bc8e0dddd 40 * @brief
hudakz 0:e29bc8e0dddd 41 * @note
hudakz 0:e29bc8e0dddd 42 * @param
hudakz 0:e29bc8e0dddd 43 * @retval
hudakz 0:e29bc8e0dddd 44 */
hudakz 0:e29bc8e0dddd 45 CAN::~CAN(void) {
hudakz 20:bcd8161f8f6c 46 can_irq_free();
hudakz 20:bcd8161f8f6c 47 can_free();
hudakz 0:e29bc8e0dddd 48 }
hudakz 0:e29bc8e0dddd 49
hudakz 0:e29bc8e0dddd 50 /**
hudakz 0:e29bc8e0dddd 51 * @brief
hudakz 0:e29bc8e0dddd 52 * @note
hudakz 0:e29bc8e0dddd 53 * @param
hudakz 0:e29bc8e0dddd 54 * @retval
hudakz 0:e29bc8e0dddd 55 */
hudakz 0:e29bc8e0dddd 56 int CAN::frequency(int f) {
hudakz 24:353237492903 57 lock();
hudakz 24:353237492903 58 int ret = can_frequency(f);
hudakz 24:353237492903 59 unlock();
hudakz 24:353237492903 60 return ret;
hudakz 0:e29bc8e0dddd 61 }
hudakz 0:e29bc8e0dddd 62
hudakz 0:e29bc8e0dddd 63 /**
hudakz 0:e29bc8e0dddd 64 * @brief
hudakz 0:e29bc8e0dddd 65 * @note
hudakz 0:e29bc8e0dddd 66 * @param
hudakz 0:e29bc8e0dddd 67 * @retval
hudakz 0:e29bc8e0dddd 68 */
hudakz 0:e29bc8e0dddd 69 int CAN::write(CANMessage msg) {
hudakz 24:353237492903 70 lock();
hudakz 24:353237492903 71 int ret = can_write(msg, 0);
hudakz 24:353237492903 72 unlock();
hudakz 24:353237492903 73 return ret;
hudakz 0:e29bc8e0dddd 74 }
hudakz 0:e29bc8e0dddd 75
hudakz 0:e29bc8e0dddd 76 /**
hudakz 0:e29bc8e0dddd 77 * @brief
hudakz 0:e29bc8e0dddd 78 * @note
hudakz 0:e29bc8e0dddd 79 * @param
hudakz 0:e29bc8e0dddd 80 * @retval
hudakz 0:e29bc8e0dddd 81 */
hudakz 0:e29bc8e0dddd 82 int CAN::read(CANMessage& msg, int handle) {
hudakz 24:353237492903 83 lock();
hudakz 24:353237492903 84 int ret = can_read(&msg, handle);
hudakz 24:353237492903 85 unlock();
hudakz 24:353237492903 86 return ret;
hudakz 0:e29bc8e0dddd 87 }
hudakz 0:e29bc8e0dddd 88
hudakz 0:e29bc8e0dddd 89 /**
hudakz 0:e29bc8e0dddd 90 * @brief
hudakz 0:e29bc8e0dddd 91 * @note
hudakz 0:e29bc8e0dddd 92 * @param
hudakz 0:e29bc8e0dddd 93 * @retval
hudakz 0:e29bc8e0dddd 94 */
hudakz 0:e29bc8e0dddd 95 void CAN::reset(void) {
hudakz 24:353237492903 96 lock();
hudakz 20:bcd8161f8f6c 97 can_reset();
hudakz 24:353237492903 98 unlock();
hudakz 0:e29bc8e0dddd 99 }
hudakz 0:e29bc8e0dddd 100
hudakz 0:e29bc8e0dddd 101 /**
hudakz 0:e29bc8e0dddd 102 * @brief
hudakz 0:e29bc8e0dddd 103 * @note
hudakz 0:e29bc8e0dddd 104 * @param
hudakz 0:e29bc8e0dddd 105 * @retval
hudakz 0:e29bc8e0dddd 106 */
hudakz 0:e29bc8e0dddd 107 unsigned char CAN::rderror(void) {
hudakz 24:353237492903 108 lock();
hudakz 24:353237492903 109 unsigned char ret = can_rderror();
hudakz 24:353237492903 110 unlock();
hudakz 24:353237492903 111 return ret;
hudakz 0:e29bc8e0dddd 112 }
hudakz 0:e29bc8e0dddd 113
hudakz 0:e29bc8e0dddd 114 /**
hudakz 0:e29bc8e0dddd 115 * @brief
hudakz 0:e29bc8e0dddd 116 * @note
hudakz 0:e29bc8e0dddd 117 * @param
hudakz 0:e29bc8e0dddd 118 * @retval
hudakz 0:e29bc8e0dddd 119 */
hudakz 0:e29bc8e0dddd 120 unsigned char CAN::tderror(void) {
hudakz 24:353237492903 121 lock();
hudakz 24:353237492903 122 unsigned char ret = can_tderror();
hudakz 24:353237492903 123 unlock();
hudakz 24:353237492903 124 return ret;
hudakz 0:e29bc8e0dddd 125 }
hudakz 0:e29bc8e0dddd 126
hudakz 0:e29bc8e0dddd 127 /**
hudakz 0:e29bc8e0dddd 128 * @brief
hudakz 0:e29bc8e0dddd 129 * @note
hudakz 0:e29bc8e0dddd 130 * @param
hudakz 0:e29bc8e0dddd 131 * @retval
hudakz 0:e29bc8e0dddd 132 */
hudakz 0:e29bc8e0dddd 133 void CAN::monitor(bool silent) {
hudakz 24:353237492903 134 lock();
hudakz 20:bcd8161f8f6c 135 can_monitor((silent) ? 1 : 0);
hudakz 24:353237492903 136 unlock();
hudakz 0:e29bc8e0dddd 137 }
hudakz 0:e29bc8e0dddd 138
hudakz 0:e29bc8e0dddd 139 /**
hudakz 0:e29bc8e0dddd 140 * @brief
hudakz 0:e29bc8e0dddd 141 * @note
hudakz 0:e29bc8e0dddd 142 * @param
hudakz 0:e29bc8e0dddd 143 * @retval
hudakz 0:e29bc8e0dddd 144 */
hudakz 0:e29bc8e0dddd 145 int CAN::mode(Mode mode) {
hudakz 24:353237492903 146 lock();
hudakz 24:353237492903 147 int ret = can_mode((CanMode) mode);
hudakz 24:353237492903 148 unlock();
hudakz 24:353237492903 149 return ret;
hudakz 0:e29bc8e0dddd 150 }
hudakz 0:e29bc8e0dddd 151
hudakz 0:e29bc8e0dddd 152 /**
hudakz 9:e9224f2c6d37 153 * @brief Sets up a CAN filter
hudakz 8:5c90d6b9a382 154 * @note At the present, CANnucleo supports only mask mode and 32-bit filter scale.
hudakz 8:5c90d6b9a382 155 * Identifier list mode filtering and 16-bit filter scale are not supported.
hudakz 9:e9224f2c6d37 156 * There are 14 filters available (0 - 13) for the application to set up.
hudakz 8:5c90d6b9a382 157 * Each filter is a 32-bit filter defined by a filter ID and a filter mask.
hudakz 9:e9224f2c6d37 158 * If no filter is set up then no CAN message is accepted (received)!
hudakz 9:e9224f2c6d37 159 * That's why filter #0 is set up in the constructor to receive all CAN messages by default.
hudakz 8:5c90d6b9a382 160 * On reception of a message it is compared with filter #0. If there is a match, the message is stored.
hudakz 8:5c90d6b9a382 161 * If there is no match, the incoming identifier is then compared with the next filter.
hudakz 8:5c90d6b9a382 162 * If the received identifier does not match any of the identifiers configured in the filters,
hudakz 8:5c90d6b9a382 163 * the message is discarded by hardware without disturbing the software.
hudakz 8:5c90d6b9a382 164 *
hudakz 8:5c90d6b9a382 165 * @param id: 'Filter ID' defines the bit values to be compared with the corresponding received bits
hudakz 8:5c90d6b9a382 166 *
hudakz 8:5c90d6b9a382 167 * Mapping of 32-bits (4-bytes) : | STID[10:3] | STID[2:0] EXID[17:13] | EXID[12:5] | EXID[4:0] IDE RTR 0 |
hudakz 8:5c90d6b9a382 168 *
hudakz 8:5c90d6b9a382 169 * STID - Stardard Identifier bits
hudakz 8:5c90d6b9a382 170 * EXID - Extended Identifier bits
hudakz 8:5c90d6b9a382 171 * [x:y]- bit range
hudakz 8:5c90d6b9a382 172 * IDE - Identifier Extension bit (0 -> Standard Identifier, 1 -> Extended Identifier)
hudakz 9:e9224f2c6d37 173 * RTR - Remote Transmission Request bit (0 -> Remote Transmission Request, 1 -> Standard message)
hudakz 8:5c90d6b9a382 174 *
hudakz 8:5c90d6b9a382 175 * @param mask: 'Filter mask' defines which bits of the 'Filter ID' are compared with the received bits
hudakz 8:5c90d6b9a382 176 * and which bits are disregarded.
hudakz 8:5c90d6b9a382 177
hudakz 8:5c90d6b9a382 178 * Mapping of 32-bits (4-bytes) : | STID[10:3] | STID[2:0] EXID[17:13] | EXID[12:5] | EXID[4:0] IDE RTR 0 |
hudakz 8:5c90d6b9a382 179 *
hudakz 8:5c90d6b9a382 180 * STID - Stardard Identifier bits
hudakz 8:5c90d6b9a382 181 * EXID - Extended Identifier bits
hudakz 8:5c90d6b9a382 182 * [x:y]- bit range
hudakz 8:5c90d6b9a382 183 * IDE - Identifier Extension bit
hudakz 8:5c90d6b9a382 184 * RTR - Remote Transmission Request bit
hudakz 8:5c90d6b9a382 185 *
hudakz 10:227a455d0f9f 186 * 1 -> bit is considered
hudakz 10:227a455d0f9f 187 * 0 -> bit is disregarded
hudakz 8:5c90d6b9a382 188 *
hudakz 10:227a455d0f9f 189 * ----------------------------------------
hudakz 10:227a455d0f9f 190 * Example of filter set up and filtering:
hudakz 10:227a455d0f9f 191 * ----------------------------------------
hudakz 10:227a455d0f9f 192 *
hudakz 10:227a455d0f9f 193 * Let's assume we would like to receive only messages
hudakz 10:227a455d0f9f 194 * with standard identifier STID = 0x0207 (STID[15:0] = 00000010 00000111)
hudakz 8:5c90d6b9a382 195 *
hudakz 8:5c90d6b9a382 196 * We map the STID to filter ID by shifting the bits appropriately:
hudakz 8:5c90d6b9a382 197 * Filter id = STID << (16 + (15 - 10)) = STID << 21 = 01000000 11100000 00000000 00000000 = 0x40E00000
hudakz 8:5c90d6b9a382 198 *
hudakz 8:5c90d6b9a382 199 * To compare only the bits representing STID we set the filter mask adequately:
hudakz 9:e9224f2c6d37 200 * Filter mask = 11111111 11100000 00000000 00000100 = 0xFFE00004
hudakz 14:0344705e6fb8 201 * |||||||| ||| |
hudakz 14:0344705e6fb8 202 * -------- --- |
hudakz 14:0344705e6fb8 203 * | | |
hudakz 14:0344705e6fb8 204 * STID[10:3] STID[2:0] IDE
hudakz 8:5c90d6b9a382 205 *
hudakz 20:bcd8161f8f6c 206 * Recall that filter #0 has been set up in the constructor to receive all CAN messages by default.
hudakz 9:e9224f2c6d37 207 * So we have to reconfigure it. If we were set up filter #1 here then filter #0 would receive all the messages
hudakz 8:5c90d6b9a382 208 * and no message would reach filter #1!
hudakz 9:e9224f2c6d37 209 *
hudakz 20:bcd8161f8f6c 210 * To reconfigure (set up) filter #0 we call:
hudakz 9:e9224f2c6d37 211 * can.filter(0x0207 << 21, 0xFFE00004, CANAny, 0);
hudakz 8:5c90d6b9a382 212 *
hudakz 20:bcd8161f8f6c 213 * Only these bits of 'Filter id' (set to 1 here in 'Filter mask') are compared with the corresponding
hudakz 9:e9224f2c6d37 214 * bits of received message (the others are disregarded)
hudakz 11:439f3a34c42e 215 * |
hudakz 11:439f3a34c42e 216 * ---------------------------------
hudakz 11:439f3a34c42e 217 * |||||||| ||| |
hudakz 9:e9224f2c6d37 218 * Filter mask = 11111111 11100000 00000000 00000100 (= 0xFFE00004)
hudakz 9:e9224f2c6d37 219 * Filter id = 01000000 11100000 00000000 00000000 (= 0x40E00000)
hudakz 11:439f3a34c42e 220 * |||||||| ||| |
hudakz 11:439f3a34c42e 221 * ---------------------------------
hudakz 11:439f3a34c42e 222 * |
hudakz 11:439f3a34c42e 223 * To receive the message the values of these bits must match.
hudakz 11:439f3a34c42e 224 * Otherwise the message is passed to the next filter or
hudakz 9:e9224f2c6d37 225 * discarded if this was the last active filter.
hudakz 11:439f3a34c42e 226 * |
hudakz 11:439f3a34c42e 227 * ---------------------------------
hudakz 11:439f3a34c42e 228 * |||||||| ||| |
hudakz 9:e9224f2c6d37 229 * Received id = 01000000 11100000 00000000 00000010 (= 0x40E00002)
hudakz 11:439f3a34c42e 230 * ||||| |||||||| ||||| ||
hudakz 11:439f3a34c42e 231 * -----------------------
hudakz 11:439f3a34c42e 232 * |
hudakz 20:bcd8161f8f6c 233 * These bits (set to 0 in 'Filter mask') are disregarded (masked).
hudakz 9:e9224f2c6d37 234 * They can have arbitrary values.
hudakz 8:5c90d6b9a382 235 *
hudakz 8:5c90d6b9a382 236 * NOTE: For the meaning of individual bits see the mapping of 32-bits explained above.
hudakz 8:5c90d6b9a382 237 *
hudakz 9:e9224f2c6d37 238 * @param format: This parameter must be CANAny
hudakz 9:e9224f2c6d37 239 * @param handle: Selects the filter. This parameter must be a number between 0 and 13.
hudakz 20:bcd8161f8f6c 240 * @retval 0 - successful
hudakz 20:bcd8161f8f6c 241 * 1 - error
hudakz 20:bcd8161f8f6c 242 * 2 - busy
hudakz 20:bcd8161f8f6c 243 * 3 - time out
hudakz 0:e29bc8e0dddd 244 */
hudakz 8:5c90d6b9a382 245 int CAN::filter(unsigned int id, unsigned int mask, CANFormat format /* = CANAny */, int handle /* = 0 */) {
hudakz 24:353237492903 246 lock();
hudakz 24:353237492903 247 int ret = can_filter(id, mask, format, handle);
hudakz 24:353237492903 248 unlock();
hudakz 24:353237492903 249 return ret;
hudakz 0:e29bc8e0dddd 250 }
hudakz 0:e29bc8e0dddd 251
hudakz 0:e29bc8e0dddd 252 /**
hudakz 0:e29bc8e0dddd 253 * @brief Attaches handler funcion to CAN1 RX0 Interrupt
hudakz 0:e29bc8e0dddd 254 * @note Only CAN1 RX0 Interrupt supported
hudakz 0:e29bc8e0dddd 255 * @param fptr: pointer to a void (*)(void) function
hudakz 0:e29bc8e0dddd 256 * @param type: not used (only CAN1 RX0 Interrupt supported)
hudakz 0:e29bc8e0dddd 257 * @retval
hudakz 0:e29bc8e0dddd 258 */
hudakz 24:353237492903 259 void CAN::attach(mbed::Callback<void()> func, IrqType type) {
hudakz 24:353237492903 260 lock();
hudakz 14:0344705e6fb8 261 HAL_NVIC_DisableIRQ(CAN_IRQ);
hudakz 24:353237492903 262 if (func)
hudakz 24:353237492903 263 _irq[(CanIrqType)type].attach(func);
hudakz 14:0344705e6fb8 264 HAL_NVIC_EnableIRQ(CAN_IRQ);
hudakz 24:353237492903 265 unlock();
hudakz 0:e29bc8e0dddd 266 }
hudakz 0:e29bc8e0dddd 267
hudakz 0:e29bc8e0dddd 268 /**
hudakz 0:e29bc8e0dddd 269 * @brief
hudakz 0:e29bc8e0dddd 270 * @note
hudakz 0:e29bc8e0dddd 271 * @param
hudakz 0:e29bc8e0dddd 272 * @retval
hudakz 0:e29bc8e0dddd 273 */
hudakz 0:e29bc8e0dddd 274 void CAN::_irq_handler(uint32_t id, CanIrqType type) {
hudakz 0:e29bc8e0dddd 275 CAN* handler = (CAN*)id;
hudakz 0:e29bc8e0dddd 276 handler->_irq[type].call();
hudakz 0:e29bc8e0dddd 277 }
hudakz 0:e29bc8e0dddd 278
hudakz 24:353237492903 279 void CAN::lock() {
hudakz 24:353237492903 280 _mutex.lock();
hudakz 24:353237492903 281 }
hudakz 24:353237492903 282
hudakz 24:353237492903 283 void CAN::unlock() {
hudakz 24:353237492903 284 _mutex.unlock();
hudakz 24:353237492903 285 }
hudakz 24:353237492903 286
hudakz 22:ea766d08c9db 287 } // namespace CANnucleo
hudakz 0:e29bc8e0dddd 288
hudakz 0:e29bc8e0dddd 289
hudakz 0:e29bc8e0dddd 290
hudakz 5:b53e5ee15315 291
hudakz 6:c5a40d5fd9f1 292
hudakz 11:439f3a34c42e 293
hudakz 20:bcd8161f8f6c 294
hudakz 20:bcd8161f8f6c 295
hudakz 24:353237492903 296
hudakz 24:353237492903 297