
Ura
Dependencies: CMSIS_DSP_401 mbed
arm_cfft_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_cfft_f32.c 00009 * 00010 * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 00042 #include "arm_math.h" 00043 #include "arm_common_tables.h" 00044 00045 extern void arm_radix8_butterfly_f32( 00046 float32_t * pSrc, 00047 uint16_t fftLen, 00048 const float32_t * pCoef, 00049 uint16_t twidCoefModifier); 00050 00051 00052 void arm_bitreversal_32( 00053 uint32_t * pSrc, 00054 const uint16_t bitRevLen, 00055 const uint16_t * pBitRevTable){ 00056 float32_t pSrc1[1024]; 00057 for (int i =0; i<bitRevLen; i++) 00058 { 00059 pSrc1[i]=(float32_t)pSrc[i]/4095; 00060 } 00061 arm_bitreversal_f32(pSrc1, bitRevLen, 1, pBitRevTable); 00062 } 00063 00064 /** 00065 * @ingroup groupTransforms 00066 */ 00067 00068 /** 00069 * @defgroup ComplexFFT Complex FFT Functions 00070 * 00071 * \par 00072 * The Fast Fourier Transform (FFT) is an efficient algorithm for computing the 00073 * Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster 00074 * than the DFT, especially for long lengths. 00075 * The algorithms described in this section 00076 * operate on complex data. A separate set of functions is devoted to handling 00077 * of real sequences. 00078 * \par 00079 * There are separate algorithms for handling floating-point, Q15, and Q31 data 00080 * types. The algorithms available for each data type are described next. 00081 * \par 00082 * The FFT functions operate in-place. That is, the array holding the input data 00083 * will also be used to hold the corresponding result. The input data is complex 00084 * and contains <code>2*fftLen</code> interleaved values as shown below. 00085 * <pre> {real[0], imag[0], real[1], imag[1],..} </pre> 00086 * The FFT result will be contained in the same array and the frequency domain 00087 * values will have the same interleaving. 00088 * 00089 * \par Floating-point 00090 * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 00091 * stages are performed along with a single radix-2 or radix-4 stage, as needed. 00092 * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses 00093 * a different twiddle factor table. 00094 * \par 00095 * The function uses the standard FFT definition and output values may grow by a 00096 * factor of <code>fftLen</code> when computing the forward transform. The 00097 * inverse transform includes a scale of <code>1/fftLen</code> as part of the 00098 * calculation and this matches the textbook definition of the inverse FFT. 00099 * \par 00100 * Preinitialized data structures containing twiddle factors and bit reversal 00101 * tables are provided and defined in <code>arm_const_structs.h</code>. Include 00102 * this header in your function and then pass one of the constant structures as 00103 * an argument to arm_cfft_f32. For example: 00104 * \par 00105 * <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code> 00106 * \par 00107 * computes a 64-point inverse complex FFT including bit reversal. 00108 * The data structures are treated as constant data and not modified during the 00109 * calculation. The same data structure can be reused for multiple transforms 00110 * including mixing forward and inverse transforms. 00111 * \par 00112 * Earlier releases of the library provided separate radix-2 and radix-4 00113 * algorithms that operated on floating-point data. These functions are still 00114 * provided but are deprecated. The older functions are slower and less general 00115 * than the new functions. 00116 * \par 00117 * An example of initialization of the constants for the arm_cfft_f32 function follows: 00118 * \par 00119 * const static arm_cfft_instance_f32 *S; 00120 * ... 00121 * switch (length) { 00122 * case 16: 00123 * S = & arm_cfft_sR_f32_len16; 00124 * break; 00125 * case 32: 00126 * S = & arm_cfft_sR_f32_len32; 00127 * break; 00128 * case 64: 00129 * S = & arm_cfft_sR_f32_len64; 00130 * break; 00131 * case 128: 00132 * S = & arm_cfft_sR_f32_len128; 00133 * break; 00134 * case 256: 00135 * S = & arm_cfft_sR_f32_len256; 00136 * break; 00137 * case 512: 00138 * S = & arm_cfft_sR_f32_len512; 00139 * break; 00140 * case 1024: 00141 * S = & arm_cfft_sR_f32_len1024; 00142 * break; 00143 * case 2048: 00144 * S = & arm_cfft_sR_f32_len2048; 00145 * break; 00146 * case 4096: 00147 * S = & arm_cfft_sR_f32_len4096; 00148 * break; 00149 * } 00150 * \par Q15 and Q31 00151 * The library provides radix-2 and radix-4 FFT algorithms for fixed-point data. The 00152 * radix-2 algorithm supports lengths of [16, 32, 64, ..., 4096]. The radix-4 00153 * algorithm supports lengths of [16, 64, 256, ..., 4096]. When possible, you 00154 * should use the radix-4 algorithm since it is faster than the radix-2 of the 00155 * same length. 00156 * \par 00157 * The forward FFTs include scaling in order to prevent results from overflowing. 00158 * Intermediate results are scaled down during each butterfly stage. In the 00159 * radix-2 algorithm, a scale of 0.5 is applied during each butterfly. In the 00160 * radix-4 algorithm, a scale of 0.25 is applied. The scaling applies to both 00161 * the forward and the inverse FFTs. Thus the forward FFT contains an additional 00162 * scale factor of <code>1/fftLen</code> as compared to the standard textbook 00163 * definition of the FFT. The inverse FFT also scales down during each butterfly 00164 * stage and this corresponds to the standard textbook definition. 00165 * \par 00166 * A separate instance structure must be defined for each transform used but 00167 * twiddle factor and bit reversal tables can be reused. 00168 * \par 00169 * There is also an associated initialization function for each data type. 00170 * The initialization function performs the following operations: 00171 * - Sets the values of the internal structure fields. 00172 * - Initializes twiddle factor table and bit reversal table pointers. 00173 * \par 00174 * Use of the initialization function is optional. 00175 * However, if the initialization function is used, then the instance structure 00176 * cannot be placed into a const data section. To place an instance structure 00177 * into a const data section, the instance structure should be manually 00178 * initialized as follows: 00179 * <pre> 00180 *arm_cfft_radix2_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor}; 00181 *arm_cfft_radix2_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor}; 00182 *arm_cfft_radix4_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor}; 00183 *arm_cfft_radix4_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor}; 00184 *arm_cfft_instance_f32 S = {fftLen, pTwiddle, pBitRevTable, bitRevLength}; 00185 * </pre> 00186 * \par 00187 * where <code>fftLen</code> length of CFFT/CIFFT; <code>ifftFlag</code> Flag for 00188 * selection of forward or inverse transform. When ifftFlag is set the inverse 00189 * transform is calculated. 00190 * <code>bitReverseFlag</code> Flag for selection of output order (Set bitReverseFlag to output in normal order otherwise output in bit reversed order); 00191 * <code>pTwiddle</code>points to array of twiddle coefficients; <code>pBitRevTable</code> points to the bit reversal table. 00192 * <code>twidCoefModifier</code> modifier for twiddle factor table which supports all FFT lengths with same table; 00193 * <code>pBitRevTable</code> modifier for bit reversal table which supports all FFT lengths with same table. 00194 * <code>onebyfftLen</code> value of 1/fftLen to calculate CIFFT; 00195 * \par 00196 * The Q15 and Q31 FFT functions use a large bit reversal and twiddle factor 00197 * table. The tables are defined for the maximum length transform and a subset 00198 * of the coefficients are used in shorter transforms. 00199 * 00200 */ 00201 00202 void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1) 00203 { 00204 uint32_t L = S->fftLen; 00205 float32_t * pCol1, * pCol2, * pMid1, * pMid2; 00206 float32_t * p2 = p1 + L; 00207 const float32_t * tw = (float32_t *) S->pTwiddle; 00208 float32_t t1[4], t2[4], t3[4], t4[4], twR, twI; 00209 float32_t m0, m1, m2, m3; 00210 uint32_t l; 00211 00212 pCol1 = p1; 00213 pCol2 = p2; 00214 00215 // Define new length 00216 L >>= 1; 00217 // Initialize mid pointers 00218 pMid1 = p1 + L; 00219 pMid2 = p2 + L; 00220 00221 // do two dot Fourier transform 00222 for ( l = L >> 2; l > 0; l-- ) 00223 { 00224 t1[0] = p1[0]; 00225 t1[1] = p1[1]; 00226 t1[2] = p1[2]; 00227 t1[3] = p1[3]; 00228 00229 t2[0] = p2[0]; 00230 t2[1] = p2[1]; 00231 t2[2] = p2[2]; 00232 t2[3] = p2[3]; 00233 00234 t3[0] = pMid1[0]; 00235 t3[1] = pMid1[1]; 00236 t3[2] = pMid1[2]; 00237 t3[3] = pMid1[3]; 00238 00239 t4[0] = pMid2[0]; 00240 t4[1] = pMid2[1]; 00241 t4[2] = pMid2[2]; 00242 t4[3] = pMid2[3]; 00243 00244 *p1++ = t1[0] + t2[0]; 00245 *p1++ = t1[1] + t2[1]; 00246 *p1++ = t1[2] + t2[2]; 00247 *p1++ = t1[3] + t2[3]; // col 1 00248 00249 t2[0] = t1[0] - t2[0]; 00250 t2[1] = t1[1] - t2[1]; 00251 t2[2] = t1[2] - t2[2]; 00252 t2[3] = t1[3] - t2[3]; // for col 2 00253 00254 *pMid1++ = t3[0] + t4[0]; 00255 *pMid1++ = t3[1] + t4[1]; 00256 *pMid1++ = t3[2] + t4[2]; 00257 *pMid1++ = t3[3] + t4[3]; // col 1 00258 00259 t4[0] = t4[0] - t3[0]; 00260 t4[1] = t4[1] - t3[1]; 00261 t4[2] = t4[2] - t3[2]; 00262 t4[3] = t4[3] - t3[3]; // for col 2 00263 00264 twR = *tw++; 00265 twI = *tw++; 00266 00267 // multiply by twiddle factors 00268 m0 = t2[0] * twR; 00269 m1 = t2[1] * twI; 00270 m2 = t2[1] * twR; 00271 m3 = t2[0] * twI; 00272 00273 // R = R * Tr - I * Ti 00274 *p2++ = m0 + m1; 00275 // I = I * Tr + R * Ti 00276 *p2++ = m2 - m3; 00277 00278 // use vertical symmetry 00279 // 0.9988 - 0.0491i <==> -0.0491 - 0.9988i 00280 m0 = t4[0] * twI; 00281 m1 = t4[1] * twR; 00282 m2 = t4[1] * twI; 00283 m3 = t4[0] * twR; 00284 00285 *pMid2++ = m0 - m1; 00286 *pMid2++ = m2 + m3; 00287 00288 twR = *tw++; 00289 twI = *tw++; 00290 00291 m0 = t2[2] * twR; 00292 m1 = t2[3] * twI; 00293 m2 = t2[3] * twR; 00294 m3 = t2[2] * twI; 00295 00296 *p2++ = m0 + m1; 00297 *p2++ = m2 - m3; 00298 00299 m0 = t4[2] * twI; 00300 m1 = t4[3] * twR; 00301 m2 = t4[3] * twI; 00302 m3 = t4[2] * twR; 00303 00304 *pMid2++ = m0 - m1; 00305 *pMid2++ = m2 + m3; 00306 } 00307 00308 // first col 00309 arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2u); 00310 // second col 00311 arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2u); 00312 00313 } 00314 00315 void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1) 00316 { 00317 uint32_t L = S->fftLen >> 1; 00318 float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4; 00319 const float32_t *tw2, *tw3, *tw4; 00320 float32_t * p2 = p1 + L; 00321 float32_t * p3 = p2 + L; 00322 float32_t * p4 = p3 + L; 00323 float32_t t2[4], t3[4], t4[4], twR, twI; 00324 float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1; 00325 float32_t m0, m1, m2, m3; 00326 uint32_t l, twMod2, twMod3, twMod4; 00327 00328 pCol1 = p1; // points to real values by default 00329 pCol2 = p2; 00330 pCol3 = p3; 00331 pCol4 = p4; 00332 pEnd1 = p2 - 1; // points to imaginary values by default 00333 pEnd2 = p3 - 1; 00334 pEnd3 = p4 - 1; 00335 pEnd4 = pEnd3 + L; 00336 00337 tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle; 00338 00339 L >>= 1; 00340 00341 // do four dot Fourier transform 00342 00343 twMod2 = 2; 00344 twMod3 = 4; 00345 twMod4 = 6; 00346 00347 // TOP 00348 p1ap3_0 = p1[0] + p3[0]; 00349 p1sp3_0 = p1[0] - p3[0]; 00350 p1ap3_1 = p1[1] + p3[1]; 00351 p1sp3_1 = p1[1] - p3[1]; 00352 00353 // col 2 00354 t2[0] = p1sp3_0 + p2[1] - p4[1]; 00355 t2[1] = p1sp3_1 - p2[0] + p4[0]; 00356 // col 3 00357 t3[0] = p1ap3_0 - p2[0] - p4[0]; 00358 t3[1] = p1ap3_1 - p2[1] - p4[1]; 00359 // col 4 00360 t4[0] = p1sp3_0 - p2[1] + p4[1]; 00361 t4[1] = p1sp3_1 + p2[0] - p4[0]; 00362 // col 1 00363 *p1++ = p1ap3_0 + p2[0] + p4[0]; 00364 *p1++ = p1ap3_1 + p2[1] + p4[1]; 00365 00366 // Twiddle factors are ones 00367 *p2++ = t2[0]; 00368 *p2++ = t2[1]; 00369 *p3++ = t3[0]; 00370 *p3++ = t3[1]; 00371 *p4++ = t4[0]; 00372 *p4++ = t4[1]; 00373 00374 tw2 += twMod2; 00375 tw3 += twMod3; 00376 tw4 += twMod4; 00377 00378 for (l = (L - 2) >> 1; l > 0; l-- ) 00379 { 00380 00381 // TOP 00382 p1ap3_0 = p1[0] + p3[0]; 00383 p1sp3_0 = p1[0] - p3[0]; 00384 p1ap3_1 = p1[1] + p3[1]; 00385 p1sp3_1 = p1[1] - p3[1]; 00386 // col 2 00387 t2[0] = p1sp3_0 + p2[1] - p4[1]; 00388 t2[1] = p1sp3_1 - p2[0] + p4[0]; 00389 // col 3 00390 t3[0] = p1ap3_0 - p2[0] - p4[0]; 00391 t3[1] = p1ap3_1 - p2[1] - p4[1]; 00392 // col 4 00393 t4[0] = p1sp3_0 - p2[1] + p4[1]; 00394 t4[1] = p1sp3_1 + p2[0] - p4[0]; 00395 // col 1 - top 00396 *p1++ = p1ap3_0 + p2[0] + p4[0]; 00397 *p1++ = p1ap3_1 + p2[1] + p4[1]; 00398 00399 // BOTTOM 00400 p1ap3_1 = pEnd1[-1] + pEnd3[-1]; 00401 p1sp3_1 = pEnd1[-1] - pEnd3[-1]; 00402 p1ap3_0 = pEnd1[0] + pEnd3[0]; 00403 p1sp3_0 = pEnd1[0] - pEnd3[0]; 00404 // col 2 00405 t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1; 00406 t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1]; 00407 // col 3 00408 t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1]; 00409 t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0]; 00410 // col 4 00411 t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1; 00412 t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0; 00413 // col 1 - Bottom 00414 *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0]; 00415 *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1]; 00416 00417 // COL 2 00418 // read twiddle factors 00419 twR = *tw2++; 00420 twI = *tw2++; 00421 // multiply by twiddle factors 00422 // let Z1 = a + i(b), Z2 = c + i(d) 00423 // => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) 00424 // Top 00425 m0 = t2[0] * twR; 00426 m1 = t2[1] * twI; 00427 m2 = t2[1] * twR; 00428 m3 = t2[0] * twI; 00429 00430 *p2++ = m0 + m1; 00431 *p2++ = m2 - m3; 00432 // use vertical symmetry col 2 00433 // 0.9997 - 0.0245i <==> 0.0245 - 0.9997i 00434 // Bottom 00435 m0 = t2[3] * twI; 00436 m1 = t2[2] * twR; 00437 m2 = t2[2] * twI; 00438 m3 = t2[3] * twR; 00439 00440 *pEnd2-- = m0 - m1; 00441 *pEnd2-- = m2 + m3; 00442 00443 // COL 3 00444 twR = tw3[0]; 00445 twI = tw3[1]; 00446 tw3 += twMod3; 00447 // Top 00448 m0 = t3[0] * twR; 00449 m1 = t3[1] * twI; 00450 m2 = t3[1] * twR; 00451 m3 = t3[0] * twI; 00452 00453 *p3++ = m0 + m1; 00454 *p3++ = m2 - m3; 00455 // use vertical symmetry col 3 00456 // 0.9988 - 0.0491i <==> -0.9988 - 0.0491i 00457 // Bottom 00458 m0 = -t3[3] * twR; 00459 m1 = t3[2] * twI; 00460 m2 = t3[2] * twR; 00461 m3 = t3[3] * twI; 00462 00463 *pEnd3-- = m0 - m1; 00464 *pEnd3-- = m3 - m2; 00465 00466 // COL 4 00467 twR = tw4[0]; 00468 twI = tw4[1]; 00469 tw4 += twMod4; 00470 // Top 00471 m0 = t4[0] * twR; 00472 m1 = t4[1] * twI; 00473 m2 = t4[1] * twR; 00474 m3 = t4[0] * twI; 00475 00476 *p4++ = m0 + m1; 00477 *p4++ = m2 - m3; 00478 // use vertical symmetry col 4 00479 // 0.9973 - 0.0736i <==> -0.0736 + 0.9973i 00480 // Bottom 00481 m0 = t4[3] * twI; 00482 m1 = t4[2] * twR; 00483 m2 = t4[2] * twI; 00484 m3 = t4[3] * twR; 00485 00486 *pEnd4-- = m0 - m1; 00487 *pEnd4-- = m2 + m3; 00488 } 00489 00490 //MIDDLE 00491 // Twiddle factors are 00492 // 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i 00493 p1ap3_0 = p1[0] + p3[0]; 00494 p1sp3_0 = p1[0] - p3[0]; 00495 p1ap3_1 = p1[1] + p3[1]; 00496 p1sp3_1 = p1[1] - p3[1]; 00497 00498 // col 2 00499 t2[0] = p1sp3_0 + p2[1] - p4[1]; 00500 t2[1] = p1sp3_1 - p2[0] + p4[0]; 00501 // col 3 00502 t3[0] = p1ap3_0 - p2[0] - p4[0]; 00503 t3[1] = p1ap3_1 - p2[1] - p4[1]; 00504 // col 4 00505 t4[0] = p1sp3_0 - p2[1] + p4[1]; 00506 t4[1] = p1sp3_1 + p2[0] - p4[0]; 00507 // col 1 - Top 00508 *p1++ = p1ap3_0 + p2[0] + p4[0]; 00509 *p1++ = p1ap3_1 + p2[1] + p4[1]; 00510 00511 // COL 2 00512 twR = tw2[0]; 00513 twI = tw2[1]; 00514 00515 m0 = t2[0] * twR; 00516 m1 = t2[1] * twI; 00517 m2 = t2[1] * twR; 00518 m3 = t2[0] * twI; 00519 00520 *p2++ = m0 + m1; 00521 *p2++ = m2 - m3; 00522 // COL 3 00523 twR = tw3[0]; 00524 twI = tw3[1]; 00525 00526 m0 = t3[0] * twR; 00527 m1 = t3[1] * twI; 00528 m2 = t3[1] * twR; 00529 m3 = t3[0] * twI; 00530 00531 *p3++ = m0 + m1; 00532 *p3++ = m2 - m3; 00533 // COL 4 00534 twR = tw4[0]; 00535 twI = tw4[1]; 00536 00537 m0 = t4[0] * twR; 00538 m1 = t4[1] * twI; 00539 m2 = t4[1] * twR; 00540 m3 = t4[0] * twI; 00541 00542 *p4++ = m0 + m1; 00543 *p4++ = m2 - m3; 00544 00545 // first col 00546 arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4u); 00547 // second col 00548 arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4u); 00549 // third col 00550 arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4u); 00551 // fourth col 00552 arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4u); 00553 00554 } 00555 00556 /** 00557 * @addtogroup ComplexFFT 00558 * @{ 00559 */ 00560 00561 /** 00562 * @details 00563 * @brief Processing function for the floating-point complex FFT. 00564 * @param[in] *S points to an instance of the floating-point CFFT structure. 00565 * @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. 00566 * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. 00567 * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. 00568 * @return none. 00569 */ 00570 00571 void arm_cfft_f32( 00572 const arm_cfft_instance_f32 * S, 00573 float32_t * p1, 00574 uint8_t ifftFlag, 00575 uint8_t bitReverseFlag) 00576 { 00577 00578 uint32_t L = S->fftLen, l; 00579 float32_t invL, * pSrc; 00580 00581 if(ifftFlag == 1u) 00582 { 00583 /* Conjugate input data */ 00584 pSrc = p1 + 1; 00585 for(l=0; l<L; l++) { 00586 *pSrc = -*pSrc; 00587 pSrc += 2; 00588 } 00589 } 00590 00591 switch (L) { 00592 case 16: 00593 case 128: 00594 case 1024: 00595 arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1); 00596 break; 00597 case 32: 00598 case 256: 00599 case 2048: 00600 arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1); 00601 break; 00602 case 64: 00603 case 512: 00604 case 4096: 00605 arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1); 00606 break; 00607 } 00608 00609 if( bitReverseFlag ) 00610 arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable); 00611 00612 if(ifftFlag == 1u) 00613 { 00614 invL = 1.0f/(float32_t)L; 00615 /* Conjugate and scale output data */ 00616 pSrc = p1; 00617 for(l=0; l<L; l++) { 00618 *pSrc++ *= invL ; 00619 *pSrc = -(*pSrc) * invL; 00620 pSrc++; 00621 } 00622 } 00623 }
Generated on Sun Jul 17 2022 04:54:16 by
