USB device stack (USBDevice::connect non-blocking)

Fork of USBDevice by mbed official

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers USBHAL_KL25Z.cpp Source File

USBHAL_KL25Z.cpp

00001 /* Copyright (c) 2010-2011 mbed.org, MIT License
00002 *
00003 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
00004 * and associated documentation files (the "Software"), to deal in the Software without
00005 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
00006 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
00007 * Software is furnished to do so, subject to the following conditions:
00008 *
00009 * The above copyright notice and this permission notice shall be included in all copies or
00010 * substantial portions of the Software.
00011 *
00012 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
00013 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
00014 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
00015 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00016 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
00017 */
00018 
00019 #if defined(TARGET_KL25Z)
00020 
00021 #include "USBHAL.h"
00022 
00023 USBHAL * USBHAL::instance;
00024 
00025 static volatile int epComplete = 0;
00026 
00027 // Convert physical endpoint number to register bit
00028 #define EP(endpoint) (1<<(endpoint))
00029 
00030 // Convert physical to logical
00031 #define PHY_TO_LOG(endpoint)    ((endpoint)>>1)
00032 
00033 // Get endpoint direction
00034 #define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
00035 #define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)
00036 
00037 #define BD_OWN_MASK        (1<<7)
00038 #define BD_DATA01_MASK     (1<<6)
00039 #define BD_KEEP_MASK       (1<<5)
00040 #define BD_NINC_MASK       (1<<4)
00041 #define BD_DTS_MASK        (1<<3)
00042 #define BD_STALL_MASK      (1<<2)
00043 
00044 #define TX    1
00045 #define RX    0
00046 #define ODD   0
00047 #define EVEN  1
00048 // this macro waits a physical endpoint number
00049 #define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 *  odd)))
00050 
00051 #define SETUP_TOKEN    0x0D
00052 #define IN_TOKEN       0x09
00053 #define OUT_TOKEN      0x01
00054 #define TOK_PID(idx)   ((bdt[idx].info >> 2) & 0x0F)
00055 
00056 // for each endpt: 8 bytes
00057 typedef struct BDT {
00058     uint8_t   info;       // BD[0:7]
00059     uint8_t   dummy;      // RSVD: BD[8:15]
00060     uint16_t  byte_count; // BD[16:32]
00061     uint32_t  address;    // Addr
00062 } BDT; 
00063 
00064 
00065 // there are:
00066 //    * 16 bidirectionnal endpt -> 32 physical endpt
00067 //    * as there are ODD and EVEN buffer -> 32*2 bdt
00068 __attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2];
00069 uint8_t * endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2];
00070 uint8_t * endpoint_buffer_iso[2*2];
00071 
00072 static uint8_t set_addr = 0;
00073 static uint8_t addr = 0;
00074 
00075 static uint32_t Data1  = 0x55555555;
00076 
00077 static uint32_t frameNumber() {
00078     return((USB0->FRMNUML | (USB0->FRMNUMH << 8)) & 0x07FF);
00079 }
00080 
00081 uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
00082     return 0;
00083 }
00084 
00085 USBHAL::USBHAL(void) {    
00086     // Disable IRQ
00087     NVIC_DisableIRQ(USB0_IRQn);
00088     
00089     // fill in callback array
00090     epCallback[0] = &USBHAL::EP1_OUT_callback;
00091     epCallback[1] = &USBHAL::EP1_IN_callback;
00092     epCallback[2] = &USBHAL::EP2_OUT_callback;
00093     epCallback[3] = &USBHAL::EP2_IN_callback;
00094     epCallback[4] = &USBHAL::EP3_OUT_callback;
00095     epCallback[5] = &USBHAL::EP3_IN_callback;
00096     epCallback[6] = &USBHAL::EP4_OUT_callback;
00097     epCallback[7] = &USBHAL::EP4_IN_callback;
00098     epCallback[8] = &USBHAL::EP5_OUT_callback;
00099     epCallback[9] = &USBHAL::EP5_IN_callback;
00100     epCallback[10] = &USBHAL::EP6_OUT_callback;
00101     epCallback[11] = &USBHAL::EP6_IN_callback;
00102     epCallback[12] = &USBHAL::EP7_OUT_callback;
00103     epCallback[13] = &USBHAL::EP7_IN_callback;
00104     epCallback[14] = &USBHAL::EP8_OUT_callback;
00105     epCallback[15] = &USBHAL::EP8_IN_callback;
00106     epCallback[16] = &USBHAL::EP9_OUT_callback;
00107     epCallback[17] = &USBHAL::EP9_IN_callback;
00108     epCallback[18] = &USBHAL::EP10_OUT_callback;
00109     epCallback[19] = &USBHAL::EP10_IN_callback;
00110     epCallback[20] = &USBHAL::EP11_OUT_callback;
00111     epCallback[21] = &USBHAL::EP11_IN_callback;
00112     epCallback[22] = &USBHAL::EP12_OUT_callback;
00113     epCallback[23] = &USBHAL::EP12_IN_callback;
00114     epCallback[24] = &USBHAL::EP13_OUT_callback;
00115     epCallback[25] = &USBHAL::EP13_IN_callback;
00116     epCallback[26] = &USBHAL::EP14_OUT_callback;
00117     epCallback[27] = &USBHAL::EP14_IN_callback;
00118     epCallback[28] = &USBHAL::EP15_OUT_callback;
00119     epCallback[29] = &USBHAL::EP15_IN_callback;
00120     
00121     
00122     // choose usb src as PLL
00123     SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | SIM_SOPT2_PLLFLLSEL_MASK);
00124     
00125     // enable OTG clock
00126     SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
00127 
00128     // Attach IRQ
00129     instance = this;
00130     NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr);
00131     NVIC_EnableIRQ(USB0_IRQn);
00132     
00133     // USB Module Configuration
00134     // Reset USB Module
00135     USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
00136     while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
00137     
00138     // Set BDT Base Register
00139     USB0->BDTPAGE1=(uint8_t)((uint32_t)bdt>>8);
00140     USB0->BDTPAGE2=(uint8_t)((uint32_t)bdt>>16);
00141     USB0->BDTPAGE3=(uint8_t)((uint32_t)bdt>>24);
00142 
00143     // Clear interrupt flag
00144     USB0->ISTAT = 0xff;
00145 
00146     // USB Interrupt Enablers
00147     USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK | 
00148                    USB_INTEN_SOFTOKEN_MASK | 
00149                    USB_INTEN_ERROREN_MASK  |
00150                    USB_INTEN_USBRSTEN_MASK;
00151     
00152     // Disable weak pull downs 
00153     USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK);   
00154     
00155     USB0->USBTRC0 |= 0x40;
00156 }
00157 
00158 USBHAL::~USBHAL(void) { }
00159 
00160 void USBHAL::connect(void) {
00161     // enable USB
00162     USB0->CTL |= USB_CTL_USBENSOFEN_MASK;
00163     // Pull up enable
00164     USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
00165 }
00166 
00167 void USBHAL::disconnect(void) {
00168     // disable USB
00169     USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK;
00170     // Pull up disable
00171     USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
00172 
00173     //Free buffers if required:
00174     for (int i = 0; i<(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2; i++) {
00175         free(endpoint_buffer[i]);
00176         endpoint_buffer[i] = NULL;
00177     }
00178     free(endpoint_buffer_iso[2]);
00179     endpoint_buffer_iso[2] = NULL;
00180     free(endpoint_buffer_iso[0]);
00181     endpoint_buffer_iso[0] = NULL;
00182 }
00183 
00184 void USBHAL::configureDevice(void) {
00185     // not needed
00186 }
00187 
00188 void USBHAL::unconfigureDevice(void) {
00189     // not needed
00190 }
00191 
00192 void USBHAL::setAddress(uint8_t address) {
00193     // we don't set the address now otherwise the usb controller does not ack
00194     // we set a flag instead
00195     // see usbisr when an IN token is received
00196     set_addr = 1;
00197     addr = address;
00198 }
00199 
00200 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
00201     uint32_t handshake_flag = 0;
00202     uint8_t * buf;
00203 
00204     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00205         return false;
00206     }
00207 
00208     uint32_t log_endpoint = PHY_TO_LOG(endpoint);
00209 
00210     if ((flags & ISOCHRONOUS) == 0) {
00211         handshake_flag = USB_ENDPT_EPHSHK_MASK;
00212         if (IN_EP(endpoint)) {
00213             if (endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] == NULL)
00214                 endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] = (uint8_t *) malloc (64*2);
00215             buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)][0];
00216         } else {
00217             if (endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] == NULL)
00218                 endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] = (uint8_t *) malloc (64*2);
00219             buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)][0];
00220         }
00221     } else {
00222         if (IN_EP(endpoint)) {
00223             if (endpoint_buffer_iso[2] == NULL)
00224                 endpoint_buffer_iso[2] = (uint8_t *) malloc (1023*2);
00225             buf = &endpoint_buffer_iso[2][0];
00226         } else {
00227             if (endpoint_buffer_iso[0] == NULL)
00228                 endpoint_buffer_iso[0] = (uint8_t *) malloc (1023*2);
00229             buf = &endpoint_buffer_iso[0][0];
00230         }
00231     }
00232 
00233     // IN endpt -> device to host (TX)
00234     if (IN_EP(endpoint)) {
00235         USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
00236                                               USB_ENDPT_EPTXEN_MASK;  // en TX (IN) tran
00237         bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf;
00238         bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0;
00239     }
00240     // OUT endpt -> host to device (RX)
00241     else {
00242         USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
00243                                               USB_ENDPT_EPRXEN_MASK;  // en RX (OUT) tran.
00244         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket;
00245         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address    = (uint32_t) buf;
00246         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info       = BD_OWN_MASK | BD_DTS_MASK;
00247         bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info       = 0;
00248     }
00249 
00250     Data1 |= (1 << endpoint);
00251 
00252     return true;
00253 }
00254 
00255 // read setup packet
00256 void USBHAL::EP0setup(uint8_t *buffer) {
00257     uint32_t sz;
00258     endpointReadResult(EP0OUT, buffer, &sz);
00259 }
00260 
00261 void USBHAL::EP0readStage(void) {
00262     Data1 &= ~1UL;  // set DATA0
00263     bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK);
00264 }
00265 
00266 void USBHAL::EP0read(void) {
00267     uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0);
00268     bdt[idx].byte_count = MAX_PACKET_SIZE_EP0;
00269 }
00270 
00271 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
00272     uint32_t sz;
00273     endpointReadResult(EP0OUT, buffer, &sz);
00274     return sz;
00275 }
00276 
00277 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
00278     endpointWrite(EP0IN, buffer, size);
00279 }
00280 
00281 void USBHAL::EP0getWriteResult(void) {
00282 }
00283 
00284 void USBHAL::EP0stall(void) {
00285     stallEndpoint(EP0OUT);
00286 }
00287 
00288 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
00289     endpoint = PHY_TO_LOG(endpoint);
00290     uint32_t idx = EP_BDT_IDX(endpoint, RX, 0);
00291     bdt[idx].byte_count = maximumSize;
00292     return EP_PENDING;
00293 }
00294 
00295 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
00296     uint32_t n, sz, idx, setup = 0;
00297     uint8_t not_iso;
00298     uint8_t * ep_buf;
00299     
00300     uint32_t log_endpoint = PHY_TO_LOG(endpoint);
00301     
00302     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00303         return EP_INVALID;
00304     }
00305 
00306     // if read on a IN endpoint -> error
00307     if (IN_EP(endpoint)) {
00308         return EP_INVALID;
00309     }
00310 
00311     idx = EP_BDT_IDX(log_endpoint, RX, 0);
00312     sz  = bdt[idx].byte_count;
00313     not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK;
00314 
00315     //for isochronous endpoint, we don't wait an interrupt
00316     if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) {
00317         return EP_PENDING;
00318     }
00319 
00320     if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) {
00321         setup = 1;
00322     }
00323 
00324     // non iso endpoint
00325     if (not_iso) {
00326         ep_buf = endpoint_buffer[idx];
00327     } else {
00328         ep_buf = endpoint_buffer_iso[0];
00329     }
00330 
00331     for (n = 0; n < sz; n++) {
00332         buffer[n] = ep_buf[n];
00333     }
00334 
00335     if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) {
00336         if (setup && (buffer[6] == 0))  // if no setup data stage,
00337             Data1 &= ~1UL;              // set DATA0
00338         else 
00339             Data1 ^= (1 << endpoint);
00340     }
00341 
00342     if (((Data1 >> endpoint) & 1)) {
00343         bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK;
00344     }
00345     else {
00346         bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK;
00347     }
00348         
00349     USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
00350     *bytesRead = sz;
00351 
00352     epComplete &= ~EP(endpoint);
00353     return EP_COMPLETED;
00354 }
00355 
00356 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
00357     uint32_t idx, n;
00358     uint8_t * ep_buf;
00359 
00360     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00361         return EP_INVALID;
00362     }
00363 
00364     // if write on a OUT endpoint -> error
00365     if (OUT_EP(endpoint)) {
00366         return EP_INVALID;
00367     }
00368 
00369     idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0);
00370     bdt[idx].byte_count = size;
00371     
00372     
00373     // non iso endpoint
00374     if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) {
00375         ep_buf = endpoint_buffer[idx];
00376     } else {
00377         ep_buf = endpoint_buffer_iso[2];
00378     }
00379     
00380     for (n = 0; n < size; n++) {
00381         ep_buf[n] = data[n];
00382     }
00383     
00384     if ((Data1 >> endpoint) & 1) {
00385         bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
00386     } else {
00387         bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
00388     }
00389     
00390     Data1 ^= (1 << endpoint);
00391     
00392     return EP_PENDING;
00393 }
00394 
00395 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
00396     if (epComplete & EP(endpoint)) {
00397         epComplete &= ~EP(endpoint);
00398         return EP_COMPLETED;
00399     }
00400 
00401     return EP_PENDING;
00402 }
00403 
00404 void USBHAL::stallEndpoint(uint8_t endpoint) {
00405     USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK;
00406 }
00407 
00408 void USBHAL::unstallEndpoint(uint8_t endpoint) {
00409     USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
00410 }
00411 
00412 bool USBHAL::getEndpointStallState(uint8_t endpoint) {
00413     uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK);
00414     return (stall) ? true : false;
00415 }
00416 
00417 void USBHAL::remoteWakeup(void) {
00418     // [TODO]
00419 }
00420 
00421 
00422 void USBHAL::_usbisr(void) {
00423     instance->usbisr();
00424 }
00425 
00426 
00427 void USBHAL::usbisr(void) {
00428     uint8_t i;
00429     uint8_t istat = USB0->ISTAT;
00430 
00431     // reset interrupt
00432     if (istat & USB_ISTAT_USBRST_MASK) {            
00433         // disable all endpt
00434         for(i = 0; i < 16; i++) {
00435             USB0->ENDPOINT[i].ENDPT = 0x00;
00436         }
00437 
00438         // enable control endpoint
00439         realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
00440         realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
00441 
00442         Data1 = 0x55555555;
00443         USB0->CTL |=  USB_CTL_ODDRST_MASK;
00444 
00445         USB0->ISTAT   =  0xFF;  // clear all interrupt status flags
00446         USB0->ERRSTAT =  0xFF;  // clear all error flags
00447         USB0->ERREN   =  0xFF;  // enable error interrupt sources
00448         USB0->ADDR    =  0x00;  // set default address
00449 
00450         return;
00451     }
00452 
00453     // resume interrupt
00454     if (istat & USB_ISTAT_RESUME_MASK) {
00455         USB0->ISTAT = USB_ISTAT_RESUME_MASK;
00456     }
00457 
00458     // SOF interrupt
00459     if (istat & USB_ISTAT_SOFTOK_MASK) {
00460         USB0->ISTAT = USB_ISTAT_SOFTOK_MASK;  
00461         // SOF event, read frame number
00462         SOF(frameNumber());
00463     }
00464     
00465     // stall interrupt
00466     if (istat & 1<<7) {
00467         if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK)
00468             USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
00469         USB0->ISTAT |= USB_ISTAT_STALL_MASK;
00470     }
00471 
00472     // token interrupt
00473     if (istat & 1<<3) {
00474         uint32_t num  = (USB0->STAT >> 4) & 0x0F;
00475         uint32_t dir  = (USB0->STAT >> 3) & 0x01;
00476         uint32_t ev_odd = (USB0->STAT >> 2) & 0x01;
00477 
00478         // setup packet
00479         if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) {
00480             Data1 &= ~0x02;
00481             bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK;
00482             bdt[EP_BDT_IDX(0, TX, ODD)].info  &= ~BD_OWN_MASK;
00483 
00484             // EP0 SETUP event (SETUP data received)
00485             EP0setupCallback();
00486                     
00487         } else {
00488             // OUT packet
00489             if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) {
00490                 if (num == 0)
00491                     EP0out();
00492                 else {
00493                     epComplete |= (1 << EP(num));
00494                     if ((instance->*(epCallback[EP(num) - 2]))()) {
00495                         epComplete &= ~(1 << EP(num));
00496                     }
00497                 }
00498             }
00499 
00500             // IN packet
00501             if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) {
00502                 if (num == 0) {
00503                     EP0in();
00504                     if (set_addr == 1) {
00505                         USB0->ADDR = addr & 0x7F;
00506                         set_addr = 0;
00507                     }
00508                 }
00509                 else {
00510                     epComplete |= (1 << (EP(num) + 1));
00511                     if ((instance->*(epCallback[EP(num) + 1 - 2]))()) {
00512                         epComplete &= ~(1 << (EP(num) + 1));
00513                     }
00514                 }
00515             }
00516         }
00517 
00518         USB0->ISTAT = USB_ISTAT_TOKDNE_MASK;
00519     }
00520         
00521     // sleep interrupt
00522     if (istat & 1<<4) {
00523         USB0->ISTAT |= USB_ISTAT_SLEEP_MASK;
00524     }    
00525 
00526     // error interrupt
00527     if (istat & USB_ISTAT_ERROR_MASK) {
00528         USB0->ERRSTAT = 0xFF;
00529         USB0->ISTAT |= USB_ISTAT_ERROR_MASK;
00530     }
00531 }
00532 
00533 
00534 #endif