forkd

Dependencies:   mbed

Fork of LGstaandart by Dmitry Kovalev

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers core_cm3.c Source File

core_cm3.c

Go to the documentation of this file.
00001 /**************************************************************************//**
00002  * @file     core_cm3.c
00003  * @brief    CMSIS Cortex-M3 Core Peripheral Access Layer Source File
00004  * @version  V1.30
00005  * @date     30. October 2009
00006  *
00007  * @note
00008  * Copyright (C) 2009 ARM Limited. All rights reserved.
00009  *
00010  * @par
00011  * ARM Limited (ARM) is supplying this software for use with Cortex-M
00012  * processor based microcontrollers.  This file can be freely distributed
00013  * within development tools that are supporting such ARM based processors.
00014  *
00015  * @par
00016  * THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
00017  * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
00018  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
00019  * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
00020  * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
00021  *
00022  ******************************************************************************/
00023 
00024 #include <stdint.h>
00025 
00026 /* define compiler specific symbols */
00027 #if defined ( __CC_ARM   )
00028 #define __ASM            __asm                                      /*!< asm keyword for ARM Compiler          */
00029 #define __INLINE         __inline                                   /*!< inline keyword for ARM Compiler       */
00030 
00031 #elif defined ( __ICCARM__ )
00032 #define __ASM           __asm                                       /*!< asm keyword for IAR Compiler          */
00033 #define __INLINE        inline                                      /*!< inline keyword for IAR Compiler. Only avaiable in High optimization mode! */
00034 
00035 #elif defined   (  __GNUC__  )
00036 #define __ASM            __asm                                      /*!< asm keyword for GNU Compiler          */
00037 #define __INLINE         inline                                     /*!< inline keyword for GNU Compiler       */
00038 
00039 #elif defined   (  __TASKING__  )
00040 #define __ASM            __asm                                      /*!< asm keyword for TASKING Compiler      */
00041 #define __INLINE         inline                                     /*!< inline keyword for TASKING Compiler   */
00042 
00043 #endif
00044 
00045 
00046 /* ###################  Compiler specific Intrinsics  ########################### */
00047 
00048 #if defined ( __CC_ARM   ) /*------------------RealView Compiler -----------------*/
00049 /* ARM armcc specific functions */
00050 
00051 /**
00052  * @brief  Return the Process Stack Pointer
00053  *
00054  * @return ProcessStackPointer
00055  *
00056  * Return the actual process stack pointer
00057  */
00058 __ASM uint32_t __get_PSP(void)
00059 {
00060     mrs r0, psp
00061     bx lr
00062 }
00063 
00064 /**
00065  * @brief  Set the Process Stack Pointer
00066  *
00067  * @param  topOfProcStack  Process Stack Pointer
00068  *
00069  * Assign the value ProcessStackPointer to the MSP
00070  * (process stack pointer) Cortex processor register
00071  */
00072 __ASM void __set_PSP(uint32_t topOfProcStack)
00073 {
00074     msr psp, r0
00075     bx lr
00076 }
00077 
00078 /**
00079  * @brief  Return the Main Stack Pointer
00080  *
00081  * @return Main Stack Pointer
00082  *
00083  * Return the current value of the MSP (main stack pointer)
00084  * Cortex processor register
00085  */
00086 __ASM uint32_t __get_MSP(void)
00087 {
00088     mrs r0, msp
00089     bx lr
00090 }
00091 
00092 /**
00093  * @brief  Set the Main Stack Pointer
00094  *
00095  * @param  topOfMainStack  Main Stack Pointer
00096  *
00097  * Assign the value mainStackPointer to the MSP
00098  * (main stack pointer) Cortex processor register
00099  */
00100 __ASM void __set_MSP(uint32_t mainStackPointer)
00101 {
00102     msr msp, r0
00103     bx lr
00104 }
00105 
00106 /**
00107  * @brief  Reverse byte order in unsigned short value
00108  *
00109  * @param   value  value to reverse
00110  * @return         reversed value
00111  *
00112  * Reverse byte order in unsigned short value
00113  */
00114 __ASM uint32_t __REV16(uint16_t value)
00115 {
00116     rev16 r0, r0
00117     bx lr
00118 }
00119 
00120 /**
00121  * @brief  Reverse byte order in signed short value with sign extension to integer
00122  *
00123  * @param   value  value to reverse
00124  * @return         reversed value
00125  *
00126  * Reverse byte order in signed short value with sign extension to integer
00127  */
00128 __ASM int32_t __REVSH(int16_t value)
00129 {
00130     revsh r0, r0
00131     bx lr
00132 }
00133 
00134 
00135 #if (__ARMCC_VERSION < 400000)
00136 
00137 /**
00138  * @brief  Remove the exclusive lock created by ldrex
00139  *
00140  * Removes the exclusive lock which is created by ldrex.
00141  */
00142 __ASM void __CLREX(void)
00143 {
00144     clrex
00145 }
00146 
00147 /**
00148  * @brief  Return the Base Priority value
00149  *
00150  * @return BasePriority
00151  *
00152  * Return the content of the base priority register
00153  */
00154 __ASM uint32_t  __get_BASEPRI(void)
00155 {
00156     mrs r0, basepri
00157     bx lr
00158 }
00159 
00160 /**
00161  * @brief  Set the Base Priority value
00162  *
00163  * @param  basePri  BasePriority
00164  *
00165  * Set the base priority register
00166  */
00167 __ASM void __set_BASEPRI(uint32_t basePri)
00168 {
00169     msr basepri, r0
00170     bx lr
00171 }
00172 
00173 /**
00174  * @brief  Return the Priority Mask value
00175  *
00176  * @return PriMask
00177  *
00178  * Return state of the priority mask bit from the priority mask register
00179  */
00180 __ASM uint32_t __get_PRIMASK(void)
00181 {
00182     mrs r0, primask
00183     bx lr
00184 }
00185 
00186 /**
00187  * @brief  Set the Priority Mask value
00188  *
00189  * @param  priMask  PriMask
00190  *
00191  * Set the priority mask bit in the priority mask register
00192  */
00193 __ASM void __set_PRIMASK(uint32_t priMask)
00194 {
00195     msr primask, r0
00196     bx lr
00197 }
00198 
00199 /**
00200  * @brief  Return the Fault Mask value
00201  *
00202  * @return FaultMask
00203  *
00204  * Return the content of the fault mask register
00205  */
00206 __ASM uint32_t  __get_FAULTMASK(void)
00207 {
00208     mrs r0, faultmask
00209     bx lr
00210 }
00211 
00212 /**
00213  * @brief  Set the Fault Mask value
00214  *
00215  * @param  faultMask  faultMask value
00216  *
00217  * Set the fault mask register
00218  */
00219 __ASM void __set_FAULTMASK(uint32_t faultMask)
00220 {
00221     msr faultmask, r0
00222     bx lr
00223 }
00224 
00225 /**
00226  * @brief  Return the Control Register value
00227  *
00228  * @return Control value
00229  *
00230  * Return the content of the control register
00231  */
00232 __ASM uint32_t __get_CONTROL(void)
00233 {
00234     mrs r0, control
00235     bx lr
00236 }
00237 
00238 /**
00239  * @brief  Set the Control Register value
00240  *
00241  * @param  control  Control value
00242  *
00243  * Set the control register
00244  */
00245 __ASM void __set_CONTROL(uint32_t control)
00246 {
00247     msr control, r0
00248     bx lr
00249 }
00250 
00251 #endif /* __ARMCC_VERSION  */
00252 
00253 
00254 
00255 #elif (defined (__ICCARM__)) /*------------------ ICC Compiler -------------------*/
00256 /* IAR iccarm specific functions */
00257 #pragma diag_suppress=Pe940
00258 
00259 /**
00260  * @brief  Return the Process Stack Pointer
00261  *
00262  * @return ProcessStackPointer
00263  *
00264  * Return the actual process stack pointer
00265  */
00266 uint32_t __get_PSP(void)
00267 {
00268     __ASM("mrs r0, psp");
00269     __ASM("bx lr");
00270 }
00271 
00272 /**
00273  * @brief  Set the Process Stack Pointer
00274  *
00275  * @param  topOfProcStack  Process Stack Pointer
00276  *
00277  * Assign the value ProcessStackPointer to the MSP
00278  * (process stack pointer) Cortex processor register
00279  */
00280 void __set_PSP(uint32_t topOfProcStack)
00281 {
00282     __ASM("msr psp, r0");
00283     __ASM("bx lr");
00284 }
00285 
00286 /**
00287  * @brief  Return the Main Stack Pointer
00288  *
00289  * @return Main Stack Pointer
00290  *
00291  * Return the current value of the MSP (main stack pointer)
00292  * Cortex processor register
00293  */
00294 uint32_t __get_MSP(void)
00295 {
00296     __ASM("mrs r0, msp");
00297     __ASM("bx lr");
00298 }
00299 
00300 /**
00301  * @brief  Set the Main Stack Pointer
00302  *
00303  * @param  topOfMainStack  Main Stack Pointer
00304  *
00305  * Assign the value mainStackPointer to the MSP
00306  * (main stack pointer) Cortex processor register
00307  */
00308 void __set_MSP(uint32_t topOfMainStack)
00309 {
00310     __ASM("msr msp, r0");
00311     __ASM("bx lr");
00312 }
00313 
00314 /**
00315  * @brief  Reverse byte order in unsigned short value
00316  *
00317  * @param  value  value to reverse
00318  * @return        reversed value
00319  *
00320  * Reverse byte order in unsigned short value
00321  */
00322 uint32_t __REV16(uint16_t value)
00323 {
00324     __ASM("rev16 r0, r0");
00325     __ASM("bx lr");
00326 }
00327 
00328 /**
00329  * @brief  Reverse bit order of value
00330  *
00331  * @param  value  value to reverse
00332  * @return        reversed value
00333  *
00334  * Reverse bit order of value
00335  */
00336 uint32_t __RBIT(uint32_t value)
00337 {
00338     __ASM("rbit r0, r0");
00339     __ASM("bx lr");
00340 }
00341 
00342 /**
00343  * @brief  LDR Exclusive (8 bit)
00344  *
00345  * @param  *addr  address pointer
00346  * @return        value of (*address)
00347  *
00348  * Exclusive LDR command for 8 bit values)
00349  */
00350 uint8_t __LDREXB(uint8_t *addr)
00351 {
00352     __ASM("ldrexb r0, [r0]");
00353     __ASM("bx lr");
00354 }
00355 
00356 /**
00357  * @brief  LDR Exclusive (16 bit)
00358  *
00359  * @param  *addr  address pointer
00360  * @return        value of (*address)
00361  *
00362  * Exclusive LDR command for 16 bit values
00363  */
00364 uint16_t __LDREXH(uint16_t *addr)
00365 {
00366     __ASM("ldrexh r0, [r0]");
00367     __ASM("bx lr");
00368 }
00369 
00370 /**
00371  * @brief  LDR Exclusive (32 bit)
00372  *
00373  * @param  *addr  address pointer
00374  * @return        value of (*address)
00375  *
00376  * Exclusive LDR command for 32 bit values
00377  */
00378 uint32_t __LDREXW(uint32_t *addr)
00379 {
00380     __ASM("ldrex r0, [r0]");
00381     __ASM("bx lr");
00382 }
00383 
00384 /**
00385  * @brief  STR Exclusive (8 bit)
00386  *
00387  * @param  value  value to store
00388  * @param  *addr  address pointer
00389  * @return        successful / failed
00390  *
00391  * Exclusive STR command for 8 bit values
00392  */
00393 uint32_t __STREXB(uint8_t value, uint8_t *addr)
00394 {
00395     __ASM("strexb r0, r0, [r1]");
00396     __ASM("bx lr");
00397 }
00398 
00399 /**
00400  * @brief  STR Exclusive (16 bit)
00401  *
00402  * @param  value  value to store
00403  * @param  *addr  address pointer
00404  * @return        successful / failed
00405  *
00406  * Exclusive STR command for 16 bit values
00407  */
00408 uint32_t __STREXH(uint16_t value, uint16_t *addr)
00409 {
00410     __ASM("strexh r0, r0, [r1]");
00411     __ASM("bx lr");
00412 }
00413 
00414 /**
00415  * @brief  STR Exclusive (32 bit)
00416  *
00417  * @param  value  value to store
00418  * @param  *addr  address pointer
00419  * @return        successful / failed
00420  *
00421  * Exclusive STR command for 32 bit values
00422  */
00423 uint32_t __STREXW(uint32_t value, uint32_t *addr)
00424 {
00425     __ASM("strex r0, r0, [r1]");
00426     __ASM("bx lr");
00427 }
00428 
00429 #pragma diag_default=Pe940
00430 
00431 
00432 #elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
00433 /* GNU gcc specific functions */
00434 
00435 /**
00436  * @brief  Return the Process Stack Pointer
00437  *
00438  * @return ProcessStackPointer
00439  *
00440  * Return the actual process stack pointer
00441  */
00442 uint32_t __get_PSP(void) __attribute__( ( naked ) );
00443 uint32_t __get_PSP(void)
00444 {
00445     uint32_t result=0;
00446 
00447     __ASM volatile ("MRS %0, psp\n\t"
00448                     "MOV r0, %0 \n\t"
00449                 "BX  lr     \n\t"  : "=r" (result) );
00450     return(result);
00451 }
00452 
00453 /**
00454  * @brief  Set the Process Stack Pointer
00455  *
00456  * @param  topOfProcStack  Process Stack Pointer
00457  *
00458  * Assign the value ProcessStackPointer to the MSP
00459  * (process stack pointer) Cortex processor register
00460  */
00461 void __set_PSP(uint32_t topOfProcStack) __attribute__( ( naked ) );
00462 void __set_PSP(uint32_t topOfProcStack)
00463 {
00464     __ASM volatile ("MSR psp, %0\n\t"
00465                 "BX  lr     \n\t" : : "r" (topOfProcStack) );
00466 }
00467 
00468 /**
00469  * @brief  Return the Main Stack Pointer
00470  *
00471  * @return Main Stack Pointer
00472  *
00473  * Return the current value of the MSP (main stack pointer)
00474  * Cortex processor register
00475  */
00476 uint32_t __get_MSP(void) __attribute__( ( naked ) );
00477 uint32_t __get_MSP(void)
00478 {
00479     uint32_t result=0;
00480 
00481     __ASM volatile ("MRS %0, msp\n\t"
00482                     "MOV r0, %0 \n\t"
00483                 "BX  lr     \n\t"  : "=r" (result) );
00484     return(result);
00485 }
00486 
00487 /**
00488  * @brief  Set the Main Stack Pointer
00489  *
00490  * @param  topOfMainStack  Main Stack Pointer
00491  *
00492  * Assign the value mainStackPointer to the MSP
00493  * (main stack pointer) Cortex processor register
00494  */
00495 void __set_MSP(uint32_t topOfMainStack) __attribute__( ( naked ) );
00496 void __set_MSP(uint32_t topOfMainStack)
00497 {
00498     __ASM volatile ("MSR msp, %0\n\t"
00499                 "BX  lr     \n\t" : : "r" (topOfMainStack) );
00500 }
00501 
00502 /**
00503  * @brief  Return the Base Priority value
00504  *
00505  * @return BasePriority
00506  *
00507  * Return the content of the base priority register
00508  */
00509 uint32_t __get_BASEPRI(void)
00510 {
00511     uint32_t result=0;
00512 
00513 __ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
00514     return(result);
00515 }
00516 
00517 /**
00518  * @brief  Set the Base Priority value
00519  *
00520  * @param  basePri  BasePriority
00521  *
00522  * Set the base priority register
00523  */
00524 void __set_BASEPRI(uint32_t value)
00525 {
00526 __ASM volatile ("MSR basepri, %0" : : "r" (value) );
00527 }
00528 
00529 /**
00530  * @brief  Return the Priority Mask value
00531  *
00532  * @return PriMask
00533  *
00534  * Return state of the priority mask bit from the priority mask register
00535  */
00536 uint32_t __get_PRIMASK(void)
00537 {
00538     uint32_t result=0;
00539 
00540 __ASM volatile ("MRS %0, primask" : "=r" (result) );
00541     return(result);
00542 }
00543 
00544 /**
00545  * @brief  Set the Priority Mask value
00546  *
00547  * @param  priMask  PriMask
00548  *
00549  * Set the priority mask bit in the priority mask register
00550  */
00551 void __set_PRIMASK(uint32_t priMask)
00552 {
00553 __ASM volatile ("MSR primask, %0" : : "r" (priMask) );
00554 }
00555 
00556 /**
00557  * @brief  Return the Fault Mask value
00558  *
00559  * @return FaultMask
00560  *
00561  * Return the content of the fault mask register
00562  */
00563 uint32_t __get_FAULTMASK(void)
00564 {
00565     uint32_t result=0;
00566 
00567 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
00568     return(result);
00569 }
00570 
00571 /**
00572  * @brief  Set the Fault Mask value
00573  *
00574  * @param  faultMask  faultMask value
00575  *
00576  * Set the fault mask register
00577  */
00578 void __set_FAULTMASK(uint32_t faultMask)
00579 {
00580 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) );
00581 }
00582 
00583 /**
00584  * @brief  Return the Control Register value
00585 *
00586 *  @return Control value
00587  *
00588  * Return the content of the control register
00589  */
00590 uint32_t __get_CONTROL(void)
00591 {
00592     uint32_t result=0;
00593 
00594 __ASM volatile ("MRS %0, control" : "=r" (result) );
00595     return(result);
00596 }
00597 
00598 /**
00599  * @brief  Set the Control Register value
00600  *
00601  * @param  control  Control value
00602  *
00603  * Set the control register
00604  */
00605 void __set_CONTROL(uint32_t control)
00606 {
00607 __ASM volatile ("MSR control, %0" : : "r" (control) );
00608 }
00609 
00610 
00611 /**
00612  * @brief  Reverse byte order in integer value
00613  *
00614  * @param  value  value to reverse
00615  * @return        reversed value
00616  *
00617  * Reverse byte order in integer value
00618  */
00619 uint32_t __REV(uint32_t value)
00620 {
00621     uint32_t result=0;
00622 
00623 __ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
00624     return(result);
00625 }
00626 
00627 /**
00628  * @brief  Reverse byte order in unsigned short value
00629  *
00630  * @param  value  value to reverse
00631  * @return        reversed value
00632  *
00633  * Reverse byte order in unsigned short value
00634  */
00635 uint32_t __REV16(uint16_t value)
00636 {
00637     uint32_t result=0;
00638 
00639 __ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
00640     return(result);
00641 }
00642 
00643 /**
00644  * @brief  Reverse byte order in signed short value with sign extension to integer
00645  *
00646  * @param  value  value to reverse
00647  * @return        reversed value
00648  *
00649  * Reverse byte order in signed short value with sign extension to integer
00650  */
00651 int32_t __REVSH(int16_t value)
00652 {
00653     uint32_t result=0;
00654 
00655 __ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
00656     return(result);
00657 }
00658 
00659 /**
00660  * @brief  Reverse bit order of value
00661  *
00662  * @param  value  value to reverse
00663  * @return        reversed value
00664  *
00665  * Reverse bit order of value
00666  */
00667 uint32_t __RBIT(uint32_t value)
00668 {
00669     uint32_t result=0;
00670 
00671 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
00672     return(result);
00673 }
00674 
00675 /**
00676  * @brief  LDR Exclusive (8 bit)
00677  *
00678  * @param  *addr  address pointer
00679  * @return        value of (*address)
00680  *
00681  * Exclusive LDR command for 8 bit value
00682  */
00683 uint8_t __LDREXB(uint8_t *addr)
00684 {
00685     uint8_t result=0;
00686 
00687 __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
00688     return(result);
00689 }
00690 
00691 /**
00692  * @brief  LDR Exclusive (16 bit)
00693  *
00694  * @param  *addr  address pointer
00695  * @return        value of (*address)
00696  *
00697  * Exclusive LDR command for 16 bit values
00698  */
00699 uint16_t __LDREXH(uint16_t *addr)
00700 {
00701     uint16_t result=0;
00702 
00703 __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
00704     return(result);
00705 }
00706 
00707 /**
00708  * @brief  LDR Exclusive (32 bit)
00709  *
00710  * @param  *addr  address pointer
00711  * @return        value of (*address)
00712  *
00713  * Exclusive LDR command for 32 bit values
00714  */
00715 uint32_t __LDREXW(uint32_t *addr)
00716 {
00717     uint32_t result=0;
00718 
00719 __ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
00720     return(result);
00721 }
00722 
00723 /**
00724  * @brief  STR Exclusive (8 bit)
00725  *
00726  * @param  value  value to store
00727  * @param  *addr  address pointer
00728  * @return        successful / failed
00729  *
00730  * Exclusive STR command for 8 bit values
00731  */
00732 uint32_t __STREXB(uint8_t value, uint8_t *addr)
00733 {
00734     uint32_t result=0;
00735 
00736 __ASM volatile ("strexb %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
00737     return(result);
00738 }
00739 
00740 /**
00741  * @brief  STR Exclusive (16 bit)
00742  *
00743  * @param  value  value to store
00744  * @param  *addr  address pointer
00745  * @return        successful / failed
00746  *
00747  * Exclusive STR command for 16 bit values
00748  */
00749 uint32_t __STREXH(uint16_t value, uint16_t *addr)
00750 {
00751     uint32_t result=0;
00752 
00753 __ASM volatile ("strexh %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
00754     return(result);
00755 }
00756 
00757 /**
00758  * @brief  STR Exclusive (32 bit)
00759  *
00760  * @param  value  value to store
00761  * @param  *addr  address pointer
00762  * @return        successful / failed
00763  *
00764  * Exclusive STR command for 32 bit values
00765  */
00766 uint32_t __STREXW(uint32_t value, uint32_t *addr)
00767 {
00768     uint32_t result=0;
00769 
00770 __ASM volatile ("strex %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
00771     return(result);
00772 }
00773 
00774 
00775 #elif (defined (__TASKING__)) /*------------------ TASKING Compiler ---------------------*/
00776 /* TASKING carm specific functions */
00777 
00778 /*
00779  * The CMSIS functions have been implemented as intrinsics in the compiler.
00780  * Please use "carm -?i" to get an up to date list of all instrinsics,
00781  * Including the CMSIS ones.
00782  */
00783 
00784 #endif
00785