自動着陸の右旋回を修正

Dependencies:   HCSR04_2 MPU6050_2 mbed SDFileSystem3

Fork of Autoflight2018_24 by 航空研究会

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers MPU9250.cpp Source File

MPU9250.cpp

00001 #include "mbed.h"
00002 #include "math.h"
00003 #include "MPU9250.h"
00004 
00005 
00006 MPU9250::MPU9250(PinName sda, PinName scl, RawSerial* serial_p)
00007     :
00008     i2c_p(new I2C(sda,scl)),
00009     i2c(*i2c_p),
00010     pc_p(serial_p)
00011 {
00012     initializeValue();
00013 }
00014 
00015 MPU9250::~MPU9250(){}
00016 
00017 
00018 /*---------- public function ----------*/
00019 bool MPU9250::Initialize(void){
00020     uint8_t whoami;
00021 
00022     i2c.frequency(400000);                                      // use fast (400 kHz) I2C  
00023     timer.start();
00024 
00025     whoami = Whoami_MPU9250();
00026     pc_p->printf("I AM 0x%x\n\r", whoami); pc_p->printf("I SHOULD BE 0x71\n\r");
00027   
00028     if(whoami == IAM_MPU9250){
00029         resetMPU9250();                                                 // Reset registers to default in preparation for device calibration
00030         calibrateMPU9250(gyroBias, accelBias);  // Calibrate gyro and accelerometers, load biases in bias registers
00031         wait(1);
00032 
00033         initMPU9250();
00034         initAK8963(magCalibration);
00035     
00036     pc_p->printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
00037     pc_p->printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
00038 
00039     if(Mscale == 0) pc_p->printf("Magnetometer resolution = 14  bits\n\r");
00040     if(Mscale == 1) pc_p->printf("Magnetometer resolution = 16  bits\n\r");
00041     if(Mmode == 2) pc_p->printf("Magnetometer ODR = 8 Hz\n\r");
00042     if(Mmode == 6) pc_p->printf("Magnetometer ODR = 100 Hz\n\r");
00043     
00044         getAres();
00045         getGres();
00046         getMres();
00047 
00048     pc_p->printf("mpu9250 initialized\r\n");
00049     return true;
00050     }else return false;
00051 }
00052 
00053 bool MPU9250::sensingAcGyMg(){
00054     if(readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
00055     sensingAccel();
00056         sensingGyro();   
00057         sensingMag();   
00058     return true;
00059   }else return false;
00060 }
00061 
00062 
00063 void MPU9250::calculatePostureAngle(float degree[3]){   
00064   Now = timer.read_us();
00065   deltat = (float)((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
00066   lastUpdate = Now;
00067     
00068 //  if(lastUpdate - firstUpdate > 10000000.0f) {
00069 //      beta = 0.04;  // decrease filter gain after stabilized
00070 //      zeta = 0.015; // increasey bias drift gain after stabilized
00071 //  }
00072     
00073   // Pass gyro rate as rad/s
00074   MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
00075   MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);   //my, mx, mzになってるけどセンサの設置上の都合だろうか
00076       
00077   // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
00078   // In this coordinate system, the positive z-axis is down toward Earth. 
00079   // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
00080   // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
00081   // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
00082   // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
00083   // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
00084   // applied in the correct order which for this configuration is yaw, pitch, and then roll.
00085   // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
00086   translateQuaternionToDeg(q);
00087     calibrateDegree();  
00088     degree[0] = roll;
00089     degree[1] = pitch;
00090     degree[2] = yaw;
00091 }
00092 
00093 
00094 float MPU9250::calculateYawByMg(){
00095     transformCoordinateFromCompassToMPU();
00096     lpmag[0] = LPGAIN_MAG *lpmag[0] + (1 - LPGAIN_MAG)*mx;
00097     lpmag[1] = LPGAIN_MAG *lpmag[1] + (1 - LPGAIN_MAG)*my;
00098     lpmag[2] = LPGAIN_MAG *lpmag[2] + (1 - LPGAIN_MAG)*mz;
00099     
00100     float radroll = PI/180.0f * roll;
00101     float radpitch = PI/180.0f * pitch;
00102 
00103     return 180.0f/PI * atan2(lpmag[2]*sin(radpitch) - lpmag[1]*cos(radpitch),
00104                                          lpmag[0]*cos(radroll) - lpmag[1]*sin(radroll)*sin(radpitch) + lpmag[2]*sin(radroll)*cos(radpitch));
00105 }
00106 
00107 
00108 // Accelerometer and gyroscope self test; check calibration wrt factory settings
00109 void MPU9250::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
00110 {
00111     uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
00112     uint8_t selfTest[6];
00113     int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
00114     float factoryTrim[6];
00115     uint8_t FS = 0;
00116    
00117     writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
00118     writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
00119     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
00120     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
00121     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
00122 
00123     for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
00124         readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
00125         aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
00126     aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00127         aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00128         
00129         readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
00130         gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
00131         gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00132         gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00133     }
00134   
00135     for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
00136         aAvg[ii] /= 200;
00137         gAvg[ii] /= 200;
00138     }
00139   
00140     // Configure the accelerometer for self-test
00141     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
00142     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
00143     //delay(55); // Delay a while to let the device stabilize
00144 
00145     for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
00146         readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
00147         aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
00148         aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00149         aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00150         
00151         readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
00152         gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
00153         gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00154         gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00155     }
00156   
00157     for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
00158         aSTAvg[ii] /= 200;
00159         gSTAvg[ii] /= 200;
00160     }
00161   
00162  // Configure the gyro and accelerometer for normal operation
00163     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
00164     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
00165     //delay(45); // Delay a while to let the device stabilize
00166    
00167   // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
00168     selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
00169     selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
00170     selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
00171     selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
00172     selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
00173     selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
00174 
00175     // Retrieve factory self-test value from self-test code reads
00176     factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
00177     factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
00178     factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
00179     factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
00180     factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
00181     factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
00182  
00183     // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
00184     // To get percent, must multiply by 100
00185     for (int i = 0; i < 3; i++) {
00186         destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
00187         destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
00188     } 
00189 }
00190 
00191 void MPU9250::pickupAccel(float accel[3]){
00192     sensingAccel();
00193     accel[0] = ax;
00194     accel[1] = ay;
00195     accel[2] = az;
00196 }
00197 
00198 void MPU9250::pickupGyro(float gyro[3]){
00199     sensingGyro();
00200     gyro[0] = gx;
00201     gyro[1] = gy;
00202     gyro[2] = gz;
00203 }
00204 
00205 void MPU9250::pickupMag(float mag[3]){
00206     sensingMag();
00207     mag[0] = mx;
00208     mag[1] = my;
00209     mag[2] = mz;
00210 }
00211 
00212 float MPU9250::pickupTemp(void){
00213     sensingTemp();
00214     return temperature;
00215 }
00216 
00217 void MPU9250::displayAccel(void){
00218     pc_p->printf("ax = %f", 1000*ax); 
00219   pc_p->printf(" ay = %f", 1000*ay); 
00220   pc_p->printf(" az = %f  mg\n\r", 1000*az); 
00221 }
00222 
00223 void MPU9250::displayGyro(void){
00224   pc_p->printf("gx = %f", gx); 
00225   pc_p->printf(" gy = %f", gy); 
00226   pc_p->printf(" gz = %f  deg/s\n\r", gz); 
00227 }
00228 
00229 void MPU9250::displayMag(void){
00230   pc_p->printf("mx = %f,", mx); 
00231   pc_p->printf(" my = %f,", my); 
00232   pc_p->printf(" mz = %f  mG\n\r", mz); 
00233 }
00234 
00235 void MPU9250::displayQuaternion(void){
00236   pc_p->printf("q0 = %f\n\r", q[0]);
00237   pc_p->printf("q1 = %f\n\r", q[1]);
00238   pc_p->printf("q2 = %f\n\r", q[2]);
00239   pc_p->printf("q3 = %f\n\r", q[3]);
00240 }
00241 
00242 void MPU9250::displayAngle(void){
00243     //pc_p->printf("$%d %d %d;",(int)(yaw*100),(int)(pitch*100),(int)(roll*100));
00244     pc_p->printf("Roll: %f\tPitch: %f\tYaw: %f\n\r",  roll,   pitch,   yaw);
00245 }
00246 
00247 void MPU9250::displayTemperature(void){
00248     pc_p->printf(" temperature = %f  C\n\r", temperature);
00249 }
00250 
00251 void MPU9250::setMagBias(float bias_x, float bias_y, float bias_z){
00252     magbias[0] = bias_x;
00253     magbias[1] = bias_y;
00254     magbias[2] = bias_z;
00255 }
00256 
00257 /*---------- private function ----------*/
00258 
00259 void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
00260 {
00261     char data_write[2];
00262     
00263     data_write[0] = subAddress;
00264   data_write[1] = data;
00265   i2c.write(address, data_write, 2, 0);
00266 }
00267 
00268 char MPU9250::readByte(uint8_t address, uint8_t subAddress)
00269 {
00270     char data[1]; // `data` will store the register data     
00271     char data_write[1];
00272     
00273     data_write[0] = subAddress;
00274     i2c.write(address, data_write, 1, 1); // no stop
00275     i2c.read(address, data, 1, 0); 
00276     return data[0]; 
00277 }
00278 
00279 void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
00280 {     
00281     char data[14];
00282     char data_write[1];
00283     
00284     data_write[0] = subAddress;
00285     i2c.write(address, data_write, 1, 1); // no stop
00286     i2c.read(address, data, count, 0); 
00287     for(int ii = 0; ii < count; ii++) {
00288         dest[ii] = data[ii];
00289   }
00290 } 
00291 
00292 void MPU9250::initializeValue(void){
00293     Ascale = AFS_2G;     // AFS_2G, AFS_4G, AFS_8G, AFS_16G
00294     Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
00295     Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
00296     Mmode = 0x06;        // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR  
00297 
00298     GyroMeasError = PI * (60.0f / 180.0f);
00299     beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
00300     GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
00301     zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
00302 
00303     deltat = 0.0f;                             // integration interval for both filter schemes
00304     lastUpdate = 0, firstUpdate = 0, Now = 0;    // used to calculate integration interval                               // used to calculate integration interval
00305 
00306     for(int i=0; i<3; i++){
00307         magCalibration[i] = 0;
00308         gyroBias[i] = 0;
00309         accelBias[i] = 0;
00310         magbias[i] = 0;
00311 
00312         eInt[i] = 0.0f; 
00313     
00314         lpmag[i] = 0.0f;
00315     }
00316 
00317     q[0] = 1.0f;
00318     q[1] = 0.0f;
00319     q[2] = 0.0f;
00320     q[3] = 0.0f;
00321 }
00322 
00323 void MPU9250::initMPU9250(void)
00324 {  
00325     // Initialize MPU9250 device
00326     // wake up device
00327     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
00328     wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
00329 
00330     // get stable time source
00331     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
00332 
00333     // Configure Gyro and Accelerometer
00334     // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
00335     // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
00336     // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
00337     writeByte(MPU9250_ADDRESS, CONFIG, 0x03);  
00338 
00339     // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
00340     writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
00341  
00342     // Set gyroscope full scale range
00343     // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
00344     uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
00345     // c = c & ~0xE0; // Clear self-test bits [7:5] 
00346     c = c & ~0x02; // Clear Fchoice bits [1:0] 
00347     c = c & ~0x18; // Clear AFS bits [4:3]
00348     c = c | Gscale << 3; // Set full scale range for the gyro
00349     // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
00350     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
00351 
00352     // Set accelerometer full-scale range configuration
00353     c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
00354     // c = c & ~0xE0; // Clear self-test bits [7:5] 
00355     c = c & ~0x18;  // Clear AFS bits [4:3]
00356     c = c | Ascale << 3; // Set full scale range for the accelerometer 
00357     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
00358 
00359     // Set accelerometer sample rate configuration
00360     // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
00361     // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
00362     c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
00363     c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
00364     c = c | 0x03;  // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
00365     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
00366 
00367     // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
00368     // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
00369 
00370     // Configure Interrupts and Bypass Enable
00371     // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
00372     // can join the I2C bus and all can be controlled by the Arduino as master
00373     writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);    
00374     writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
00375 }
00376 
00377 void MPU9250::initAK8963(float * destination)
00378 {
00379     // First extract the factory calibration for each magnetometer axis
00380     uint8_t rawData[3];  // x/y/z gyro calibration data stored here
00381 
00382     writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
00383     wait(0.01);
00384     
00385     writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
00386     wait(0.01);
00387   
00388     readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
00389     destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
00390     destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;  
00391     destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f; 
00392     writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
00393     wait(0.01);
00394 
00395     // Configure the magnetometer for continuous read and highest resolution
00396     // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
00397     // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
00398     writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
00399     wait(0.01);
00400 }
00401 
00402 void MPU9250::resetMPU9250(void)
00403 {
00404     // reset device
00405     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
00406     wait(0.1);
00407 }
00408 
00409 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
00410 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
00411 void MPU9250::calibrateMPU9250(float * dest1, float * dest2)
00412 {  
00413     uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
00414     uint16_t ii, packet_count, fifo_count;
00415     int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
00416     int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
00417   
00418     // reset device, reset all registers, clear gyro and accelerometer bias registers
00419     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
00420     wait(0.1);  
00421    
00422     // get stable time source
00423     // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
00424     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  
00425     writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); 
00426     wait(0.2);
00427 
00428     // Configure device for bias calculation
00429     writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
00430     writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
00431     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
00432     writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
00433     writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
00434     writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
00435     wait(0.015);
00436   
00437     // Configure MPU9250 gyro and accelerometer for bias calculation
00438     writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
00439     writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
00440     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
00441     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
00442 
00443     uint16_t gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
00444     uint16_t accelsensitivity = 16384;  // = 16384 LSB/g
00445 
00446     // Configure FIFO to capture accelerometer and gyro data for bias calculation
00447     writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
00448     writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
00449     wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
00450 
00451     // At end of sample accumulation, turn off FIFO sensor read
00452     writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
00453     readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
00454     fifo_count = ((uint16_t)data[0] << 8) | data[1];
00455     packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
00456 
00457     for (ii = 0; ii < packet_count; ii++) {
00458         int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
00459         readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
00460         accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
00461         accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
00462         accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
00463         gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
00464         gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
00465         gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
00466     
00467         accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
00468         accel_bias[1] += (int32_t) accel_temp[1];
00469         accel_bias[2] += (int32_t) accel_temp[2];
00470         gyro_bias[0]  += (int32_t) gyro_temp[0];
00471         gyro_bias[1]  += (int32_t) gyro_temp[1];
00472         gyro_bias[2]  += (int32_t) gyro_temp[2];
00473             
00474     }
00475     accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
00476     accel_bias[1] /= (int32_t) packet_count;
00477     accel_bias[2] /= (int32_t) packet_count;
00478     gyro_bias[0]  /= (int32_t) packet_count;
00479     gyro_bias[1]  /= (int32_t) packet_count;
00480     gyro_bias[2]  /= (int32_t) packet_count;
00481     
00482   if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
00483   else {accel_bias[2] += (int32_t) accelsensitivity;}
00484  
00485     // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
00486     data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
00487     data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
00488     data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
00489     data[3] = (-gyro_bias[1]/4)       & 0xFF;
00490     data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
00491     data[5] = (-gyro_bias[2]/4)       & 0xFF;
00492 
00493     /// Push gyro biases to hardware registers
00494 /*  
00495     writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
00496     writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
00497     writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
00498     writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
00499     writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
00500     writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
00501 */
00502     dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
00503     dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
00504     dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
00505 
00506     // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
00507     // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
00508     // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
00509     // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
00510     // the accelerometer biases calculated above must be divided by 8.
00511 
00512     readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
00513     accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00514     readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
00515     accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00516     readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
00517     accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00518   
00519     uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
00520     uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
00521   
00522     for(ii = 0; ii < 3; ii++) {
00523         if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
00524     }
00525 
00526   // Construct total accelerometer bias, including calculated average accelerometer bias from above
00527     accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
00528     accel_bias_reg[1] -= (accel_bias[1]/8);
00529     accel_bias_reg[2] -= (accel_bias[2]/8);
00530  
00531     data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
00532     data[1] = (accel_bias_reg[0])      & 0xFF;
00533     data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00534     data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
00535     data[3] = (accel_bias_reg[1])      & 0xFF;
00536     data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00537     data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
00538     data[5] = (accel_bias_reg[2])      & 0xFF;
00539     data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00540 
00541 // Apparently this is not working for the acceleration biases in the MPU-9250
00542 // Are we handling the temperature correction bit properly?
00543 // Push accelerometer biases to hardware registers
00544 /*
00545     writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
00546     writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
00547     writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
00548     writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
00549     writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
00550     writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
00551 */
00552 // Output scaled accelerometer biases for manual subtraction in the main program
00553     dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
00554     dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
00555     dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
00556 }
00557 
00558 void MPU9250::getMres(void)
00559 {
00560     switch (Mscale)
00561     {
00562         // Possible magnetometer scales (and their register bit settings) are:
00563         // 14 bit resolution (0) and 16 bit resolution (1)
00564         case MFS_14BITS:
00565                 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
00566                 break;
00567         case MFS_16BITS:
00568                 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
00569                 break;
00570   }
00571 }
00572 
00573 void MPU9250::getGres(void) {
00574     switch (Gscale)
00575     {
00576         // Possible gyro scales (and their register bit settings) are:
00577         // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
00578         // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
00579         case GFS_250DPS:
00580                 gRes = 250.0/32768.0;
00581                 break;
00582         case GFS_500DPS:
00583                 gRes = 500.0/32768.0;
00584                 break;
00585         case GFS_1000DPS:
00586                 gRes = 1000.0/32768.0;
00587                 break;
00588         case GFS_2000DPS:
00589                 gRes = 2000.0/32768.0;
00590                 break;
00591   }
00592 }
00593 
00594 
00595 void MPU9250::getAres(void) 
00596 {
00597     switch (Ascale)
00598     {
00599         // Possible accelerometer scales (and their register bit settings) are:
00600         // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
00601         // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
00602         case AFS_2G:
00603                 aRes = 2.0/32768.0;
00604                 break;
00605         case AFS_4G:
00606                 aRes = 4.0/32768.0;
00607                 break;
00608         case AFS_8G:
00609                 aRes = 8.0/32768.0;
00610                 break;
00611         case AFS_16G:
00612                 aRes = 16.0/32768.0;
00613                 break;
00614   }
00615 }
00616 
00617 void MPU9250::readAccelData(int16_t * destination)
00618 {
00619     uint8_t rawData[6];  // x/y/z accel register data stored here
00620   
00621     readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
00622     destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
00623     destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
00624     destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
00625 }
00626 
00627 void MPU9250::readGyroData(int16_t * destination)
00628 {
00629     uint8_t rawData[6];  // x/y/z gyro register data stored here
00630   
00631     readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
00632     destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
00633     destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
00634     destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
00635 }
00636 
00637 void MPU9250::readMagData(int16_t * destination)
00638 {
00639     uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
00640   
00641     if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
00642         readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
00643         uint8_t c = rawData[6]; // End data read by reading ST2 register
00644         if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
00645             destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
00646             destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
00647             destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; 
00648         }
00649     }
00650 }
00651 
00652 int16_t MPU9250::readTempData(void)
00653 {
00654   uint8_t rawData[2];  // x/y/z gyro register data stored here
00655   
00656   readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
00657   
00658   return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
00659 }
00660 
00661 uint8_t MPU9250::Whoami_MPU9250(void){
00662     return readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
00663 }
00664 
00665 uint8_t MPU9250::Whoami_AK8963(void){
00666     return readByte(WHO_AM_I_AK8963, WHO_AM_I_AK8963);
00667 }
00668 
00669 void MPU9250::sensingAccel(void){
00670     readAccelData(accelCount);
00671     ax = (float)accelCount[0]*aRes - accelBias[0];
00672     ay = (float)accelCount[1]*aRes - accelBias[1];   
00673     az = (float)accelCount[2]*aRes - accelBias[2];
00674 }
00675 
00676 void MPU9250::sensingGyro(void){
00677     readGyroData(gyroCount);
00678     gx = (float)gyroCount[0]*gRes - gyroBias[0];
00679     gy = (float)gyroCount[1]*gRes - gyroBias[1];  
00680     gz = (float)gyroCount[2]*gRes - gyroBias[2];   
00681 }
00682 
00683 void MPU9250::sensingMag(void){
00684     readMagData(magCount);
00685     mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];
00686     my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
00687     mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
00688 }
00689 
00690 void MPU9250::sensingTemp(void){
00691     tempCount = readTempData();
00692   temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
00693 }
00694 
00695 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
00696 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
00697 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
00698 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
00699 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
00700 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
00701 void MPU9250::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
00702 {
00703     float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
00704     float norm;
00705     float hx, hy, _2bx, _2bz;
00706     float s1, s2, s3, s4;
00707     float qDot1, qDot2, qDot3, qDot4;
00708 
00709     // Auxiliary variables to avoid repeated arithmetic
00710     float _2q1mx;
00711     float _2q1my;
00712     float _2q1mz;
00713     float _2q2mx;
00714     float _4bx;
00715     float _4bz;
00716     float _2q1 = 2.0f * q1;
00717     float _2q2 = 2.0f * q2;
00718     float _2q3 = 2.0f * q3;
00719     float _2q4 = 2.0f * q4;
00720     float _2q1q3 = 2.0f * q1 * q3;
00721     float _2q3q4 = 2.0f * q3 * q4;
00722     float q1q1 = q1 * q1;
00723     float q1q2 = q1 * q2;
00724     float q1q3 = q1 * q3;
00725     float q1q4 = q1 * q4;
00726     float q2q2 = q2 * q2;
00727     float q2q3 = q2 * q3;
00728     float q2q4 = q2 * q4;
00729     float q3q3 = q3 * q3;
00730     float q3q4 = q3 * q4;
00731     float q4q4 = q4 * q4;
00732 
00733     // Normalise accelerometer measurement
00734     norm = sqrt(ax * ax + ay * ay + az * az);
00735     if (norm == 0.0f) return; // handle NaN
00736     norm = 1.0f/norm;
00737     ax *= norm;
00738     ay *= norm;
00739     az *= norm;
00740 
00741     // Normalise magnetometer measurement
00742     norm = sqrt(mx * mx + my * my + mz * mz);
00743     if (norm == 0.0f) return; // handle NaN
00744     norm = 1.0f/norm;
00745     mx *= norm;
00746     my *= norm;
00747     mz *= norm;
00748 
00749     // Reference direction of Earth's magnetic field
00750     _2q1mx = 2.0f * q1 * mx;
00751     _2q1my = 2.0f * q1 * my;
00752     _2q1mz = 2.0f * q1 * mz;
00753     _2q2mx = 2.0f * q2 * mx;
00754     hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
00755     hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
00756     _2bx = sqrt(hx * hx + hy * hy);
00757     _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
00758     _4bx = 2.0f * _2bx;
00759     _4bz = 2.0f * _2bz;
00760 
00761     // Gradient decent algorithm corrective step
00762     s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00763     s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00764     s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00765     s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00766     norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
00767     norm = 1.0f/norm;
00768     s1 *= norm;
00769     s2 *= norm;
00770     s3 *= norm;
00771     s4 *= norm;
00772 
00773     // Compute rate of change of quaternion
00774     qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
00775     qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
00776     qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
00777     qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
00778 
00779     // Integrate to yield quaternion
00780     q1 += qDot1 * deltat;
00781     q2 += qDot2 * deltat;
00782     q3 += qDot3 * deltat;
00783     q4 += qDot4 * deltat;
00784     norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
00785     norm = 1.0f/norm;
00786     q[0] = q1 * norm;
00787     q[1] = q2 * norm;
00788     q[2] = q3 * norm;
00789     q[3] = q4 * norm;
00790 
00791 }
00792 
00793 void MPU9250::MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
00794 {
00795     float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
00796     float norm;
00797     float hx, hy, bx, bz;
00798     float vx, vy, vz, wx, wy, wz;
00799     float ex, ey, ez;
00800     float pa, pb, pc;
00801 
00802     // Auxiliary variables to avoid repeated arithmetic
00803     float q1q1 = q1 * q1;
00804     float q1q2 = q1 * q2;
00805     float q1q3 = q1 * q3;
00806     float q1q4 = q1 * q4;
00807     float q2q2 = q2 * q2;
00808     float q2q3 = q2 * q3;
00809     float q2q4 = q2 * q4;
00810     float q3q3 = q3 * q3;
00811     float q3q4 = q3 * q4;
00812     float q4q4 = q4 * q4;   
00813 
00814     // Normalise accelerometer measurement
00815     norm = sqrt(ax * ax + ay * ay + az * az);
00816     if (norm == 0.0f) return; // handle NaN
00817     norm = 1.0f / norm;        // use reciprocal for division
00818     ax *= norm;
00819     ay *= norm;
00820     az *= norm;
00821 
00822     // Normalise magnetometer measurement
00823     norm = sqrt(mx * mx + my * my + mz * mz);
00824     if (norm == 0.0f) return; // handle NaN
00825     norm = 1.0f / norm;        // use reciprocal for division
00826     mx *= norm;
00827     my *= norm;
00828     mz *= norm;
00829 
00830     // Reference direction of Earth's magnetic field
00831     hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
00832     hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
00833     bx = sqrt((hx * hx) + (hy * hy));
00834     bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
00835 
00836     // Estimated direction of gravity and magnetic field
00837     vx = 2.0f * (q2q4 - q1q3);
00838     vy = 2.0f * (q1q2 + q3q4);
00839     vz = q1q1 - q2q2 - q3q3 + q4q4;
00840     wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
00841     wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
00842     wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);  
00843 
00844     // Error is cross product between estimated direction and measured direction of gravity
00845     ex = (ay * vz - az * vy) + (my * wz - mz * wy);
00846     ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
00847     ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
00848     if (Ki > 0.0f){
00849         eInt[0] += ex;      // accumulate integral error
00850         eInt[1] += ey;
00851         eInt[2] += ez;
00852 
00853     }else{
00854         eInt[0] = 0.0f;     // prevent integral wind up
00855         eInt[1] = 0.0f;
00856         eInt[2] = 0.0f;
00857     }
00858 
00859   // Apply feedback terms
00860     gx = gx + Kp * ex + Ki * eInt[0];
00861     gy = gy + Kp * ey + Ki * eInt[1];
00862     gz = gz + Kp * ez + Ki * eInt[2];
00863 
00864     // Integrate rate of change of quaternion
00865     pa = q2;
00866     pb = q3;
00867     pc = q4;
00868     q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
00869     q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
00870     q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
00871     q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
00872 
00873     // Normalise quaternion
00874     norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
00875     norm = 1.0f / norm;
00876     q[0] = q1 * norm;
00877     q[1] = q2 * norm;
00878     q[2] = q3 * norm;
00879     q[3] = q4 * norm;
00880 
00881 }
00882 
00883 void MPU9250::translateQuaternionToDeg(float quaternion[4]){
00884   yaw   = atan2(2.0f * (quaternion[1] * quaternion[2] + quaternion[0] * quaternion[3]), quaternion[0] * quaternion[0] + quaternion[1] * quaternion[1] - quaternion[2] * quaternion[2] - quaternion[3] * quaternion[3]);   
00885   roll = -asin(2.0f * (quaternion[1] * quaternion[3] - quaternion[0] * quaternion[2]));
00886   pitch  = atan2(2.0f * (quaternion[0] * quaternion[1] + quaternion[2] * quaternion[3]), quaternion[0] * quaternion[0] - quaternion[1] * quaternion[1] - quaternion[2] * quaternion[2] + quaternion[3] * quaternion[3]);
00887 }
00888 
00889 void MPU9250::calibrateDegree(void){
00890     pitch *= 180.0f / PI;
00891   yaw   *= 180.0f / PI; 
00892   yaw   -= DECLINATION;
00893   roll  *= 180.0f / PI; 
00894 }
00895 
00896 void MPU9250::transformCoordinateFromCompassToMPU(){
00897     float buf = mx;
00898     mx = my;
00899     my = buf;
00900     mz = -mz;
00901 }