Fork of MPU6050IMU by
Revision 4:095b126178df, committed 2017-05-30
- Comitter:
- yxyang
- Date:
- Tue May 30 06:42:08 2017 +0000
- Parent:
- 3:359efdec694f
- Commit message:
Changed in this revision
MPU6050.h | Show annotated file Show diff for this revision Revisions of this file |
diff -r 359efdec694f -r 095b126178df MPU6050.h --- a/MPU6050.h Mon Oct 05 19:34:26 2015 +0000 +++ b/MPU6050.h Tue May 30 06:42:08 2017 +0000 @@ -1,84 +1,93 @@ #ifndef MPU6050_H #define MPU6050_H - -#include "mbed.h" + #include "math.h" - - // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device +#include "mbed.h" + +// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, +// 08/19/2013 6 DOF Motion sensor fusion device // Invensense Inc., www.invensense.com -// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in -// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor +// See also MPU-6050 Register Map and Descriptions, Revision 4.0, +// RM-MPU-6050A-00, 9/12/2012 for registers not listed in +// above document; the MPU6050 and MPU 9150 are virtually identical but the +// latter has an on-board magnetic sensor // -#define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD -#define YGOFFS_TC 0x01 -#define ZGOFFS_TC 0x02 -#define X_FINE_GAIN 0x03 // [7:0] fine gain -#define Y_FINE_GAIN 0x04 -#define Z_FINE_GAIN 0x05 -#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer -#define XA_OFFSET_L_TC 0x07 -#define YA_OFFSET_H 0x08 -#define YA_OFFSET_L_TC 0x09 -#define ZA_OFFSET_H 0x0A -#define ZA_OFFSET_L_TC 0x0B -#define SELF_TEST_X 0x0D -#define SELF_TEST_Y 0x0E -#define SELF_TEST_Z 0x0F -#define SELF_TEST_A 0x10 -#define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050? -#define XG_OFFS_USRL 0x14 -#define YG_OFFS_USRH 0x15 -#define YG_OFFS_USRL 0x16 -#define ZG_OFFS_USRH 0x17 -#define ZG_OFFS_USRL 0x18 -#define SMPLRT_DIV 0x19 -#define CONFIG 0x1A -#define GYRO_CONFIG 0x1B -#define ACCEL_CONFIG 0x1C -#define FF_THR 0x1D // Free-fall -#define FF_DUR 0x1E // Free-fall -#define MOT_THR 0x1F // Motion detection threshold bits [7:0] -#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms -#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] -#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms -#define FIFO_EN 0x23 -#define I2C_MST_CTRL 0x24 -#define I2C_SLV0_ADDR 0x25 -#define I2C_SLV0_REG 0x26 -#define I2C_SLV0_CTRL 0x27 -#define I2C_SLV1_ADDR 0x28 -#define I2C_SLV1_REG 0x29 -#define I2C_SLV1_CTRL 0x2A -#define I2C_SLV2_ADDR 0x2B -#define I2C_SLV2_REG 0x2C -#define I2C_SLV2_CTRL 0x2D -#define I2C_SLV3_ADDR 0x2E -#define I2C_SLV3_REG 0x2F -#define I2C_SLV3_CTRL 0x30 -#define I2C_SLV4_ADDR 0x31 -#define I2C_SLV4_REG 0x32 -#define I2C_SLV4_DO 0x33 -#define I2C_SLV4_CTRL 0x34 -#define I2C_SLV4_DI 0x35 -#define I2C_MST_STATUS 0x36 -#define INT_PIN_CFG 0x37 -#define INT_ENABLE 0x38 -#define DMP_INT_STATUS 0x39 // Check DMP interrupt -#define INT_STATUS 0x3A -#define ACCEL_XOUT_H 0x3B -#define ACCEL_XOUT_L 0x3C -#define ACCEL_YOUT_H 0x3D -#define ACCEL_YOUT_L 0x3E -#define ACCEL_ZOUT_H 0x3F -#define ACCEL_ZOUT_L 0x40 -#define TEMP_OUT_H 0x41 -#define TEMP_OUT_L 0x42 -#define GYRO_XOUT_H 0x43 -#define GYRO_XOUT_L 0x44 -#define GYRO_YOUT_H 0x45 -#define GYRO_YOUT_L 0x46 -#define GYRO_ZOUT_H 0x47 -#define GYRO_ZOUT_L 0x48 +#define XGOFFS_TC \ + 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD +#define YGOFFS_TC 0x01 +#define ZGOFFS_TC 0x02 +#define X_FINE_GAIN 0x03 // [7:0] fine gain +#define Y_FINE_GAIN 0x04 +#define Z_FINE_GAIN 0x05 +#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer +#define XA_OFFSET_L_TC 0x07 +#define YA_OFFSET_H 0x08 +#define YA_OFFSET_L_TC 0x09 +#define ZA_OFFSET_H 0x0A +#define ZA_OFFSET_L_TC 0x0B +#define SELF_TEST_X 0x0D +#define SELF_TEST_Y 0x0E +#define SELF_TEST_Z 0x0F +#define SELF_TEST_A 0x10 +#define XG_OFFS_USRH \ + 0x13 // User-defined trim values for gyroscope; supported in MPU-6050? +#define XG_OFFS_USRL 0x14 +#define YG_OFFS_USRH 0x15 +#define YG_OFFS_USRL 0x16 +#define ZG_OFFS_USRH 0x17 +#define ZG_OFFS_USRL 0x18 +#define SMPLRT_DIV 0x19 +#define CONFIG 0x1A +#define GYRO_CONFIG 0x1B +#define ACCEL_CONFIG 0x1C +#define FF_THR 0x1D // Free-fall +#define FF_DUR 0x1E // Free-fall +#define MOT_THR 0x1F // Motion detection threshold bits [7:0] +#define MOT_DUR \ + 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz + // rate, LSB = 1 ms +#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] +#define ZRMOT_DUR \ + 0x22 // Duration counter threshold for zero motion interrupt generation, 16 + // Hz rate, LSB = 64 ms +#define FIFO_EN 0x23 +#define I2C_MST_CTRL 0x24 +#define I2C_SLV0_ADDR 0x25 +#define I2C_SLV0_REG 0x26 +#define I2C_SLV0_CTRL 0x27 +#define I2C_SLV1_ADDR 0x28 +#define I2C_SLV1_REG 0x29 +#define I2C_SLV1_CTRL 0x2A +#define I2C_SLV2_ADDR 0x2B +#define I2C_SLV2_REG 0x2C +#define I2C_SLV2_CTRL 0x2D +#define I2C_SLV3_ADDR 0x2E +#define I2C_SLV3_REG 0x2F +#define I2C_SLV3_CTRL 0x30 +#define I2C_SLV4_ADDR 0x31 +#define I2C_SLV4_REG 0x32 +#define I2C_SLV4_DO 0x33 +#define I2C_SLV4_CTRL 0x34 +#define I2C_SLV4_DI 0x35 +#define I2C_MST_STATUS 0x36 +#define INT_PIN_CFG 0x37 +#define INT_ENABLE 0x38 +#define DMP_INT_STATUS 0x39 // Check DMP interrupt +#define INT_STATUS 0x3A +#define ACCEL_XOUT_H 0x3B +#define ACCEL_XOUT_L 0x3C +#define ACCEL_YOUT_H 0x3D +#define ACCEL_YOUT_L 0x3E +#define ACCEL_ZOUT_H 0x3F +#define ACCEL_ZOUT_L 0x40 +#define TEMP_OUT_H 0x41 +#define TEMP_OUT_L 0x42 +#define GYRO_XOUT_H 0x43 +#define GYRO_XOUT_L 0x44 +#define GYRO_YOUT_H 0x45 +#define GYRO_YOUT_L 0x46 +#define GYRO_ZOUT_H 0x47 +#define GYRO_ZOUT_L 0x48 #define EXT_SENS_DATA_00 0x49 #define EXT_SENS_DATA_01 0x4A #define EXT_SENS_DATA_02 0x4B @@ -104,44 +113,49 @@ #define EXT_SENS_DATA_22 0x5F #define EXT_SENS_DATA_23 0x60 #define MOT_DETECT_STATUS 0x61 -#define I2C_SLV0_DO 0x63 -#define I2C_SLV1_DO 0x64 -#define I2C_SLV2_DO 0x65 -#define I2C_SLV3_DO 0x66 +#define I2C_SLV0_DO 0x63 +#define I2C_SLV1_DO 0x64 +#define I2C_SLV2_DO 0x65 +#define I2C_SLV3_DO 0x66 #define I2C_MST_DELAY_CTRL 0x67 -#define SIGNAL_PATH_RESET 0x68 -#define MOT_DETECT_CTRL 0x69 -#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP -#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode -#define PWR_MGMT_2 0x6C -#define DMP_BANK 0x6D // Activates a specific bank in the DMP -#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank -#define DMP_REG 0x6F // Register in DMP from which to read or to which to write -#define DMP_REG_1 0x70 -#define DMP_REG_2 0x71 -#define FIFO_COUNTH 0x72 -#define FIFO_COUNTL 0x73 -#define FIFO_R_W 0x74 +#define SIGNAL_PATH_RESET 0x68 +#define MOT_DETECT_CTRL 0x69 +#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP +#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode +#define PWR_MGMT_2 0x6C +#define DMP_BANK 0x6D // Activates a specific bank in the DMP +#define DMP_RW_PNT \ + 0x6E // Set read/write pointer to a specific start address in specified DMP + // bank +#define DMP_REG 0x6F // Register in DMP from which to read or to which to write +#define DMP_REG_1 0x70 +#define DMP_REG_2 0x71 +#define FIFO_COUNTH 0x72 +#define FIFO_COUNTL 0x73 +#define FIFO_R_W 0x74 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68 -// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor +// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 +// resistor // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 #define ADO 0 #if ADO -#define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1 +#define MPU6050_ADDRESS 0x69 << 1 // Device address when ADO = 1 #else -#define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0 +#define MPU6050_ADDRESS 0x68 << 1 // Device address when ADO = 0 #endif // Set initial input parameters -enum Ascale { +enum Ascale +{ AFS_2G = 0, AFS_4G, AFS_8G, AFS_16G }; -enum Gscale { +enum Gscale +{ GFS_250DPS = 0, GFS_500DPS, GFS_1000DPS, @@ -152,24 +166,27 @@ int Gscale = GFS_250DPS; int Ascale = AFS_2G; -//Set up I2C, (SDA,SCL) +// Set up I2C, (SDA,SCL) #define MPU_SDA p9 #define MPU_SCL p10 -I2C i2c(MPU_SDA, MPU_SCL); +I2C i2c (MPU_SDA, MPU_SCL); -//DigitalOut myled(LED1); - +// DigitalOut myled(LED1); + float aRes, gRes; // scale resolutions per LSB for the sensors - + // Pin definitions -int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins +int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins -int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output -float ax, ay, az; // Stores the real accel value in g's -int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output -float gx, gy, gz; // Stores the real gyro value in degrees per seconds -float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer -int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius +int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output +float ax, ay, az; // Stores the real accel value in g's +int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output +float gx, gy, gz; // Stores the real gyro value in degrees per seconds +float gyroBias[3] = { 0, 0, 0 }, + accelBias[3] + = { 0, 0, 0 }; // Bias corrections for gyro and accelerometer +int16_t + tempCount; // Stores the real internal chip temperature in degrees Celsius float temperature; float SelfTest[6]; @@ -178,511 +195,713 @@ // parameters for 6 DoF sensor fusion calculations float PI = 3.14159265358979323846f; -float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 -float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta -float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) -float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value +float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in + // rads/s (start at 60 deg/s), + // then reduce after ~10 s to 3 +float beta = sqrt (3.0f / 4.0f) * GyroMeasError; // compute beta +float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in + // rad/s/s (start at 0.0 deg/s/s) +float zeta = sqrt (3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other + // free parameter in the + // Madgwick scheme usually set + // to a small or zero value float pitch, yaw, roll; -float deltat = 0.0f; // integration interval for both filter schemes -int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval -float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion +float deltat = 0.0f; // integration interval for both filter schemes +int lastUpdate = 0, firstUpdate = 0, + Now = 0; // used to calculate integration interval + // // used to calculate integration interval +float q[4] = { 1.0f, 0.0f, 0.0f, 0.0f }; // vector to hold quaternion -class MPU6050 { - - protected: - - public: +class MPU6050 +{ + +protected: +public: //=================================================================================================================== -//====== Set of useful function to access acceleratio, gyroscope, and temperature data -//=================================================================================================================== + //====== Set of useful function to access acceleratio, gyroscope, and + // temperature data + //=================================================================================================================== - void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) -{ - char data_write[2]; - data_write[0] = subAddress; - data_write[1] = data; - i2c.write(address, data_write, 2, 0); -} + void + writeByte (uint8_t address, uint8_t subAddress, uint8_t data) + { + char data_write[2]; + data_write[0] = subAddress; + data_write[1] = data; + i2c.write (address, data_write, 2, 0); + } - char readByte(uint8_t address, uint8_t subAddress) -{ - char data[1]; // `data` will store the register data + char + readByte (uint8_t address, uint8_t subAddress) + { + char data[1]; // `data` will store the register data char data_write[1]; data_write[0] = subAddress; - i2c.write(address, data_write, 1, 1); // no stop - i2c.read(address, data, 1, 0); - return data[0]; -} + i2c.write (address, data_write, 1, 1); // no stop + i2c.read (address, data, 1, 0); + return data[0]; + } - void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) -{ + void + readBytes (uint8_t address, uint8_t subAddress, uint8_t count, uint8_t *dest) + { char data[14]; char data_write[1]; data_write[0] = subAddress; - i2c.write(address, data_write, 1, 1); // no stop - i2c.read(address, data, count, 0); - for(int ii = 0; ii < count; ii++) { - dest[ii] = data[ii]; - } -} - + i2c.write (address, data_write, 1, 1); // no stop + i2c.read (address, data, count, 0); + for (int ii = 0; ii < count; ii++) + { + dest[ii] = data[ii]; + } + } -void getGres() { - switch (Gscale) - { - // Possible gyro scales (and their register bit settings) are: - // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case GFS_250DPS: - gRes = 250.0/32768.0; - break; - case GFS_500DPS: - gRes = 500.0/32768.0; - break; - case GFS_1000DPS: - gRes = 1000.0/32768.0; - break; - case GFS_2000DPS: - gRes = 2000.0/32768.0; - break; - } -} - -void getAres() { - switch (Ascale) + void + getGres () { - // Possible accelerometer scales (and their register bit settings) are: - // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case AFS_2G: - aRes = 2.0/32768.0; - break; - case AFS_4G: - aRes = 4.0/32768.0; - break; - case AFS_8G: - aRes = 8.0/32768.0; - break; - case AFS_16G: - aRes = 16.0/32768.0; - break; + switch (Gscale) + { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that + // 2-bit value: + case GFS_250DPS: + gRes = 250.0 / 32768.0; + break; + case GFS_500DPS: + gRes = 500.0 / 32768.0; + break; + case GFS_1000DPS: + gRes = 1000.0 / 32768.0; + break; + case GFS_2000DPS: + gRes = 2000.0 / 32768.0; + break; + } } -} - -void readAccelData(int16_t * destination) -{ - uint8_t rawData[6]; // x/y/z accel register data stored here - readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; -} - -void readGyroData(int16_t * destination) -{ - uint8_t rawData[6]; // x/y/z gyro register data stored here - readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; -} + void + getAres () + { + switch (Ascale) + { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that + // 2-bit value: + case AFS_2G: + aRes = 2.0 / 32768.0; + break; + case AFS_4G: + aRes = 4.0 / 32768.0; + break; + case AFS_8G: + aRes = 8.0 / 32768.0; + break; + case AFS_16G: + aRes = 16.0 / 32768.0; + break; + } + } -int16_t readTempData() -{ - uint8_t rawData[2]; // x/y/z gyro register data stored here - readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array - return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value -} - - - -// Configure the motion detection control for low power accelerometer mode -void LowPowerAccelOnly() -{ + void + readAccelData (int16_t *destination) + { + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes (MPU6050_ADDRESS, ACCEL_XOUT_H, 6, + &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t) ( + ((int16_t)rawData[0] << 8) + | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t)rawData[2] << 8) | rawData[3]); + destination[2] = (int16_t) (((int16_t)rawData[4] << 8) | rawData[5]); + } -// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly -// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration -// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a -// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out -// consideration for these threshold evaluations; otherwise, the flags would be set all the time! - - uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6] - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running - - c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5] - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running - - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] -// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter + void + readGyroData (int16_t *destination) + { + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes (MPU6050_ADDRESS, GYRO_XOUT_H, 6, + &rawData[0]); // Read the six raw data registers sequentially + // into data array + destination[0] = (int16_t) ( + ((int16_t)rawData[0] << 8) + | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t)rawData[2] << 8) | rawData[3]); + destination[2] = (int16_t) (((int16_t)rawData[4] << 8) | rawData[5]); + } - c = readByte(MPU6050_ADDRESS, CONFIG); - writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0] - writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate - - c = readByte(MPU6050_ADDRESS, INT_ENABLE); - writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only - -// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold -// for at least the counter duration - writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg - writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate - - wait(0.1); // Add delay for accumulation of samples - - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance - - c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7] - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2]) + int16_t + readTempData () + { + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes (MPU6050_ADDRESS, TEMP_OUT_H, 2, + &rawData[0]); // Read the two raw data registers sequentially + // into data array + return (int16_t) ( + ((int16_t)rawData[0]) << 8 + | rawData[1]); // Turn the MSB and LSB into a 16-bit value + } + + // Configure the motion detection control for low power accelerometer mode + void + LowPowerAccelOnly () + { - c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5 - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts - -} - + // The sensor has a high-pass filter necessary to invoke to allow the + // sensor motion detection algorithms work properly + // Motion detection occurs on free-fall (acceleration below a threshold for + // some time for all axes), motion (acceleration + // above a threshold for some time on at least one axis), and zero-motion + // toggle (acceleration on each axis less than a + // threshold for some time sets this flag, motion above the threshold turns + // it off). The high-pass filter takes gravity out + // consideration for these threshold evaluations; otherwise, the flags + // would be set all the time! -void resetMPU6050() { - // reset device - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); - } - - -void initMPU6050() -{ - // Initialize MPU6050 device - // wake up device - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors - wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt + uint8_t c = readByte (MPU6050_ADDRESS, PWR_MGMT_1); + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, + c & ~0x30); // Clear sleep and cycle bits [5:6] + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, + c | 0x30); // Set sleep and cycle bits [5:6] to zero to make + // sure accelerometer is running - // get stable time source - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + c = readByte (MPU6050_ADDRESS, PWR_MGMT_2); + writeByte (MPU6050_ADDRESS, PWR_MGMT_2, + c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5] + writeByte (MPU6050_ADDRESS, PWR_MGMT_2, + c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure + // accelerometer is running - // Configure Gyro and Accelerometer - // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; - // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both - // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate - writeByte(MPU6050_ADDRESS, CONFIG, 0x03); - - // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) - writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above - - // Set gyroscope full scale range - // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 - uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG); - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro - - // Set accelerometer configuration - c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer + c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, + c & ~0x07); // Clear high-pass filter bits [2:0] + // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 + // Hz, 4) 0.63 Hz, or 7) Hold + writeByte ( + MPU6050_ADDRESS, ACCEL_CONFIG, + c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter - // Configure Interrupts and Bypass Enable - // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips - // can join the I2C bus and all can be controlled by the Arduino as master - writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22); - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt -} + c = readByte (MPU6050_ADDRESS, CONFIG); + writeByte (MPU6050_ADDRESS, CONFIG, + c & ~0x07); // Clear low-pass filter bits [2:0] + writeByte (MPU6050_ADDRESS, CONFIG, + c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate + + c = readByte (MPU6050_ADDRESS, INT_ENABLE); + writeByte (MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts + writeByte (MPU6050_ADDRESS, INT_ENABLE, + 0x40); // Enable motion threshold (bits 5) interrupt only -// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average -// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. -void calibrateMPU6050(float * dest1, float * dest2) -{ - uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data - uint16_t ii, packet_count, fifo_count; - int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; - -// reset device, reset all registers, clear gyro and accelerometer bias registers - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); - -// get stable time source -// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); - writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); - wait(0.2); - -// Configure device for bias calculation - writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO - writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source - writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP - wait(0.015); - -// Configure MPU6050 gyro and accelerometer for bias calculation - writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz - writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity - - uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec - uint16_t accelsensitivity = 16384; // = 16384 LSB/g + // Motion detection interrupt requires the absolute value of any axis to + // lie above the detection threshold + // for at least the counter duration + writeByte (MPU6050_ADDRESS, MOT_THR, + 0x80); // Set motion detection to 0.256 g; LSB = 2 mg + writeByte ( + MPU6050_ADDRESS, MOT_DUR, + 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate + + wait (0.1); // Add delay for accumulation of samples -// Configure FIFO to capture accelerometer and gyro data for bias calculation - writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050) - wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes + c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, + c & ~0x07); // Clear high-pass filter bits [2:0] + writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; + // hold the initial + // accleration value + // as a referance + + c = readByte (MPU6050_ADDRESS, PWR_MGMT_2); + writeByte (MPU6050_ADDRESS, PWR_MGMT_2, + c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and + // LP_WAKE_CTRL bits [6:7] + writeByte (MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency + // to 5 Hz, and disable + // XG, YG, and ZG gyros + // (bits [0:2]) -// At end of sample accumulation, turn off FIFO sensor read - writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO - readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count - fifo_count = ((uint16_t)data[0] << 8) | data[1]; - packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging + c = readByte (MPU6050_ADDRESS, PWR_MGMT_1); + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, + c & ~0x20); // Clear sleep and cycle bit 5 + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to + // begin low power + // accelerometer motion + // interrupts + } + + void + resetMPU6050 () + { + // reset device + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, + 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait (0.1); + } + + void + initMPU6050 () + { + // Initialize MPU6050 device + // wake up device + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, + 0x00); // Clear sleep mode bit (6), enable all sensors + wait (0.1); // Delay 100 ms for PLL to get established on x-axis gyro; + // should check for PLL ready interrupt + + // get stable time source + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be + // PLL with x-axis gyroscope + // reference, bits 2:0 = 001 - for (ii = 0; ii < packet_count; ii++) { - int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; - readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging - accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO - accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; - accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; - gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; - gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; - gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; - - accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases - accel_bias[1] += (int32_t) accel_temp[1]; - accel_bias[2] += (int32_t) accel_temp[2]; - gyro_bias[0] += (int32_t) gyro_temp[0]; - gyro_bias[1] += (int32_t) gyro_temp[1]; - gyro_bias[2] += (int32_t) gyro_temp[2]; - -} - accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases - accel_bias[1] /= (int32_t) packet_count; - accel_bias[2] /= (int32_t) packet_count; - gyro_bias[0] /= (int32_t) packet_count; - gyro_bias[1] /= (int32_t) packet_count; - gyro_bias[2] /= (int32_t) packet_count; - - if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation - else {accel_bias[2] += (int32_t) accelsensitivity;} - -// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup - data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format - data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases - data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; - data[3] = (-gyro_bias[1]/4) & 0xFF; - data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; - data[5] = (-gyro_bias[2]/4) & 0xFF; + // Configure Gyro and Accelerometer + // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, + // respectively; + // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both + // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate + writeByte (MPU6050_ADDRESS, CONFIG, 0x03); + + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) + writeByte (MPU6050_ADDRESS, SMPLRT_DIV, + 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above -// Push gyro biases to hardware registers - writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); - writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]); - writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]); - writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]); - writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]); - writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]); - - dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction - dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; - dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; + // Set gyroscope full scale range + // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are + // left-shifted into positions 4:3 + uint8_t c = readByte (MPU6050_ADDRESS, GYRO_CONFIG); + writeByte (MPU6050_ADDRESS, GYRO_CONFIG, + c & ~0xE0); // Clear self-test bits [7:5] + writeByte (MPU6050_ADDRESS, GYRO_CONFIG, + c & ~0x18); // Clear AFS bits [4:3] + writeByte (MPU6050_ADDRESS, GYRO_CONFIG, + c | Gscale << 3); // Set full scale range for the gyro -// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain -// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold -// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature -// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that -// the accelerometer biases calculated above must be divided by 8. + // Set accelerometer configuration + c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG); + writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, + c & ~0xE0); // Clear self-test bits [7:5] + writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, + c & ~0x18); // Clear AFS bits [4:3] + writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, + c | Ascale << 3); // Set full scale range for the accelerometer - int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases - readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values - accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]); - accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]); - accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - - uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers - uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis - - for(ii = 0; ii < 3; ii++) { - if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit + // Configure Interrupts and Bypass Enable + // Set interrupt pin active high, push-pull, and clear on read of + // INT_STATUS, enable I2C_BYPASS_EN so additional chips + // can join the I2C bus and all can be controlled by the Arduino as master + writeByte (MPU6050_ADDRESS, INT_PIN_CFG, 0x22); + writeByte (MPU6050_ADDRESS, INT_ENABLE, + 0x01); // Enable data ready (bit 0) interrupt } - // Construct total accelerometer bias, including calculated average accelerometer bias from above - accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) - accel_bias_reg[1] -= (accel_bias[1]/8); - accel_bias_reg[2] -= (accel_bias[2]/8); - - data[0] = (accel_bias_reg[0] >> 8) & 0xFF; - data[1] = (accel_bias_reg[0]) & 0xFF; - data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[2] = (accel_bias_reg[1] >> 8) & 0xFF; - data[3] = (accel_bias_reg[1]) & 0xFF; - data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[4] = (accel_bias_reg[2] >> 8) & 0xFF; - data[5] = (accel_bias_reg[2]) & 0xFF; - data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers + // Function which accumulates gyro and accelerometer data after device + // initialization. It calculates the average + // of the at-rest readings and then loads the resulting offsets into + // accelerometer and gyro bias registers. + void + calibrateMPU6050 (float *dest1, float *dest2) + { + uint8_t + data[12]; // data array to hold accelerometer and gyro x, y, z, data + uint16_t ii, packet_count, fifo_count; + int32_t gyro_bias[3] = { 0, 0, 0 }, accel_bias[3] = { 0, 0, 0 }; + + // reset device, reset all registers, clear gyro and accelerometer bias + // registers + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, + 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait (0.1); + + // get stable time source + // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = + // 001 + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, 0x01); + writeByte (MPU6050_ADDRESS, PWR_MGMT_2, 0x00); + wait (0.2); + + // Configure device for bias calculation + writeByte (MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts + writeByte (MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO + writeByte (MPU6050_ADDRESS, PWR_MGMT_1, + 0x00); // Turn on internal clock source + writeByte (MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master + writeByte (MPU6050_ADDRESS, USER_CTRL, + 0x00); // Disable FIFO and I2C master modes + writeByte (MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP + wait (0.015); + + // Configure MPU6050 gyro and accelerometer for bias calculation + writeByte (MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz + writeByte (MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz + writeByte (MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to + // 250 degrees per second, + // maximum sensitivity + writeByte ( + MPU6050_ADDRESS, ACCEL_CONFIG, + 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity + + uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec + uint16_t accelsensitivity = 16384; // = 16384 LSB/g - // Push accelerometer biases to hardware registers -// writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); -// writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]); -// writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]); -// writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]); -// writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]); -// writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]); + // Configure FIFO to capture accelerometer and gyro data for bias + // calculation + writeByte (MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO + writeByte (MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and + // accelerometer sensors for + // FIFO (max size 1024 bytes + // in MPU-6050) + wait (0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes + + // At end of sample accumulation, turn off FIFO sensor read + writeByte (MPU6050_ADDRESS, FIFO_EN, + 0x00); // Disable gyro and accelerometer sensors for FIFO + readBytes (MPU6050_ADDRESS, FIFO_COUNTH, 2, + &data[0]); // read FIFO sample count + fifo_count = ((uint16_t)data[0] << 8) | data[1]; + packet_count = fifo_count / 12; // How many sets of full gyro and + // accelerometer data for averaging -// Output scaled accelerometer biases for manual subtraction in the main program - dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; - dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; - dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; -} + for (ii = 0; ii < packet_count; ii++) + { + int16_t accel_temp[3] = { 0, 0, 0 }, gyro_temp[3] = { 0, 0, 0 }; + readBytes (MPU6050_ADDRESS, FIFO_R_W, 12, + &data[0]); // read data for averaging + accel_temp[0] = (int16_t) ( + ((int16_t)data[0] << 8) + | data[1]); // Form signed 16-bit integer for each sample in FIFO + accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]); + accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]); + gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7]); + gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9]); + gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]); + accel_bias[0] += (int32_t)accel_temp[0]; // Sum individual signed + // 16-bit biases to get + // accumulated signed 32-bit + // biases + accel_bias[1] += (int32_t)accel_temp[1]; + accel_bias[2] += (int32_t)accel_temp[2]; + gyro_bias[0] += (int32_t)gyro_temp[0]; + gyro_bias[1] += (int32_t)gyro_temp[1]; + gyro_bias[2] += (int32_t)gyro_temp[2]; + } + accel_bias[0] + /= (int32_t)packet_count; // Normalize sums to get average count biases + accel_bias[1] /= (int32_t)packet_count; + accel_bias[2] /= (int32_t)packet_count; + gyro_bias[0] /= (int32_t)packet_count; + gyro_bias[1] /= (int32_t)packet_count; + gyro_bias[2] /= (int32_t)packet_count; -// Accelerometer and gyroscope self test; check calibration wrt factory settings -void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass -{ - uint8_t rawData[4] = {0, 0, 0, 0}; - uint8_t selfTest[6]; - float factoryTrim[6]; - - // Configure the accelerometer for self-test - writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g - writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s - wait(0.25); // Delay a while to let the device execute the self-test - rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results - rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results - rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results - rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results - // Extract the acceleration test results first - selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer - selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer - selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer - // Extract the gyration test results first - selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer - selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer - selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer - // Process results to allow final comparison with factory set values - factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation - factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation - factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation - factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation - factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation - factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation - - // Output self-test results and factory trim calculation if desired - // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]); - // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]); - // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]); - // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]); + if (accel_bias[2] > 0L) + { + accel_bias[2] -= (int32_t)accelsensitivity; + } // Remove gravity from the z-axis accelerometer bias calculation + else + { + accel_bias[2] += (int32_t)accelsensitivity; + } + + // Construct the gyro biases for push to the hardware gyro bias registers, + // which are reset to zero upon device startup + data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB + // per deg/s to conform to + // expected bias input format + data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change + // sign on calculated average gyro + // biases + data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1] / 4) & 0xFF; + data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2] / 4) & 0xFF; + + // Push gyro biases to hardware registers + writeByte (MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); + writeByte (MPU6050_ADDRESS, XG_OFFS_USRL, data[1]); + writeByte (MPU6050_ADDRESS, YG_OFFS_USRH, data[2]); + writeByte (MPU6050_ADDRESS, YG_OFFS_USRL, data[3]); + writeByte (MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]); + writeByte (MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]); + + dest1[0] = (float)gyro_bias[0] + / (float)gyrosensitivity; // construct gyro bias in deg/s for + // later manual subtraction + dest1[1] = (float)gyro_bias[1] / (float)gyrosensitivity; + dest1[2] = (float)gyro_bias[2] / (float)gyrosensitivity; + + // Construct the accelerometer biases for push to the hardware + // accelerometer bias registers. These registers contain + // factory trim values which must be added to the calculated accelerometer + // biases; on boot up these registers will hold + // non-zero values. In addition, bit 0 of the lower byte must be preserved + // since it is used for temperature + // compensation calculations. Accelerometer bias registers expect bias + // input as 2048 LSB per g, so that + // the accelerometer biases calculated above must be divided by 8. - // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response - // To get to percent, must multiply by 100 and subtract result from 100 - for (int i = 0; i < 6; i++) { - destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences - } - -} + int32_t accel_bias_reg[3] + = { 0, 0, 0 }; // A place to hold the factory accelerometer trim biases + readBytes (MPU6050_ADDRESS, XA_OFFSET_H, 2, + &data[0]); // Read factory accelerometer trim values + accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes (MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]); + accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes (MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]); + accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + + uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of + // lower byte of accelerometer bias registers + uint8_t mask_bit[3] = { + 0, 0, 0 + }; // Define array to hold mask bit for each accelerometer bias axis + + for (ii = 0; ii < 3; ii++) + { + if (accel_bias_reg[ii] & mask) + mask_bit[ii] = 0x01; // If temperature compensation bit is set, + // record that fact in mask_bit + } + // Construct total accelerometer bias, including calculated average + // accelerometer bias from above + accel_bias_reg[0] -= (accel_bias[0] / 8); // Subtract calculated averaged + // accelerometer bias scaled to + // 2048 LSB/g (16 g full scale) + accel_bias_reg[1] -= (accel_bias[1] / 8); + accel_bias_reg[2] -= (accel_bias[2] / 8); + + data[0] = (accel_bias_reg[0] >> 8) & 0xFF; + data[1] = (accel_bias_reg[0]) & 0xFF; + data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit + // when writing back to accelerometer bias + // registers + data[2] = (accel_bias_reg[1] >> 8) & 0xFF; + data[3] = (accel_bias_reg[1]) & 0xFF; + data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit + // when writing back to accelerometer bias + // registers + data[4] = (accel_bias_reg[2] >> 8) & 0xFF; + data[5] = (accel_bias_reg[2]) & 0xFF; + data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit + // when writing back to accelerometer bias + // registers + + // Push accelerometer biases to hardware registers + // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); + // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]); + // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]); + // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]); + // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]); + // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]); -// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" -// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) -// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative -// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. -// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms -// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! - void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz) - { - float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability - float norm; // vector norm - float f1, f2, f3; // objective funcyion elements - float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements - float qDot1, qDot2, qDot3, qDot4; - float hatDot1, hatDot2, hatDot3, hatDot4; - float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error + // Output scaled accelerometer biases for manual subtraction in the main + // program + dest2[0] = (float)accel_bias[0] / (float)accelsensitivity; + dest2[1] = (float)accel_bias[1] / (float)accelsensitivity; + dest2[2] = (float)accel_bias[2] / (float)accelsensitivity; + } + + // Accelerometer and gyroscope self test; check calibration wrt factory + // settings + void MPU6050SelfTest (float *destination) // Should return percent deviation + // from factory trim values, +/- 14 + // or less deviation is a pass + { + uint8_t rawData[4] = { 0, 0, 0, 0 }; + uint8_t selfTest[6]; + float factoryTrim[6]; - // Auxiliary variables to avoid repeated arithmetic - float _halfq1 = 0.5f * q1; - float _halfq2 = 0.5f * q2; - float _halfq3 = 0.5f * q3; - float _halfq4 = 0.5f * q4; - float _2q1 = 2.0f * q1; - float _2q2 = 2.0f * q2; - float _2q3 = 2.0f * q3; - float _2q4 = 2.0f * q4; -// float _2q1q3 = 2.0f * q1 * q3; -// float _2q3q4 = 2.0f * q3 * q4; + // Configure the accelerometer for self-test + writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all + // three axes and set + // accelerometer range to + // +/- 8 g + writeByte (MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all + // three axes and set gyro + // range to +/- 250 + // degrees/s + wait (0.25); // Delay a while to let the device execute the self-test + // rawData[0] + // = readByte (MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test + // results + // rawData[1] + // = readByte (MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test + // results + // rawData[2] + // = readByte (MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test + // results + // rawData[3] = readByte (MPU6050_ADDRESS, + // SELF_TEST_A); + // Mixed-axis self-test results + // Extract the acceleration test results first + selfTest[0] = (rawData[0] >> 3) + | (rawData[3] & 0x30) + >> 4; // XA_TEST result is a five-bit unsigned integer + selfTest[1] = (rawData[1] >> 3) + | (rawData[3] & 0x0C) + >> 4; // YA_TEST result is a five-bit unsigned integer + selfTest[2] = (rawData[2] >> 3) + | (rawData[3] & 0x03) + >> 4; // ZA_TEST result is a five-bit unsigned integer + // Extract the gyration test results first + selfTest[3] + = rawData[0] & 0x1F; // XG_TEST result is a five-bit unsigned integer + selfTest[4] + = rawData[1] & 0x1F; // YG_TEST result is a five-bit unsigned integer + selfTest[5] + = rawData[2] & 0x1F; // ZG_TEST result is a five-bit unsigned integer + // Process results to allow final comparison with factory set values + factoryTrim[0] = (4096.0f * 0.34f) + * (pow ((0.92f / 0.34f), + ((selfTest[0] - 1.0f) + / 30.0f))); // FT[Xa] factory trim calculation + factoryTrim[1] = (4096.0f * 0.34f) + * (pow ((0.92f / 0.34f), + ((selfTest[1] - 1.0f) + / 30.0f))); // FT[Ya] factory trim calculation + factoryTrim[2] = (4096.0f * 0.34f) + * (pow ((0.92f / 0.34f), + ((selfTest[2] - 1.0f) + / 30.0f))); // FT[Za] factory trim calculation + factoryTrim[3] + = (25.0f * 131.0f) + * (pow (1.046f, + (selfTest[3] - 1.0f))); // FT[Xg] factory trim calculation + factoryTrim[4] + = (-25.0f * 131.0f) + * (pow (1.046f, + (selfTest[4] - 1.0f))); // FT[Yg] factory trim calculation + factoryTrim[5] + = (25.0f * 131.0f) + * (pow (1.046f, + (selfTest[5] - 1.0f))); // FT[Zg] factory trim calculation + + // Output self-test results and factory trim calculation if desired + // Serial.println(selfTest[0]); Serial.println(selfTest[1]); + // Serial.println(selfTest[2]); + // Serial.println(selfTest[3]); Serial.println(selfTest[4]); + // Serial.println(selfTest[5]); + // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); + // Serial.println(factoryTrim[2]); + // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); + // Serial.println(factoryTrim[5]); + + // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim + // of the Self-Test Response + // To get to percent, must multiply by 100 and subtract result from 100 + for (int i = 0; i < 6; i++) + { + destination[i] = 100.0f + + 100.0f * (selfTest[i] - factoryTrim[i]) + / factoryTrim[i]; // Report percent differences + } + } - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - ax *= norm; - ay *= norm; - az *= norm; - - // Compute the objective function and Jacobian - f1 = _2q2 * q4 - _2q1 * q3 - ax; - f2 = _2q1 * q2 + _2q3 * q4 - ay; - f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az; - J_11or24 = _2q3; - J_12or23 = _2q4; - J_13or22 = _2q1; - J_14or21 = _2q2; - J_32 = 2.0f * J_14or21; - J_33 = 2.0f * J_11or24; - - // Compute the gradient (matrix multiplication) - hatDot1 = J_14or21 * f2 - J_11or24 * f1; - hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3; - hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1; - hatDot4 = J_14or21 * f1 + J_11or24 * f2; - - // Normalize the gradient - norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4); - hatDot1 /= norm; - hatDot2 /= norm; - hatDot3 /= norm; - hatDot4 /= norm; - - // Compute estimated gyroscope biases - gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3; - gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2; - gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1; - - // Compute and remove gyroscope biases - gbiasx += gerrx * deltat * zeta; - gbiasy += gerry * deltat * zeta; - gbiasz += gerrz * deltat * zeta; - // gx -= gbiasx; - // gy -= gbiasy; - // gz -= gbiasz; - - // Compute the quaternion derivative - qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz; - qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy; - qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx; - qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx; + // Implementation of Sebastian Madgwick's "...efficient orientation filter + // for... inertial/magnetic sensor arrays" + // (see http://www.x-io.co.uk/category/open-source/ for examples and more + // details) + // which fuses acceleration and rotation rate to produce a quaternion-based + // estimate of relative + // device orientation -- which can be converted to yaw, pitch, and roll. + // Useful for stabilizing quadcopters, etc. + // The performance of the orientation filter is at least as good as + // conventional Kalman-based filtering algorithms + // but is much less computationally intensive---it can be performed on a 3.3 + // V Pro Mini operating at 8 MHz! + void + MadgwickQuaternionUpdate (float ax, float ay, float az, float gx, float gy, + float gz) + { + float q1 = q[0], q2 = q[1], q3 = q[2], + q4 = q[3]; // short name local variable for readability + float norm; // vector norm + float f1, f2, f3; // objective funcyion elements + float J_11or24, J_12or23, J_13or22, J_14or21, J_32, + J_33; // objective function Jacobian elements + float qDot1, qDot2, qDot3, qDot4; + float hatDot1, hatDot2, hatDot3, hatDot4; + float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error + + // Auxiliary variables to avoid repeated arithmetic + float _halfq1 = 0.5f * q1; + float _halfq2 = 0.5f * q2; + float _halfq3 = 0.5f * q3; + float _halfq4 = 0.5f * q4; + float _2q1 = 2.0f * q1; + float _2q2 = 2.0f * q2; + float _2q3 = 2.0f * q3; + float _2q4 = 2.0f * q4; + // float _2q1q3 = 2.0f * q1 * q3; + // float _2q3q4 = 2.0f * q3 * q4; + + // Normalise accelerometer measurement + norm = sqrt (ax * ax + ay * ay + az * az); + if (norm == 0.0f) + return; // handle NaN + norm = 1.0f / norm; + ax *= norm; + ay *= norm; + az *= norm; - // Compute then integrate estimated quaternion derivative - q1 += (qDot1 -(beta * hatDot1)) * deltat; - q2 += (qDot2 -(beta * hatDot2)) * deltat; - q3 += (qDot3 -(beta * hatDot3)) * deltat; - q4 += (qDot4 -(beta * hatDot4)) * deltat; + // Compute the objective function and Jacobian + f1 = _2q2 * q4 - _2q1 * q3 - ax; + f2 = _2q1 * q2 + _2q3 * q4 - ay; + f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az; + J_11or24 = _2q3; + J_12or23 = _2q4; + J_13or22 = _2q1; + J_14or21 = _2q2; + J_32 = 2.0f * J_14or21; + J_33 = 2.0f * J_11or24; + + // Compute the gradient (matrix multiplication) + hatDot1 = J_14or21 * f2 - J_11or24 * f1; + hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3; + hatDot3 = J_12or23 * f2 - J_33 * f3 - J_13or22 * f1; + hatDot4 = J_14or21 * f1 + J_11or24 * f2; + + // Normalize the gradient + norm = sqrt (hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + + hatDot4 * hatDot4); + hatDot1 /= norm; + hatDot2 /= norm; + hatDot3 /= norm; + hatDot4 /= norm; + + // Compute estimated gyroscope biases + gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3; + gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2; + gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1; - // Normalize the quaternion - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion - norm = 1.0f/norm; - q[0] = q1 * norm; - q[1] = q2 * norm; - q[2] = q3 * norm; - q[3] = q4 * norm; - - } - - - }; + // Compute and remove gyroscope biases + gbiasx += gerrx * deltat * zeta; + gbiasy += gerry * deltat * zeta; + gbiasz += gerrz * deltat * zeta; + // gx -= gbiasx; + // gy -= gbiasy; + // gz -= gbiasz; + + // Compute the quaternion derivative + qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz; + qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy; + qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx; + qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx; + + // Compute then integrate estimated quaternion derivative + q1 += (qDot1 - (beta * hatDot1)) * deltat; + q2 += (qDot2 - (beta * hatDot2)) * deltat; + q3 += (qDot3 - (beta * hatDot3)) * deltat; + q4 += (qDot4 - (beta * hatDot4)) * deltat; + + // Normalize the quaternion + norm + = sqrt (q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion + norm = 1.0f / norm; + q[0] = q1 * norm; + q[1] = q2 * norm; + q[2] = q3 * norm; + q[3] = q4 * norm; + } +}; #endif \ No newline at end of file