Fork of MPU6050IMU by Austin Buchan

Files at this revision

API Documentation at this revision

Comitter:
yxyang
Date:
Tue May 30 06:42:08 2017 +0000
Parent:
3:359efdec694f
Commit message:

Changed in this revision

MPU6050.h Show annotated file Show diff for this revision Revisions of this file
diff -r 359efdec694f -r 095b126178df MPU6050.h
--- a/MPU6050.h	Mon Oct 05 19:34:26 2015 +0000
+++ b/MPU6050.h	Tue May 30 06:42:08 2017 +0000
@@ -1,84 +1,93 @@
 #ifndef MPU6050_H
 #define MPU6050_H
- 
-#include "mbed.h"
+
 #include "math.h"
- 
- // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
+#include "mbed.h"
+
+// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2,
+// 08/19/2013 6 DOF Motion sensor fusion device
 // Invensense Inc., www.invensense.com
-// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in 
-// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
+// See also MPU-6050 Register Map and Descriptions, Revision 4.0,
+// RM-MPU-6050A-00, 9/12/2012 for registers not listed in
+// above document; the MPU6050 and MPU 9150 are virtually identical but the
+// latter has an on-board magnetic sensor
 //
-#define XGOFFS_TC        0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD                 
-#define YGOFFS_TC        0x01                                                                          
-#define ZGOFFS_TC        0x02
-#define X_FINE_GAIN      0x03 // [7:0] fine gain
-#define Y_FINE_GAIN      0x04
-#define Z_FINE_GAIN      0x05
-#define XA_OFFSET_H      0x06 // User-defined trim values for accelerometer
-#define XA_OFFSET_L_TC   0x07
-#define YA_OFFSET_H      0x08
-#define YA_OFFSET_L_TC   0x09
-#define ZA_OFFSET_H      0x0A
-#define ZA_OFFSET_L_TC   0x0B
-#define SELF_TEST_X      0x0D
-#define SELF_TEST_Y      0x0E    
-#define SELF_TEST_Z      0x0F
-#define SELF_TEST_A      0x10
-#define XG_OFFS_USRH     0x13  // User-defined trim values for gyroscope; supported in MPU-6050?
-#define XG_OFFS_USRL     0x14
-#define YG_OFFS_USRH     0x15
-#define YG_OFFS_USRL     0x16
-#define ZG_OFFS_USRH     0x17
-#define ZG_OFFS_USRL     0x18
-#define SMPLRT_DIV       0x19
-#define CONFIG           0x1A
-#define GYRO_CONFIG      0x1B
-#define ACCEL_CONFIG     0x1C
-#define FF_THR           0x1D  // Free-fall
-#define FF_DUR           0x1E  // Free-fall
-#define MOT_THR          0x1F  // Motion detection threshold bits [7:0]
-#define MOT_DUR          0x20  // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
-#define ZMOT_THR         0x21  // Zero-motion detection threshold bits [7:0]
-#define ZRMOT_DUR        0x22  // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
-#define FIFO_EN          0x23
-#define I2C_MST_CTRL     0x24   
-#define I2C_SLV0_ADDR    0x25
-#define I2C_SLV0_REG     0x26
-#define I2C_SLV0_CTRL    0x27
-#define I2C_SLV1_ADDR    0x28
-#define I2C_SLV1_REG     0x29
-#define I2C_SLV1_CTRL    0x2A
-#define I2C_SLV2_ADDR    0x2B
-#define I2C_SLV2_REG     0x2C
-#define I2C_SLV2_CTRL    0x2D
-#define I2C_SLV3_ADDR    0x2E
-#define I2C_SLV3_REG     0x2F
-#define I2C_SLV3_CTRL    0x30
-#define I2C_SLV4_ADDR    0x31
-#define I2C_SLV4_REG     0x32
-#define I2C_SLV4_DO      0x33
-#define I2C_SLV4_CTRL    0x34
-#define I2C_SLV4_DI      0x35
-#define I2C_MST_STATUS   0x36
-#define INT_PIN_CFG      0x37
-#define INT_ENABLE       0x38
-#define DMP_INT_STATUS   0x39  // Check DMP interrupt
-#define INT_STATUS       0x3A
-#define ACCEL_XOUT_H     0x3B
-#define ACCEL_XOUT_L     0x3C
-#define ACCEL_YOUT_H     0x3D
-#define ACCEL_YOUT_L     0x3E
-#define ACCEL_ZOUT_H     0x3F
-#define ACCEL_ZOUT_L     0x40
-#define TEMP_OUT_H       0x41
-#define TEMP_OUT_L       0x42
-#define GYRO_XOUT_H      0x43
-#define GYRO_XOUT_L      0x44
-#define GYRO_YOUT_H      0x45
-#define GYRO_YOUT_L      0x46
-#define GYRO_ZOUT_H      0x47
-#define GYRO_ZOUT_L      0x48
+#define XGOFFS_TC                                                             \
+  0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
+#define YGOFFS_TC 0x01
+#define ZGOFFS_TC 0x02
+#define X_FINE_GAIN 0x03 // [7:0] fine gain
+#define Y_FINE_GAIN 0x04
+#define Z_FINE_GAIN 0x05
+#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
+#define XA_OFFSET_L_TC 0x07
+#define YA_OFFSET_H 0x08
+#define YA_OFFSET_L_TC 0x09
+#define ZA_OFFSET_H 0x0A
+#define ZA_OFFSET_L_TC 0x0B
+#define SELF_TEST_X 0x0D
+#define SELF_TEST_Y 0x0E
+#define SELF_TEST_Z 0x0F
+#define SELF_TEST_A 0x10
+#define XG_OFFS_USRH                                                          \
+  0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
+#define XG_OFFS_USRL 0x14
+#define YG_OFFS_USRH 0x15
+#define YG_OFFS_USRL 0x16
+#define ZG_OFFS_USRH 0x17
+#define ZG_OFFS_USRL 0x18
+#define SMPLRT_DIV 0x19
+#define CONFIG 0x1A
+#define GYRO_CONFIG 0x1B
+#define ACCEL_CONFIG 0x1C
+#define FF_THR 0x1D  // Free-fall
+#define FF_DUR 0x1E  // Free-fall
+#define MOT_THR 0x1F // Motion detection threshold bits [7:0]
+#define MOT_DUR                                                               \
+  0x20 // Duration counter threshold for motion interrupt generation, 1 kHz
+       // rate, LSB = 1 ms
+#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
+#define ZRMOT_DUR                                                             \
+  0x22 // Duration counter threshold for zero motion interrupt generation, 16
+       // Hz rate, LSB = 64 ms
+#define FIFO_EN 0x23
+#define I2C_MST_CTRL 0x24
+#define I2C_SLV0_ADDR 0x25
+#define I2C_SLV0_REG 0x26
+#define I2C_SLV0_CTRL 0x27
+#define I2C_SLV1_ADDR 0x28
+#define I2C_SLV1_REG 0x29
+#define I2C_SLV1_CTRL 0x2A
+#define I2C_SLV2_ADDR 0x2B
+#define I2C_SLV2_REG 0x2C
+#define I2C_SLV2_CTRL 0x2D
+#define I2C_SLV3_ADDR 0x2E
+#define I2C_SLV3_REG 0x2F
+#define I2C_SLV3_CTRL 0x30
+#define I2C_SLV4_ADDR 0x31
+#define I2C_SLV4_REG 0x32
+#define I2C_SLV4_DO 0x33
+#define I2C_SLV4_CTRL 0x34
+#define I2C_SLV4_DI 0x35
+#define I2C_MST_STATUS 0x36
+#define INT_PIN_CFG 0x37
+#define INT_ENABLE 0x38
+#define DMP_INT_STATUS 0x39 // Check DMP interrupt
+#define INT_STATUS 0x3A
+#define ACCEL_XOUT_H 0x3B
+#define ACCEL_XOUT_L 0x3C
+#define ACCEL_YOUT_H 0x3D
+#define ACCEL_YOUT_L 0x3E
+#define ACCEL_ZOUT_H 0x3F
+#define ACCEL_ZOUT_L 0x40
+#define TEMP_OUT_H 0x41
+#define TEMP_OUT_L 0x42
+#define GYRO_XOUT_H 0x43
+#define GYRO_XOUT_L 0x44
+#define GYRO_YOUT_H 0x45
+#define GYRO_YOUT_L 0x46
+#define GYRO_ZOUT_H 0x47
+#define GYRO_ZOUT_L 0x48
 #define EXT_SENS_DATA_00 0x49
 #define EXT_SENS_DATA_01 0x4A
 #define EXT_SENS_DATA_02 0x4B
@@ -104,44 +113,49 @@
 #define EXT_SENS_DATA_22 0x5F
 #define EXT_SENS_DATA_23 0x60
 #define MOT_DETECT_STATUS 0x61
-#define I2C_SLV0_DO      0x63
-#define I2C_SLV1_DO      0x64
-#define I2C_SLV2_DO      0x65
-#define I2C_SLV3_DO      0x66
+#define I2C_SLV0_DO 0x63
+#define I2C_SLV1_DO 0x64
+#define I2C_SLV2_DO 0x65
+#define I2C_SLV3_DO 0x66
 #define I2C_MST_DELAY_CTRL 0x67
-#define SIGNAL_PATH_RESET  0x68
-#define MOT_DETECT_CTRL   0x69
-#define USER_CTRL        0x6A  // Bit 7 enable DMP, bit 3 reset DMP
-#define PWR_MGMT_1       0x6B // Device defaults to the SLEEP mode
-#define PWR_MGMT_2       0x6C
-#define DMP_BANK         0x6D  // Activates a specific bank in the DMP
-#define DMP_RW_PNT       0x6E  // Set read/write pointer to a specific start address in specified DMP bank
-#define DMP_REG          0x6F  // Register in DMP from which to read or to which to write
-#define DMP_REG_1        0x70
-#define DMP_REG_2        0x71
-#define FIFO_COUNTH      0x72
-#define FIFO_COUNTL      0x73
-#define FIFO_R_W         0x74
+#define SIGNAL_PATH_RESET 0x68
+#define MOT_DETECT_CTRL 0x69
+#define USER_CTRL 0x6A  // Bit 7 enable DMP, bit 3 reset DMP
+#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
+#define PWR_MGMT_2 0x6C
+#define DMP_BANK 0x6D // Activates a specific bank in the DMP
+#define DMP_RW_PNT                                                            \
+  0x6E // Set read/write pointer to a specific start address in specified DMP
+       // bank
+#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
+#define DMP_REG_1 0x70
+#define DMP_REG_2 0x71
+#define FIFO_COUNTH 0x72
+#define FIFO_COUNTL 0x73
+#define FIFO_R_W 0x74
 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68
 
-// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
+// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7
+// resistor
 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
 #define ADO 0
 #if ADO
-#define MPU6050_ADDRESS 0x69<<1  // Device address when ADO = 1
+#define MPU6050_ADDRESS 0x69 << 1 // Device address when ADO = 1
 #else
-#define MPU6050_ADDRESS 0x68<<1  // Device address when ADO = 0
+#define MPU6050_ADDRESS 0x68 << 1 // Device address when ADO = 0
 #endif
 
 // Set initial input parameters
-enum Ascale {
+enum Ascale
+{
   AFS_2G = 0,
   AFS_4G,
   AFS_8G,
   AFS_16G
 };
 
-enum Gscale {
+enum Gscale
+{
   GFS_250DPS = 0,
   GFS_500DPS,
   GFS_1000DPS,
@@ -152,24 +166,27 @@
 int Gscale = GFS_250DPS;
 int Ascale = AFS_2G;
 
-//Set up I2C, (SDA,SCL)
+// Set up I2C, (SDA,SCL)
 #define MPU_SDA p9
 #define MPU_SCL p10
-I2C i2c(MPU_SDA, MPU_SCL);
+I2C i2c (MPU_SDA, MPU_SCL);
 
-//DigitalOut myled(LED1);
-   
+// DigitalOut myled(LED1);
+
 float aRes, gRes; // scale resolutions per LSB for the sensors
-  
+
 // Pin definitions
-int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
+int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
 
-int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
-float ax, ay, az;       // Stores the real accel value in g's
-int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
-float gx, gy, gz;       // Stores the real gyro value in degrees per seconds
-float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
-int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
+int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
+float ax, ay, az;      // Stores the real accel value in g's
+int16_t gyroCount[3];  // Stores the 16-bit signed gyro sensor output
+float gx, gy, gz;      // Stores the real gyro value in degrees per seconds
+float gyroBias[3] = { 0, 0, 0 },
+      accelBias[3]
+      = { 0, 0, 0 }; // Bias corrections for gyro and accelerometer
+int16_t
+    tempCount; // Stores the real internal chip temperature in degrees Celsius
 float temperature;
 float SelfTest[6];
 
@@ -178,511 +195,713 @@
 
 // parameters for 6 DoF sensor fusion calculations
 float PI = 3.14159265358979323846f;
-float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
-float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
-float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
-float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in
+                                             // rads/s (start at 60 deg/s),
+                                             // then reduce after ~10 s to 3
+float beta = sqrt (3.0f / 4.0f) * GyroMeasError; // compute beta
+float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in
+                                            // rad/s/s (start at 0.0 deg/s/s)
+float zeta = sqrt (3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other
+                                                 // free parameter in the
+                                                 // Madgwick scheme usually set
+                                                 // to a small or zero value
 float pitch, yaw, roll;
-float deltat = 0.0f;                              // integration interval for both filter schemes
-int lastUpdate = 0, firstUpdate = 0, Now = 0;     // used to calculate integration interval                               // used to calculate integration interval
-float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};            // vector to hold quaternion
+float deltat = 0.0f; // integration interval for both filter schemes
+int lastUpdate = 0, firstUpdate = 0,
+    Now = 0; // used to calculate integration interval
+             // // used to calculate integration interval
+float q[4] = { 1.0f, 0.0f, 0.0f, 0.0f }; // vector to hold quaternion
 
-class MPU6050 {
- 
-    protected:
- 
-    public:
+class MPU6050
+{
+
+protected:
+public:
   //===================================================================================================================
-//====== Set of useful function to access acceleratio, gyroscope, and temperature data
-//===================================================================================================================
+  //====== Set of useful function to access acceleratio, gyroscope, and
+  // temperature data
+  //===================================================================================================================
 
-    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
-{
-   char data_write[2];
-   data_write[0] = subAddress;
-   data_write[1] = data;
-   i2c.write(address, data_write, 2, 0);
-}
+  void
+  writeByte (uint8_t address, uint8_t subAddress, uint8_t data)
+  {
+    char data_write[2];
+    data_write[0] = subAddress;
+    data_write[1] = data;
+    i2c.write (address, data_write, 2, 0);
+  }
 
-    char readByte(uint8_t address, uint8_t subAddress)
-{
-    char data[1]; // `data` will store the register data     
+  char
+  readByte (uint8_t address, uint8_t subAddress)
+  {
+    char data[1]; // `data` will store the register data
     char data_write[1];
     data_write[0] = subAddress;
-    i2c.write(address, data_write, 1, 1); // no stop
-    i2c.read(address, data, 1, 0); 
-    return data[0]; 
-}
+    i2c.write (address, data_write, 1, 1); // no stop
+    i2c.read (address, data, 1, 0);
+    return data[0];
+  }
 
-    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
-{     
+  void
+  readBytes (uint8_t address, uint8_t subAddress, uint8_t count, uint8_t *dest)
+  {
     char data[14];
     char data_write[1];
     data_write[0] = subAddress;
-    i2c.write(address, data_write, 1, 1); // no stop
-    i2c.read(address, data, count, 0); 
-    for(int ii = 0; ii < count; ii++) {
-     dest[ii] = data[ii];
-    }
-} 
- 
+    i2c.write (address, data_write, 1, 1); // no stop
+    i2c.read (address, data, count, 0);
+    for (int ii = 0; ii < count; ii++)
+      {
+        dest[ii] = data[ii];
+      }
+  }
 
-void getGres() {
-  switch (Gscale)
-  {
-    // Possible gyro scales (and their register bit settings) are:
-    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
-        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-    case GFS_250DPS:
-          gRes = 250.0/32768.0;
-          break;
-    case GFS_500DPS:
-          gRes = 500.0/32768.0;
-          break;
-    case GFS_1000DPS:
-          gRes = 1000.0/32768.0;
-          break;
-    case GFS_2000DPS:
-          gRes = 2000.0/32768.0;
-          break;
-  }
-}
-
-void getAres() {
-  switch (Ascale)
+  void
+  getGres ()
   {
-    // Possible accelerometer scales (and their register bit settings) are:
-    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
-        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-    case AFS_2G:
-          aRes = 2.0/32768.0;
-          break;
-    case AFS_4G:
-          aRes = 4.0/32768.0;
-          break;
-    case AFS_8G:
-          aRes = 8.0/32768.0;
-          break;
-    case AFS_16G:
-          aRes = 16.0/32768.0;
-          break;
+    switch (Gscale)
+      {
+      // Possible gyro scales (and their register bit settings) are:
+      // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11).
+      // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
+      // 2-bit value:
+      case GFS_250DPS:
+        gRes = 250.0 / 32768.0;
+        break;
+      case GFS_500DPS:
+        gRes = 500.0 / 32768.0;
+        break;
+      case GFS_1000DPS:
+        gRes = 1000.0 / 32768.0;
+        break;
+      case GFS_2000DPS:
+        gRes = 2000.0 / 32768.0;
+        break;
+      }
   }
-}
 
-
-void readAccelData(int16_t * destination)
-{
-  uint8_t rawData[6];  // x/y/z accel register data stored here
-  readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
-  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
-  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
-  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
-}
-
-void readGyroData(int16_t * destination)
-{
-  uint8_t rawData[6];  // x/y/z gyro register data stored here
-  readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
-  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
-  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
-  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
-}
+  void
+  getAres ()
+  {
+    switch (Ascale)
+      {
+      // Possible accelerometer scales (and their register bit settings) are:
+      // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11).
+      // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
+      // 2-bit value:
+      case AFS_2G:
+        aRes = 2.0 / 32768.0;
+        break;
+      case AFS_4G:
+        aRes = 4.0 / 32768.0;
+        break;
+      case AFS_8G:
+        aRes = 8.0 / 32768.0;
+        break;
+      case AFS_16G:
+        aRes = 16.0 / 32768.0;
+        break;
+      }
+  }
 
-int16_t readTempData()
-{
-  uint8_t rawData[2];  // x/y/z gyro register data stored here
-  readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
-  return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
-}
-
-
-
-// Configure the motion detection control for low power accelerometer mode
-void LowPowerAccelOnly()
-{
+  void
+  readAccelData (int16_t *destination)
+  {
+    uint8_t rawData[6]; // x/y/z accel register data stored here
+    readBytes (MPU6050_ADDRESS, ACCEL_XOUT_H, 6,
+               &rawData[0]); // Read the six raw data registers into data array
+    destination[0] = (int16_t) (
+        ((int16_t)rawData[0] << 8)
+        | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value
+    destination[1] = (int16_t) (((int16_t)rawData[2] << 8) | rawData[3]);
+    destination[2] = (int16_t) (((int16_t)rawData[4] << 8) | rawData[5]);
+  }
 
-// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
-// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
-// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a 
-// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
-// consideration for these threshold evaluations; otherwise, the flags would be set all the time!
-  
-  uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
-
-  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
-    
-  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
-// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG,  c | 0x00);  // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
+  void
+  readGyroData (int16_t *destination)
+  {
+    uint8_t rawData[6]; // x/y/z gyro register data stored here
+    readBytes (MPU6050_ADDRESS, GYRO_XOUT_H, 6,
+               &rawData[0]); // Read the six raw data registers sequentially
+                             // into data array
+    destination[0] = (int16_t) (
+        ((int16_t)rawData[0] << 8)
+        | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value
+    destination[1] = (int16_t) (((int16_t)rawData[2] << 8) | rawData[3]);
+    destination[2] = (int16_t) (((int16_t)rawData[4] << 8) | rawData[5]);
+  }
 
-  c = readByte(MPU6050_ADDRESS, CONFIG);
-  writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
-  writeByte(MPU6050_ADDRESS, CONFIG, c |  0x00);  // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
-    
-  c = readByte(MPU6050_ADDRESS, INT_ENABLE);
-  writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF);  // Clear all interrupts
-  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40);  // Enable motion threshold (bits 5) interrupt only
-  
-// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
-// for at least the counter duration
-  writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
-  writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
-  
-  wait(0.1);  // Add delay for accumulation of samples
-  
-  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c |  0x07);  // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
-   
-  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])  
+  int16_t
+  readTempData ()
+  {
+    uint8_t rawData[2]; // x/y/z gyro register data stored here
+    readBytes (MPU6050_ADDRESS, TEMP_OUT_H, 2,
+               &rawData[0]); // Read the two raw data registers sequentially
+                             // into data array
+    return (int16_t) (
+        ((int16_t)rawData[0]) << 8
+        | rawData[1]); // Turn the MSB and LSB into a 16-bit value
+  }
+
+  // Configure the motion detection control for low power accelerometer mode
+  void
+  LowPowerAccelOnly ()
+  {
 
-  c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
-
-}
-
+    // The sensor has a high-pass filter necessary to invoke to allow the
+    // sensor motion detection algorithms work properly
+    // Motion detection occurs on free-fall (acceleration below a threshold for
+    // some time for all axes), motion (acceleration
+    // above a threshold for some time on at least one axis), and zero-motion
+    // toggle (acceleration on each axis less than a
+    // threshold for some time sets this flag, motion above the threshold turns
+    // it off). The high-pass filter takes gravity out
+    // consideration for these threshold evaluations; otherwise, the flags
+    // would be set all the time!
 
-void resetMPU6050() {
-  // reset device
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-  wait(0.1);
-  }
-  
-  
-void initMPU6050()
-{  
- // Initialize MPU6050 device
- // wake up device
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
-  wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
+    uint8_t c = readByte (MPU6050_ADDRESS, PWR_MGMT_1);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               c & ~0x30); // Clear sleep and cycle bits [5:6]
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               c | 0x30); // Set sleep and cycle bits [5:6] to zero to make
+                          // sure accelerometer is running
 
- // get stable time source
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+    c = readByte (MPU6050_ADDRESS, PWR_MGMT_2);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
+               c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
+               c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure
+                          // accelerometer is running
 
- // Configure Gyro and Accelerometer
- // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
- // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
- // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
-  writeByte(MPU6050_ADDRESS, CONFIG, 0x03);  
- 
- // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
-  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
- 
- // Set gyroscope full scale range
- // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
-  uint8_t c =  readByte(MPU6050_ADDRESS, GYRO_CONFIG);
-  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
-  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
-  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
-   
- // Set accelerometer configuration
-  c =  readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
+    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c & ~0x07); // Clear high-pass filter bits [2:0]
+    // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25
+    // Hz, 4) 0.63 Hz, or 7) Hold
+    writeByte (
+        MPU6050_ADDRESS, ACCEL_CONFIG,
+        c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
 
-  // Configure Interrupts and Bypass Enable
-  // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
-  // can join the I2C bus and all can be controlled by the Arduino as master
-   writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);    
-   writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
-}
+    c = readByte (MPU6050_ADDRESS, CONFIG);
+    writeByte (MPU6050_ADDRESS, CONFIG,
+               c & ~0x07); // Clear low-pass filter bits [2:0]
+    writeByte (MPU6050_ADDRESS, CONFIG,
+               c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
+
+    c = readByte (MPU6050_ADDRESS, INT_ENABLE);
+    writeByte (MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
+    writeByte (MPU6050_ADDRESS, INT_ENABLE,
+               0x40); // Enable motion threshold (bits 5) interrupt only
 
-// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
-// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
-void calibrateMPU6050(float * dest1, float * dest2)
-{  
-  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
-  uint16_t ii, packet_count, fifo_count;
-  int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
-  
-// reset device, reset all registers, clear gyro and accelerometer bias registers
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-  wait(0.1);  
-   
-// get stable time source
-// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); 
-  wait(0.2);
-  
-// Configure device for bias calculation
-  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
-  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
-  writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
-  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
-  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
-  wait(0.015);
-  
-// Configure MPU6050 gyro and accelerometer for bias calculation
-  writeByte(MPU6050_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
-  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
-  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
- 
-  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
-  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
+    // Motion detection interrupt requires the absolute value of any axis to
+    // lie above the detection threshold
+    // for at least the counter duration
+    writeByte (MPU6050_ADDRESS, MOT_THR,
+               0x80); // Set motion detection to 0.256 g; LSB = 2 mg
+    writeByte (
+        MPU6050_ADDRESS, MOT_DUR,
+        0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
+
+    wait (0.1); // Add delay for accumulation of samples
 
-// Configure FIFO to capture accelerometer and gyro data for bias calculation
-  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
-  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 1024 bytes in MPU-6050)
-  wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
+    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c & ~0x07); // Clear high-pass filter bits [2:0]
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7;
+                                                         // hold the initial
+                                                         // accleration value
+                                                         // as a referance
+
+    c = readByte (MPU6050_ADDRESS, PWR_MGMT_2);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
+               c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and
+                           // LP_WAKE_CTRL bits [6:7]
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency
+                                                       // to 5 Hz, and disable
+                                                       // XG, YG, and ZG gyros
+                                                       // (bits [0:2])
 
-// At end of sample accumulation, turn off FIFO sensor read
-  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
-  readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
-  fifo_count = ((uint16_t)data[0] << 8) | data[1];
-  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+    c = readByte (MPU6050_ADDRESS, PWR_MGMT_1);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               c & ~0x20); // Clear sleep and cycle bit 5
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to
+                                                       // begin low power
+                                                       // accelerometer motion
+                                                       // interrupts
+  }
+
+  void
+  resetMPU6050 ()
+  {
+    // reset device
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               0x80); // Write a one to bit 7 reset bit; toggle reset device
+    wait (0.1);
+  }
+
+  void
+  initMPU6050 ()
+  {
+    // Initialize MPU6050 device
+    // wake up device
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               0x00); // Clear sleep mode bit (6), enable all sensors
+    wait (0.1); // Delay 100 ms for PLL to get established on x-axis gyro;
+                // should check for PLL ready interrupt
+
+    // get stable time source
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be
+                                                   // PLL with x-axis gyroscope
+                                                   // reference, bits 2:0 = 001
 
-  for (ii = 0; ii < packet_count; ii++) {
-    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
-    readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
-    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
-    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
-    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
-    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
-    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
-    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
-    
-    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
-    accel_bias[1] += (int32_t) accel_temp[1];
-    accel_bias[2] += (int32_t) accel_temp[2];
-    gyro_bias[0]  += (int32_t) gyro_temp[0];
-    gyro_bias[1]  += (int32_t) gyro_temp[1];
-    gyro_bias[2]  += (int32_t) gyro_temp[2];
-            
-}
-    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
-    accel_bias[1] /= (int32_t) packet_count;
-    accel_bias[2] /= (int32_t) packet_count;
-    gyro_bias[0]  /= (int32_t) packet_count;
-    gyro_bias[1]  /= (int32_t) packet_count;
-    gyro_bias[2]  /= (int32_t) packet_count;
-    
-  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
-  else {accel_bias[2] += (int32_t) accelsensitivity;}
- 
-// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
-  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
-  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
-  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
-  data[3] = (-gyro_bias[1]/4)       & 0xFF;
-  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
-  data[5] = (-gyro_bias[2]/4)       & 0xFF;
+    // Configure Gyro and Accelerometer
+    // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz,
+    // respectively;
+    // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+    // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+    writeByte (MPU6050_ADDRESS, CONFIG, 0x03);
+
+    // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+    writeByte (MPU6050_ADDRESS, SMPLRT_DIV,
+               0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
 
-// Push gyro biases to hardware registers
-  writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); 
-  writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
-  writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
-  writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
-  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
-  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
-
-  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
-  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
-  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+    // Set gyroscope full scale range
+    // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are
+    // left-shifted into positions 4:3
+    uint8_t c = readByte (MPU6050_ADDRESS, GYRO_CONFIG);
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
+               c & ~0xE0); // Clear self-test bits [7:5]
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
+               c & ~0x18); // Clear AFS bits [4:3]
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
+               c | Gscale << 3); // Set full scale range for the gyro
 
-// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
-// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
-// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
-// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
-// the accelerometer biases calculated above must be divided by 8.
+    // Set accelerometer configuration
+    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c & ~0xE0); // Clear self-test bits [7:5]
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c & ~0x18); // Clear AFS bits [4:3]
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c | Ascale << 3); // Set full scale range for the accelerometer
 
-  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
-  readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
-  accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  
-  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
-  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
-  
-  for(ii = 0; ii < 3; ii++) {
-    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+    // Configure Interrupts and Bypass Enable
+    // Set interrupt pin active high, push-pull, and clear on read of
+    // INT_STATUS, enable I2C_BYPASS_EN so additional chips
+    // can join the I2C bus and all can be controlled by the Arduino as master
+    writeByte (MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
+    writeByte (MPU6050_ADDRESS, INT_ENABLE,
+               0x01); // Enable data ready (bit 0) interrupt
   }
 
-  // Construct total accelerometer bias, including calculated average accelerometer bias from above
-  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
-  accel_bias_reg[1] -= (accel_bias[1]/8);
-  accel_bias_reg[2] -= (accel_bias[2]/8);
- 
-  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
-  data[1] = (accel_bias_reg[0])      & 0xFF;
-  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
-  data[3] = (accel_bias_reg[1])      & 0xFF;
-  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
-  data[5] = (accel_bias_reg[2])      & 0xFF;
-  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+  // Function which accumulates gyro and accelerometer data after device
+  // initialization. It calculates the average
+  // of the at-rest readings and then loads the resulting offsets into
+  // accelerometer and gyro bias registers.
+  void
+  calibrateMPU6050 (float *dest1, float *dest2)
+  {
+    uint8_t
+        data[12]; // data array to hold accelerometer and gyro x, y, z, data
+    uint16_t ii, packet_count, fifo_count;
+    int32_t gyro_bias[3] = { 0, 0, 0 }, accel_bias[3] = { 0, 0, 0 };
+
+    // reset device, reset all registers, clear gyro and accelerometer bias
+    // registers
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               0x80); // Write a one to bit 7 reset bit; toggle reset device
+    wait (0.1);
+
+    // get stable time source
+    // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 =
+    // 001
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
+    wait (0.2);
+
+    // Configure device for bias calculation
+    writeByte (MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
+    writeByte (MPU6050_ADDRESS, FIFO_EN, 0x00);    // Disable FIFO
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               0x00); // Turn on internal clock source
+    writeByte (MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+    writeByte (MPU6050_ADDRESS, USER_CTRL,
+               0x00); // Disable FIFO and I2C master modes
+    writeByte (MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
+    wait (0.015);
+
+    // Configure MPU6050 gyro and accelerometer for bias calculation
+    writeByte (MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
+    writeByte (MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to
+                                                    // 250 degrees per second,
+                                                    // maximum sensitivity
+    writeByte (
+        MPU6050_ADDRESS, ACCEL_CONFIG,
+        0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+
+    uint16_t gyrosensitivity = 131;    // = 131 LSB/degrees/sec
+    uint16_t accelsensitivity = 16384; // = 16384 LSB/g
 
-  // Push accelerometer biases to hardware registers
-//  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);  
-//  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
-//  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
-//  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);  
-//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
-//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
+    // Configure FIFO to capture accelerometer and gyro data for bias
+    // calculation
+    writeByte (MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
+    writeByte (MPU6050_ADDRESS, FIFO_EN, 0x78);   // Enable gyro and
+                                                  // accelerometer sensors for
+                                                  // FIFO  (max size 1024 bytes
+                                                  // in MPU-6050)
+    wait (0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
+
+    // At end of sample accumulation, turn off FIFO sensor read
+    writeByte (MPU6050_ADDRESS, FIFO_EN,
+               0x00); // Disable gyro and accelerometer sensors for FIFO
+    readBytes (MPU6050_ADDRESS, FIFO_COUNTH, 2,
+               &data[0]); // read FIFO sample count
+    fifo_count = ((uint16_t)data[0] << 8) | data[1];
+    packet_count = fifo_count / 12; // How many sets of full gyro and
+                                    // accelerometer data for averaging
 
-// Output scaled accelerometer biases for manual subtraction in the main program
-   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
-   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
-   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
-}
+    for (ii = 0; ii < packet_count; ii++)
+      {
+        int16_t accel_temp[3] = { 0, 0, 0 }, gyro_temp[3] = { 0, 0, 0 };
+        readBytes (MPU6050_ADDRESS, FIFO_R_W, 12,
+                   &data[0]); // read data for averaging
+        accel_temp[0] = (int16_t) (
+            ((int16_t)data[0] << 8)
+            | data[1]); // Form signed 16-bit integer for each sample in FIFO
+        accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]);
+        accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]);
+        gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7]);
+        gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9]);
+        gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]);
 
+        accel_bias[0] += (int32_t)accel_temp[0]; // Sum individual signed
+                                                 // 16-bit biases to get
+                                                 // accumulated signed 32-bit
+                                                 // biases
+        accel_bias[1] += (int32_t)accel_temp[1];
+        accel_bias[2] += (int32_t)accel_temp[2];
+        gyro_bias[0] += (int32_t)gyro_temp[0];
+        gyro_bias[1] += (int32_t)gyro_temp[1];
+        gyro_bias[2] += (int32_t)gyro_temp[2];
+      }
+    accel_bias[0]
+        /= (int32_t)packet_count; // Normalize sums to get average count biases
+    accel_bias[1] /= (int32_t)packet_count;
+    accel_bias[2] /= (int32_t)packet_count;
+    gyro_bias[0] /= (int32_t)packet_count;
+    gyro_bias[1] /= (int32_t)packet_count;
+    gyro_bias[2] /= (int32_t)packet_count;
 
-// Accelerometer and gyroscope self test; check calibration wrt factory settings
-void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
-{
-   uint8_t rawData[4] = {0, 0, 0, 0};
-   uint8_t selfTest[6];
-   float factoryTrim[6];
-   
-   // Configure the accelerometer for self-test
-   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
-   writeByte(MPU6050_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
-   wait(0.25);  // Delay a while to let the device execute the self-test
-   rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
-   rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
-   rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
-   rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
-   // Extract the acceleration test results first
-   selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
-   selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
-   selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
-   // Extract the gyration test results first
-   selfTest[3] = rawData[0]  & 0x1F ; // XG_TEST result is a five-bit unsigned integer
-   selfTest[4] = rawData[1]  & 0x1F ; // YG_TEST result is a five-bit unsigned integer
-   selfTest[5] = rawData[2]  & 0x1F ; // ZG_TEST result is a five-bit unsigned integer   
-   // Process results to allow final comparison with factory set values
-   factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
-   factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
-   factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
-   factoryTrim[3] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) ));             // FT[Xg] factory trim calculation
-   factoryTrim[4] =  (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) ));             // FT[Yg] factory trim calculation
-   factoryTrim[5] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) ));             // FT[Zg] factory trim calculation
-   
- //  Output self-test results and factory trim calculation if desired
- //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
- //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
- //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
- //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
+    if (accel_bias[2] > 0L)
+      {
+        accel_bias[2] -= (int32_t)accelsensitivity;
+      } // Remove gravity from the z-axis accelerometer bias calculation
+    else
+      {
+        accel_bias[2] += (int32_t)accelsensitivity;
+      }
+
+    // Construct the gyro biases for push to the hardware gyro bias registers,
+    // which are reset to zero upon device startup
+    data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB
+                                               // per deg/s to conform to
+                                               // expected bias input format
+    data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change
+                                          // sign on calculated average gyro
+                                          // biases
+    data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF;
+    data[3] = (-gyro_bias[1] / 4) & 0xFF;
+    data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF;
+    data[5] = (-gyro_bias[2] / 4) & 0xFF;
+
+    // Push gyro biases to hardware registers
+    writeByte (MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
+    writeByte (MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
+    writeByte (MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
+    writeByte (MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
+    writeByte (MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
+    writeByte (MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
+
+    dest1[0] = (float)gyro_bias[0]
+               / (float)gyrosensitivity; // construct gyro bias in deg/s for
+                                         // later manual subtraction
+    dest1[1] = (float)gyro_bias[1] / (float)gyrosensitivity;
+    dest1[2] = (float)gyro_bias[2] / (float)gyrosensitivity;
+
+    // Construct the accelerometer biases for push to the hardware
+    // accelerometer bias registers. These registers contain
+    // factory trim values which must be added to the calculated accelerometer
+    // biases; on boot up these registers will hold
+    // non-zero values. In addition, bit 0 of the lower byte must be preserved
+    // since it is used for temperature
+    // compensation calculations. Accelerometer bias registers expect bias
+    // input as 2048 LSB per g, so that
+    // the accelerometer biases calculated above must be divided by 8.
 
- // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
- // To get to percent, must multiply by 100 and subtract result from 100
-   for (int i = 0; i < 6; i++) {
-     destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
-   }
-   
-}
+    int32_t accel_bias_reg[3]
+        = { 0, 0, 0 }; // A place to hold the factory accelerometer trim biases
+    readBytes (MPU6050_ADDRESS, XA_OFFSET_H, 2,
+               &data[0]); // Read factory accelerometer trim values
+    accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    readBytes (MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    readBytes (MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+
+    uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of
+                         // lower byte of accelerometer bias registers
+    uint8_t mask_bit[3] = {
+      0, 0, 0
+    }; // Define array to hold mask bit for each accelerometer bias axis
+
+    for (ii = 0; ii < 3; ii++)
+      {
+        if (accel_bias_reg[ii] & mask)
+          mask_bit[ii] = 0x01; // If temperature compensation bit is set,
+                               // record that fact in mask_bit
+      }
 
+    // Construct total accelerometer bias, including calculated average
+    // accelerometer bias from above
+    accel_bias_reg[0] -= (accel_bias[0] / 8); // Subtract calculated averaged
+                                              // accelerometer bias scaled to
+                                              // 2048 LSB/g (16 g full scale)
+    accel_bias_reg[1] -= (accel_bias[1] / 8);
+    accel_bias_reg[2] -= (accel_bias[2] / 8);
+
+    data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+    data[1] = (accel_bias_reg[0]) & 0xFF;
+    data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit
+                                     // when writing back to accelerometer bias
+                                     // registers
+    data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+    data[3] = (accel_bias_reg[1]) & 0xFF;
+    data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit
+                                     // when writing back to accelerometer bias
+                                     // registers
+    data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+    data[5] = (accel_bias_reg[2]) & 0xFF;
+    data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit
+                                     // when writing back to accelerometer bias
+                                     // registers
+
+    // Push accelerometer biases to hardware registers
+    //  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
+    //  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
+    //  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
+    //  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
+    //  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
+    //  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
 
-// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
-// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
-// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
-// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
-// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
-// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
-        void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
-        {
-            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];         // short name local variable for readability
-            float norm;                                               // vector norm
-            float f1, f2, f3;                                         // objective funcyion elements
-            float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
-            float qDot1, qDot2, qDot3, qDot4;
-            float hatDot1, hatDot2, hatDot3, hatDot4;
-            float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz;  // gyro bias error
+    // Output scaled accelerometer biases for manual subtraction in the main
+    // program
+    dest2[0] = (float)accel_bias[0] / (float)accelsensitivity;
+    dest2[1] = (float)accel_bias[1] / (float)accelsensitivity;
+    dest2[2] = (float)accel_bias[2] / (float)accelsensitivity;
+  }
+
+  // Accelerometer and gyroscope self test; check calibration wrt factory
+  // settings
+  void MPU6050SelfTest (float *destination) // Should return percent deviation
+                                            // from factory trim values, +/- 14
+                                            // or less deviation is a pass
+  {
+    uint8_t rawData[4] = { 0, 0, 0, 0 };
+    uint8_t selfTest[6];
+    float factoryTrim[6];
 
-            // Auxiliary variables to avoid repeated arithmetic
-            float _halfq1 = 0.5f * q1;
-            float _halfq2 = 0.5f * q2;
-            float _halfq3 = 0.5f * q3;
-            float _halfq4 = 0.5f * q4;
-            float _2q1 = 2.0f * q1;
-            float _2q2 = 2.0f * q2;
-            float _2q3 = 2.0f * q3;
-            float _2q4 = 2.0f * q4;
-//            float _2q1q3 = 2.0f * q1 * q3;
-//            float _2q3q4 = 2.0f * q3 * q4;
+    // Configure the accelerometer for self-test
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all
+                                                     // three axes and set
+                                                     // accelerometer range to
+                                                     // +/- 8 g
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG, 0xE0);  // Enable self test on all
+                                                     // three axes and set gyro
+                                                     // range to +/- 250
+                                                     // degrees/s
+    wait (0.25); // Delay a while to let the device execute the self-test
+    // rawData[0]
+    //     = readByte (MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test
+    //     results
+    // rawData[1]
+    //     = readByte (MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test
+    //     results
+    // rawData[2]
+    //     = readByte (MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test
+    //     results
+    // rawData[3] = readByte (MPU6050_ADDRESS,
+    //                        SELF_TEST_A);
+    // Mixed-axis self-test results
+    // Extract the acceleration test results first
+    selfTest[0] = (rawData[0] >> 3)
+                  | (rawData[3] & 0x30)
+                        >> 4; // XA_TEST result is a five-bit unsigned integer
+    selfTest[1] = (rawData[1] >> 3)
+                  | (rawData[3] & 0x0C)
+                        >> 4; // YA_TEST result is a five-bit unsigned integer
+    selfTest[2] = (rawData[2] >> 3)
+                  | (rawData[3] & 0x03)
+                        >> 4; // ZA_TEST result is a five-bit unsigned integer
+    // Extract the gyration test results first
+    selfTest[3]
+        = rawData[0] & 0x1F; // XG_TEST result is a five-bit unsigned integer
+    selfTest[4]
+        = rawData[1] & 0x1F; // YG_TEST result is a five-bit unsigned integer
+    selfTest[5]
+        = rawData[2] & 0x1F; // ZG_TEST result is a five-bit unsigned integer
+    // Process results to allow final comparison with factory set values
+    factoryTrim[0] = (4096.0f * 0.34f)
+                     * (pow ((0.92f / 0.34f),
+                             ((selfTest[0] - 1.0f)
+                              / 30.0f))); // FT[Xa] factory trim calculation
+    factoryTrim[1] = (4096.0f * 0.34f)
+                     * (pow ((0.92f / 0.34f),
+                             ((selfTest[1] - 1.0f)
+                              / 30.0f))); // FT[Ya] factory trim calculation
+    factoryTrim[2] = (4096.0f * 0.34f)
+                     * (pow ((0.92f / 0.34f),
+                             ((selfTest[2] - 1.0f)
+                              / 30.0f))); // FT[Za] factory trim calculation
+    factoryTrim[3]
+        = (25.0f * 131.0f)
+          * (pow (1.046f,
+                  (selfTest[3] - 1.0f))); // FT[Xg] factory trim calculation
+    factoryTrim[4]
+        = (-25.0f * 131.0f)
+          * (pow (1.046f,
+                  (selfTest[4] - 1.0f))); // FT[Yg] factory trim calculation
+    factoryTrim[5]
+        = (25.0f * 131.0f)
+          * (pow (1.046f,
+                  (selfTest[5] - 1.0f))); // FT[Zg] factory trim calculation
+
+    //  Output self-test results and factory trim calculation if desired
+    //  Serial.println(selfTest[0]); Serial.println(selfTest[1]);
+    //  Serial.println(selfTest[2]);
+    //  Serial.println(selfTest[3]); Serial.println(selfTest[4]);
+    //  Serial.println(selfTest[5]);
+    //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]);
+    //  Serial.println(factoryTrim[2]);
+    //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]);
+    //  Serial.println(factoryTrim[5]);
+
+    // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim
+    // of the Self-Test Response
+    // To get to percent, must multiply by 100 and subtract result from 100
+    for (int i = 0; i < 6; i++)
+      {
+        destination[i] = 100.0f
+                         + 100.0f * (selfTest[i] - factoryTrim[i])
+                               / factoryTrim[i]; // Report percent differences
+      }
+  }
 
-            // Normalise accelerometer measurement
-            norm = sqrt(ax * ax + ay * ay + az * az);
-            if (norm == 0.0f) return; // handle NaN
-            norm = 1.0f/norm;
-            ax *= norm;
-            ay *= norm;
-            az *= norm;
-            
-            // Compute the objective function and Jacobian
-            f1 = _2q2 * q4 - _2q1 * q3 - ax;
-            f2 = _2q1 * q2 + _2q3 * q4 - ay;
-            f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
-            J_11or24 = _2q3;
-            J_12or23 = _2q4;
-            J_13or22 = _2q1;
-            J_14or21 = _2q2;
-            J_32 = 2.0f * J_14or21;
-            J_33 = 2.0f * J_11or24;
-          
-            // Compute the gradient (matrix multiplication)
-            hatDot1 = J_14or21 * f2 - J_11or24 * f1;
-            hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
-            hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
-            hatDot4 = J_14or21 * f1 + J_11or24 * f2;
-            
-            // Normalize the gradient
-            norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
-            hatDot1 /= norm;
-            hatDot2 /= norm;
-            hatDot3 /= norm;
-            hatDot4 /= norm;
-            
-            // Compute estimated gyroscope biases
-            gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
-            gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
-            gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
-            
-            // Compute and remove gyroscope biases
-            gbiasx += gerrx * deltat * zeta;
-            gbiasy += gerry * deltat * zeta;
-            gbiasz += gerrz * deltat * zeta;
- //           gx -= gbiasx;
- //           gy -= gbiasy;
- //           gz -= gbiasz;
-            
-            // Compute the quaternion derivative
-            qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
-            qDot2 =  _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
-            qDot3 =  _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
-            qDot4 =  _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
+  // Implementation of Sebastian Madgwick's "...efficient orientation filter
+  // for... inertial/magnetic sensor arrays"
+  // (see http://www.x-io.co.uk/category/open-source/ for examples and more
+  // details)
+  // which fuses acceleration and rotation rate to produce a quaternion-based
+  // estimate of relative
+  // device orientation -- which can be converted to yaw, pitch, and roll.
+  // Useful for stabilizing quadcopters, etc.
+  // The performance of the orientation filter is at least as good as
+  // conventional Kalman-based filtering algorithms
+  // but is much less computationally intensive---it can be performed on a 3.3
+  // V Pro Mini operating at 8 MHz!
+  void
+  MadgwickQuaternionUpdate (float ax, float ay, float az, float gx, float gy,
+                            float gz)
+  {
+    float q1 = q[0], q2 = q[1], q3 = q[2],
+          q4 = q[3];  // short name local variable for readability
+    float norm;       // vector norm
+    float f1, f2, f3; // objective funcyion elements
+    float J_11or24, J_12or23, J_13or22, J_14or21, J_32,
+        J_33; // objective function Jacobian elements
+    float qDot1, qDot2, qDot3, qDot4;
+    float hatDot1, hatDot2, hatDot3, hatDot4;
+    float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
+
+    // Auxiliary variables to avoid repeated arithmetic
+    float _halfq1 = 0.5f * q1;
+    float _halfq2 = 0.5f * q2;
+    float _halfq3 = 0.5f * q3;
+    float _halfq4 = 0.5f * q4;
+    float _2q1 = 2.0f * q1;
+    float _2q2 = 2.0f * q2;
+    float _2q3 = 2.0f * q3;
+    float _2q4 = 2.0f * q4;
+    //            float _2q1q3 = 2.0f * q1 * q3;
+    //            float _2q3q4 = 2.0f * q3 * q4;
+
+    // Normalise accelerometer measurement
+    norm = sqrt (ax * ax + ay * ay + az * az);
+    if (norm == 0.0f)
+      return; // handle NaN
+    norm = 1.0f / norm;
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
 
-            // Compute then integrate estimated quaternion derivative
-            q1 += (qDot1 -(beta * hatDot1)) * deltat;
-            q2 += (qDot2 -(beta * hatDot2)) * deltat;
-            q3 += (qDot3 -(beta * hatDot3)) * deltat;
-            q4 += (qDot4 -(beta * hatDot4)) * deltat;
+    // Compute the objective function and Jacobian
+    f1 = _2q2 * q4 - _2q1 * q3 - ax;
+    f2 = _2q1 * q2 + _2q3 * q4 - ay;
+    f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
+    J_11or24 = _2q3;
+    J_12or23 = _2q4;
+    J_13or22 = _2q1;
+    J_14or21 = _2q2;
+    J_32 = 2.0f * J_14or21;
+    J_33 = 2.0f * J_11or24;
+
+    // Compute the gradient (matrix multiplication)
+    hatDot1 = J_14or21 * f2 - J_11or24 * f1;
+    hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
+    hatDot3 = J_12or23 * f2 - J_33 * f3 - J_13or22 * f1;
+    hatDot4 = J_14or21 * f1 + J_11or24 * f2;
+
+    // Normalize the gradient
+    norm = sqrt (hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3
+                 + hatDot4 * hatDot4);
+    hatDot1 /= norm;
+    hatDot2 /= norm;
+    hatDot3 /= norm;
+    hatDot4 /= norm;
+
+    // Compute estimated gyroscope biases
+    gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
+    gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
+    gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
 
-            // Normalize the quaternion
-            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
-            norm = 1.0f/norm;
-            q[0] = q1 * norm;
-            q[1] = q2 * norm;
-            q[2] = q3 * norm;
-            q[3] = q4 * norm;
-            
-        }
-        
-  
-  };
+    // Compute and remove gyroscope biases
+    gbiasx += gerrx * deltat * zeta;
+    gbiasy += gerry * deltat * zeta;
+    gbiasz += gerrz * deltat * zeta;
+    //           gx -= gbiasx;
+    //           gy -= gbiasy;
+    //           gz -= gbiasz;
+
+    // Compute the quaternion derivative
+    qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
+    qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
+    qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
+    qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
+
+    // Compute then integrate estimated quaternion derivative
+    q1 += (qDot1 - (beta * hatDot1)) * deltat;
+    q2 += (qDot2 - (beta * hatDot2)) * deltat;
+    q3 += (qDot3 - (beta * hatDot3)) * deltat;
+    q4 += (qDot4 - (beta * hatDot4)) * deltat;
+
+    // Normalize the quaternion
+    norm
+        = sqrt (q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
+    norm = 1.0f / norm;
+    q[0] = q1 * norm;
+    q[1] = q2 * norm;
+    q[2] = q3 * norm;
+    q[3] = q4 * norm;
+  }
+};
 #endif
\ No newline at end of file