Lab 6?
Fork of ADXL362 by
ADXL362.cpp
- Committer:
- youngs2
- Date:
- 2018-02-22
- Revision:
- 4:9e635c4a3099
- Parent:
- 0:2e21c4508cab
File content as of revision 4:9e635c4a3099:
/**
* @file ADXL362.cpp
* @brief Source file for ADXL362
* @author Analog Devices Inc.
*
* For support please go to:
* Github: https://github.com/analogdevicesinc/mbed-adi
* Support: https://ez.analog.com/community/linux-device-drivers/microcontroller-no-os-drivers
* Product: http://www.analog.com/adxl362
* More: https://wiki.analog.com/resources/tools-software/mbed-drivers-all
********************************************************************************
* Copyright 2016(c) Analog Devices, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Analog Devices, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* - The use of this software may or may not infringe the patent rights
* of one or more patent holders. This license does not release you
* from the requirement that you obtain separate licenses from these
* patent holders to use this software.
* - Use of the software either in source or binary form, must be run
* on or directly connected to an Analog Devices Inc. component.
*
* THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
********************************************************************************/
#include <stdint.h>
#include "mbed.h"
#include "ADXL362.h"
/**
* ADXL362 constructor. Sets CS and SPI bus
* @param CS - CS pin of the ADXL362
* @param MOSI - MOSI pin of the ADXL362
* @param MISO - MISO pin of the ADXL362
* @param SCK- SCK pin of the ADXL362
*/
ADXL362::ADXL362(PinName CS, PinName MOSI, PinName MISO, PinName SCK) :
adxl362(MOSI, MISO, SCK), cs(CS), _int1(NULL), _int2(NULL), _int1_poll(NC), _int2_poll(
NC)
{
cs = true; // cs is active low
adxl362.format(8, _SPI_MODE);
_temp_stored_in_fifo = false;
_int1_act_low = true;
_int2_act_low = true;
}
/**
* Sets ADXL362 SPI bus frequency
* @param hz - frequency in hz
*/
void ADXL362::frequency(int hz)
{
adxl362.frequency(hz);
}
/**
* Resets the ADXL362
* A latency of approximately 0.5 ms is required after soft reset.
*/
void ADXL362::reset()
{
adxl362.format(8, _SPI_MODE);
cs = false;
// Writing Code 0x52 (representing the letter, R, in ASCII or unicode) to this register immediately resets the ADXL362.
write_reg(SOFT_RESET, 0x52);
cs = true;
}
/**
* Writes the reg register with data
* @param reg - ADXL362_register_t register to be written
* @param data - data to be written
*/
void ADXL362::write_reg(ADXL362_register_t reg, uint8_t data)
{
adxl362.format(8, _SPI_MODE);
cs = false;
adxl362.write(_WRITE_REG_CMD);
adxl362.write(static_cast<uint8_t>(reg));
adxl362.write(static_cast<uint8_t>(data));
cs = true;
}
/**
* Reads the reg register
* @param reg - ADXL362_register_t register to be read
* @return - data read from the register
*/
uint8_t ADXL362::read_reg(ADXL362_register_t reg)
{
uint8_t ret_val;
adxl362.format(8, _SPI_MODE);
cs = false;
adxl362.write(_READ_REG_CMD);
adxl362.write(static_cast<uint8_t>(reg));
ret_val = adxl362.write(_DUMMY_BYTE);
cs = true;
return ret_val;
}
/**
* Writes 16 bit registers to the ADXL362. Performs conversion from Intel to Motorola byte order
* @param reg - ADXL362_register_t register to be written
* @param data - data to be written
*/
void ADXL362::write_reg_u16(ADXL362_register_t reg, uint16_t data)
{
adxl362.format(8, _SPI_MODE);
cs = false;
adxl362.write(_WRITE_REG_CMD);
adxl362.write(static_cast<uint8_t>(reg));
adxl362.write(static_cast<uint8_t>(data & 0xff));
adxl362.write(static_cast<uint8_t>((data & 0xff00) >> 8));
cs = true;
}
/**
* Reads 16 bit registers from the ADXL362. Performs conversion from Motorola to Intel Byte order
* @param reg - ADXL362_register_t register to be read
* @return - data read from the ADXL362
*/
uint16_t ADXL362::read_reg_u16(ADXL362_register_t reg)
{
uint16_t ret_val = 0;
adxl362.format(8, _SPI_MODE);
cs = false;
adxl362.write(_READ_REG_CMD);
adxl362.write(static_cast<uint8_t>(reg));
ret_val = adxl362.write(_DUMMY_BYTE);
ret_val = ret_val | (adxl362.write(_DUMMY_BYTE) << 8);
cs = true;
return ret_val;
}
/**
* Scans the X,Y,Z,T registers for data.
* ADXL362 needs to be in measurement mode to read data
* ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT)
* @return a 64 bit integer with the following format 0xXXYYZZTT
*/
uint64_t ADXL362::scan()
{
uint64_t ret_val = 0;
uint16_t x, y, z, t = 0;
adxl362.format(8, _SPI_MODE);
cs = false;
adxl362.write(_READ_REG_CMD);
adxl362.write(static_cast<uint8_t>(XDATA_L));
x = adxl362.write(_DUMMY_BYTE);
x = x | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8);
y = adxl362.write(_DUMMY_BYTE);
y = y | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8);
z = adxl362.write(_DUMMY_BYTE);
z = z | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8);
t = adxl362.write(_DUMMY_BYTE);
t = t | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8);
ret_val = static_cast<uint64_t>(x) << 48;
ret_val |= static_cast<uint64_t>(y) << 32;
ret_val |= static_cast<uint64_t>(z) << 16;
ret_val |= static_cast<uint64_t>(t);
cs = true;
return ret_val;
}
/**
* Reads the X 8 bit register from the ADXL362
* ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT)
* @return 8 bit X data
*/
uint8_t ADXL362::scanx_u8()
{
return read_reg(XDATA);
}
/**
* Reads the X 16 bit register from the ADXL362
* ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT)
* @return 16 bit X data
*/
uint16_t ADXL362::scanx()
{
return read_reg_u16(XDATA_L);
}
/**
* Reads the Y 8 bit register from the ADXL362
* ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT)
* @return 8 bit Y data
*/
uint8_t ADXL362::scany_u8()
{
return read_reg(YDATA);
}
/**
* Reads the Y 16 bit register from the ADXL362
* ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT)
* @return 16 bit Y data
*/
uint16_t ADXL362::scany()
{
return read_reg_u16(YDATA_L);
}
/**
* Reads the Z 8 bit register from the ADXL362
* ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT)
* @return 8 bit Z data
*/
uint8_t ADXL362::scanz_u8()
{
return read_reg(ZDATA);
}
/**
* Reads the Z 16 bit register from the ADXL362
* ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT)
* @return 16 bit Z data
*/
uint16_t ADXL362::scanz()
{
return read_reg_u16(ZDATA_L);
}
/**
* Reads the T 16 bit register from the ADXL362
* ADXL362 is set in measurement mode using ADXL362::set_mode(ADXL362::MEASUREMENT)
* @return 16 bit T data
*/
uint16_t ADXL362::scant()
{
return read_reg_u16(TEMP_L);
}
/**
* Sets the STANDBY/MEASUREMENT mode of the ADXL362
* @param mode - ADXL362_modes_t STANDBY/MEASUREMENT mode
*/
void ADXL362::set_mode(ADXL362_modes_t mode)
{
uint8_t reg_val;
reg_val = read_reg(POWER_CTL);
reg_val = reg_val | static_cast<uint8_t>(mode);
write_reg(POWER_CTL, reg_val);
}
/**
* Sets the activity threshold registers
* To enable activity/inactivity, the ACT_INACT_CTL reg must also be set
* using the ADXL362::set_act_inact_ctl_reg(uint8_t data) method
* @param threshold - activity threshold in natural format
*/
void ADXL362::set_activity_threshold(uint16_t threshold)
{
write_reg_u16(THRESH_ACT_L, threshold);
}
/**
* Sets the activity time register
* To enable activity/inactivity, the ACT_INACT_CTL reg must also be set
* using the ADXL362::set_act_inact_ctl_reg(uint8_t data) method
* @param time - activity time
*/
void ADXL362::set_activity_time(uint8_t time)
{
write_reg(TIME_ACT, time);
}
/**
* Sets the inactivity threshold register
* To enable activity/inactivity, the ACT_INACT_CTL reg must also be set
* using the ADXL362::set_act_inact_ctl_reg(uint8_t data) method
* @param threshold - inactivity threshold in natural format
*/
void ADXL362::set_inactivity_threshold(uint16_t threshold)
{
write_reg_u16(THRESH_INACT_L, threshold);
}
/**
* Sets the inactivity time register
* To enable activity/inactivity, the ACT_INACT_CTL reg must also be set
* using the ADXL362::set_act_inact_ctl_reg(uint8_t data) method
* @param time - inactivity time in natural format
*/
void ADXL362::set_inactivity_time(uint16_t time)
{
write_reg_u16(TIME_INACT_L, time);
}
/**
* Sets the ACT_INACT_CTL register of the ADXL362
* @param data - data to be written to the register
*/
void ADXL362::set_act_inact_ctl_reg(uint8_t data)
{
write_reg(ACT_INACT_CTL, data);
}
/**
* Configures INT1 output of the ADXL362 for polling use
* @param in - uC pin connected to ADXL362's INT1
* @param data - data to be written to INTMAP1
* @param pull - (optional) configures pullup on In pin
*/
void ADXL362::set_polling_interrupt1_pin(PinName in, uint8_t data,
PinMode pull)
{
if ((data & 0x7F) != 0) {
write_reg(INTMAP1, data);
_int1_poll = DigitalIn(in);
_int1_poll.mode(pull);
if (data & 0x80) {
_int1_act_low = true;
} else {
_int1_act_low = false;
}
}
}
/**
* Configures INT2 output of the ADXL362 for polling use
* @param in - uC pin connected to ADXL362's INT2
* @param data - data to be written to INTMAP2
* @param pull - (optional) configures pullup on In pin
*/
void ADXL362::set_polling_interrupt2_pin(PinName in, uint8_t data,
PinMode pull)
{
if ((data & 0x7F) != 0) {
write_reg(INTMAP2, data);
_int2_poll = DigitalIn(in);
_int2_poll.mode(pull);
if (data & 0x80) {
_int2_act_low = true;
} else {
_int2_act_low = false;
}
}
}
/**
* Gets the active state of the INT1 pin
* @return true if active, false if not active
*/
bool ADXL362::get_int1()
{
if(_int1_poll != NC) return (_int1_poll.read() != _int1_act_low); // boolean XOR
else return (_int1->read() != _int1_act_low);
}
/**
* Gets the active state of the INT2 pin
* @return true if active, false if not active
*/
bool ADXL362::get_int2()
{
if(_int2_poll != NC) return (_int1_poll.read() != _int1_act_low); // boolean XOR
else return (_int2->read() != _int2_act_low);
}
/**
* Configures the INT1 pin of the ADXL362 to be used in interrupt mode
* @param in - uC pin connected to ADXL362's INT1
* @param data - data to be written to INTMAP1
* @param callback_rising - rising edge interrupt callback - can be set to NULL if no callback is required for rising edge
* @param callback_falling - falling edge interrupt callback - can be set to NULL if no callback is required for falling edge
* @param pull - (optional) configures pullup on In pin
*/
void ADXL362::set_interrupt1_pin(PinName in, uint8_t data,
void (*callback_rising)(void), void (*callback_falling)(void), PinMode pull)
{
if ((data & 0x7F) != 0) {
write_reg(INTMAP1, data);
delete _int1;
_int1 = new InterruptIn(in);
_int1->mode(pull);
if(callback_falling != NULL) _int1->fall(callback_falling);
if(callback_rising != NULL) _int1->rise(callback_rising);
if (data & 0x80) {
_int1_act_low = true;
} else {
_int1_act_low = false;
}
}
}
/**
* Configures the INT2 pin of the ADXL362 to be used in interrupt mode
* @param in - uC pin connected to ADXL362's INT2
* @param data - data to be written to INTMAP2
* @param callback_rising - rising edge interrupt callback - can be set to NULL if no callback is required for rising edge
* @param callback_falling - falling edge interrupt callback - can be set to NULL if no callback is required for falling edge
* @param pull - (optional) configures pullup on In pin
*/
void ADXL362::set_interrupt2_pin(PinName in, uint8_t data,
void (*callback_rising)(void), void (*callback_falling)(void), PinMode pull)
{
if ((data & 0x7F) != 0) {
write_reg(INTMAP2, data);
delete _int2;
_int2 = new InterruptIn(in);
_int2->mode(pull);
if(callback_falling != NULL) _int2->fall(callback_falling);
if(callback_rising != NULL) _int2->rise(callback_rising);
if (data & 0x80) {
_int2_act_low = true;
} else {
_int2_act_low = false;
}
}
}
/**
* Enables external interrupt registration for pin configured as INT1
* To enable this interrupt, it must first be configured using ADXL362::set_interrupt1_pin()
*/
void ADXL362::enable_interrupt1()
{
_int1->enable_irq();
}
/**
* Enables external interrupt registration for pin configured as INT2
* * To enable this interrupt, it must first be configured using ADXL362::set_interrupt2_pin()
*/
void ADXL362::enable_interrupt2()
{
_int2->enable_irq();
}
/**
* Disables external interrupt registration for pin configured as INT1
*/
void ADXL362::disable_interrupt1()
{
_int1->disable_irq();
}
/**
* Disables external interrupt registration for pin configured as INT2
*/
void ADXL362::disable_interrupt2()
{
_int2->disable_irq();
}
/**
* Sets the POWER_CTL register
* @param data - data to be written to the register
*/
void ADXL362::set_power_ctl_reg(uint8_t data)
{
write_reg(POWER_CTL, data);
}
/**
* Sets the FILTER_CTL register
* @param data - data to be written to the register
*/
void ADXL362::set_filter_ctl_reg(uint8_t data)
{
write_reg(FILTER_CTL, data);
}
/**
* Reads the STATUS register of the ADXL362
* @return - data in the status register
*/
uint8_t ADXL362::read_status()
{
return read_reg(STATUS);
}
/**
* Reads the FIFO_ENTRIES_L and FIFO_ENTRIES_H register
* @return the number of entries in the FIFO
*/
uint16_t ADXL362::fifo_read_nr_of_entries()
{
return read_reg_u16(FIFO_ENTRIES_L);
}
/**
* Setup for the FIFO
* @param store_temp - boolean, true - temperature will be stored in the fifo. false otherwise
* @param mode - ADXL362_FIFO_modes_t fifo mode
* @param nr_of_entries - number of entries in the FIFO
*/
void ADXL362::fifo_setup(bool store_temp, ADXL362_FIFO_modes_t mode, uint16_t nr_of_entries)
{
uint8_t fifo_ctl = static_cast<uint8_t>(mode);
_temp_stored_in_fifo = store_temp;
fifo_ctl = fifo_ctl | (static_cast<uint8_t>(_temp_stored_in_fifo) << 2);
if (nr_of_entries > 0xff) {
fifo_ctl = fifo_ctl | static_cast<uint8_t>(AH);
}
write_reg(FIFO_CONTROL, fifo_ctl);
write_reg(FIFO_SAMPLES, static_cast<uint8_t>(nr_of_entries & 0xff));
}
/**
* Reads a FIFO entry
* @return FIFO entry
*/
uint16_t ADXL362::fifo_read_u16()
{
uint16_t ret_val = 0;
adxl362.format(8, _SPI_MODE);
cs = false;
adxl362.write(_READ_FIFO_CMD);
ret_val = adxl362.write(_DUMMY_BYTE);
ret_val = (ret_val) | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8);
cs = true;
return ret_val;
}
/**
* Reads 3(4) bytes from the FIFO(if store_temp was set), assembles the data in the format used by the scan method
* ADXL362::fifo_setup() needs to be called before calling fifo_scan to ensure correct fifo operation
* fifo_scan and fifo_read_u16 should not be used as fifo_read_u16 disaligns the fifo therefore
* fifo_scan will return data from multiple samples
* @return scanned data from the fifo in the 0xXXYYZZTT format
*/
uint64_t ADXL362::fifo_scan()
{
uint64_t ret_val = 0;
uint16_t x = 0, y = 0, z = 0, dummy, t = 0, sample_type;
adxl362.format(8, _SPI_MODE);
cs = false;
adxl362.write(_READ_FIFO_CMD);
uint8_t samples = (_temp_stored_in_fifo) ? 4 : 3;
for(uint8_t i = 0; i < samples; i++) {
dummy = adxl362.write(_DUMMY_BYTE);
dummy = dummy | static_cast<uint16_t>(adxl362.write(_DUMMY_BYTE) << 8);
sample_type = (dummy & 0xc000) >> 14;
dummy = dummy & 0x3fff;
switch(sample_type) {
case 0: // x
x = dummy;
break;
case 1: // y
y = dummy;
break;
case 2: // z
z = dummy;
break;
case 3: // temp
t = dummy;
break;
}
}
// format xxyyzztt
ret_val = static_cast<uint64_t> (x) << 48;
ret_val |= static_cast<uint64_t>(y) << 32;
ret_val |= static_cast<uint64_t>(z) << 16;
ret_val |= static_cast<uint64_t>(t);
cs = true;
return ret_val;
}
