daad

Dependencies:   mbed TrapezoidControl QEI

System/Process/Process.cpp

Committer:
kishibekairohan
Date:
2018-10-01
Revision:
7:e88c5d47a3be
Parent:
6:10e22bc327ce
Child:
8:6fb3723f7747

File content as of revision 7:e88c5d47a3be:

#include "mbed.h"
#include "Process.h"
#include "QEI.h"

#include "../../CommonLibraries/PID/PID.h"
#include "../../Communication/RS485/ActuatorHub/ActuatorHub.h"
#include "../../Communication/Controller/Controller.h"
#include "../../Input/ExternalInt/ExternalInt.h"
#include "../../Input/Switch/Switch.h"
#include "../../Input/ColorSensor/ColorSensor.h"
#include "../../Input/AccelerationSensor/AccelerationSensor.h"
#include "../../Input/Potentiometer/Potentiometer.h"
#include "../../Input/Rotaryencoder/Rotaryencoder.h"
#include "../../LED/LED.h"
#include "../../Safty/Safty.h"
#include "../Using.h"


using namespace SWITCH;
using namespace COLORSENSOR;
using namespace ACCELERATIONSENSOR;
using namespace PID_SPACE;
using namespace ROTARYENCODER;

static CONTROLLER::ControllerData *controller;
ACTUATORHUB::MOTOR::MotorStatus motor[MOUNTING_MOTOR_NUM];
ACTUATORHUB::SOLENOID::SolenoidStatus solenoid;

static bool lock;
static bool processChangeComp;
static int current;

static void AllActuatorReset();

#ifdef USE_SUBPROCESS
static void (*Process[USE_PROCESS_NUM])(void);
#endif

#pragma region USER-DEFINED_VARIABLES_AND_PROTOTYPE

/*Replace here with the definition code of your variables.*/

Serial pc(USBTX, USBRX);

unsigned long ColorIn(int index)
{
	int result = 0;
	bool rtn = false;
    for(int i=0; i<12; i++)
    {
        CK[index] = 1;
        rtn = DOUT[index];
        CK[index] = 0;
        if(rtn)
        {
           result|=(1 << i);
        }
    }
    return result;
}

#define TIRE_FR 4 //足回り前右
#define TIRE_FL 5 //足回り前左
#define TIRE_BR 2 //足回り後右
#define TIRE_BL 3 //足回り後左

#define Angle_R 0 //角度調節右
#define Angle_L 1 //角度調節左

#define Lim_AR 3 //角度調節右
#define Lim_AL 4 //角度調節左
#define Lim_R  0 //センター右
#define Lim_L  1 //センター左

//************メカナム********************

const int mecanum[15][15]=
{
	{   0,    5,     21,     47,     83,    130,    187,    255,    255,    255,    255,    255,    255,    255,    255},
	{  -5,    0,      5,     21,     47,     83,    130,    187,    193,    208,    234,    255,    255,    255,    255},
	{ -21,   -5,      0,      5,     21,     47,     83,    130,    135,    151,    177,    213,    255,    255,    255},
	{ -47,   -21,     5,      0,      5,     21,     47,     83,     88,    104,    130,    167,    213,    255,    255},
	{ -83,   -47,    -21,     5,      0,      5,     21,     47,     52,     68,     94,    130,    177,    234,    255},
	{-130,   -83,    -47,    -21,     5,      0,      5,     21,     26,     42,     68,    104,    151,    208,    255},
	{-187,  -130,    -83,    -47,    -21,    -5,      0,      5,     10,     26,     52,     88,    135,    193,    255},
	{-255,  -187,   -130,    -83,    -47,    -21,    -5,      0,      5,     21,     47,     83,    130,    187,    255},
	{-255,  -193,   -135,    -88,    -52,    -26,    -10,    -5,      0,      5,     21,     47,     83,    130,    187},
	{-255,  -208,   -151,   -104,    -68,    -42,    -26,    -21,    -5,      0,      5,     21,     47,     83,    130},
	{-255,  -234,   -177,   -130,    -94,    -68,    -52,    -47,    -21,    -7,      0,      7,     21,     47,     83},
	{-255,  -255,   -213,   -167,   -130,   -104,    -88,    -83,    -47,    -21,    -5,      0,      5,     21,     47},
	{-255,  -255,   -255,   -213,   -177,   -151,   -135,   -130,    -83,    -47,    -21,    -5,      0,      5,     21},
	{-255,  -255,   -255,   -255,   -234,   -208,   -193,   -187,   -130,    -83,    -47,    -21,    -5,      0,      5},
	{-255,  -255,   -255,   -255,   -255,   -255,   -255,   -255,   -187,   -130,    -83,    -47,   -21,     -5,      0}
};

const int curve[15] = {-204, -150, -104, -66, -38, -17, -4, 0, 4, 17, 38, 66, 104, 150, 204};
uint8_t SetStatus(int);
uint8_t SetStatus(int pwmVal){
	if(pwmVal < 0) return BACK;
	else if(pwmVal > 0) return FOR;
	else if(pwmVal == 0) return BRAKE;
	else return BRAKE;
}
uint8_t SetPWM(int);
uint8_t SetPWM(int pwmVal){
	if(pwmVal == 0 || pwmVal >  255 || pwmVal < -255) return 255;
	else return abs(pwmVal);
}

//************メカナム********************

//************カラーセンサ********************

int Color_A[3]; //[赤,緑,青]
int Color_B[3];
int Color_C[3];
int Color_D[3];         
int intergration = 50;

void ColorDetection();

//************カラーセンサ********************

//************ライントレース変数*******************
int Point[3] = {234, 466, 590};//赤,緑,青
	
int startP = 35;
int downP = 5;
//************ライントレース変数*******************
//ROタコン
 QEI wheel(RT11_PIN, RT12_PIN, NC, ROTATE_PER_REVOLUTIONS, QEI::X2_ENCODING);
 
 Ticker get_rpm;
 int rpm;
 int palse;
 double goalpoint = 3000.0000;
 
 PID startup = PID(0.03, -255, 255, 0.3, 0, 0);
 



//************ジャイロ*******************
float Angle;
PID gyro = PID(0.03, -150 , 150 , 8 , 0.03, 0);
bool Angle_flagX = false;
bool Angle_flagY = false;
bool Angle_flagI = false;
float rotateY;
int AngletargetX = 50;
int AngletargetY = -50;
int Angle_I = -5;
//************ジャイロ*******************


#pragma endregion USER-DEFINED_VARIABLES_AND_PROTOTYPE

#ifdef USE_SUBPROCESS
#if USE_PROCESS_NUM>0
static void Process0(void);
#endif
#if USE_PROCESS_NUM>1
static void Process1(void);
#endif
#if USE_PROCESS_NUM>2
static void Process2(void);
#endif
#if USE_PROCESS_NUM>3
static void Process3(void);
#endif
#if USE_PROCESS_NUM>4
static void Process4(void);
#endif
#if USE_PROCESS_NUM>5
static void Process5(void);
#endif
#if USE_PROCESS_NUM>6
static void Process6(void);
#endif
#if USE_PROCESS_NUM>7
static void Process7(void);
#endif
#if USE_PROCESS_NUM>8
static void Process8(void);
#endif
#if USE_PROCESS_NUM>9
static void Process9(void);
#endif
#endif

void SystemProcessInitialize()
{
	#pragma region USER-DEFINED_VARIABLE_INIT
	
	/*Replace here with the initialization code of your variables.*/

	#pragma endregion USER-DEFINED_VARIABLE_INIT

	lock = true;
	processChangeComp = true;
	current = DEFAULT_PROCESS;

	#ifdef USE_SUBPROCESS
	#if USE_PROCESS_NUM>0
	Process[0] = Process0;
	#endif
	#if USE_PROCESS_NUM>1
	Process[1] = Process1;
	#endif
	#if USE_PROCESS_NUM>2
	Process[2] = Process2;
	#endif
	#if USE_PROCESS_NUM>3
	Process[3] = Process3;
	#endif
	#if USE_PROCESS_NUM>4
	Process[4] = Process4;
	#endif
	#if USE_PROCESS_NUM>5
	Process[5] = Process5;
	#endif
	#if USE_PROCESS_NUM>6
	Process[6] = Process6;
	#endif
	#if USE_PROCESS_NUM>7
	Process[7] = Process7;
	#endif
	#if USE_PROCESS_NUM>8
	Process[8] = Process8;
	#endif
	#if USE_PROCESS_NUM>9
	Process[9] = Process9;
	#endif
	#endif
}

static void SystemProcessUpdate()
{
	#ifdef USE_SUBPROCESS
	if(controller->Button.HOME) lock = false;
	
	if(controller->Button.START && processChangeComp)
	{
		current++;
		if (USE_PROCESS_NUM < current) current = USE_PROCESS_NUM;
		processChangeComp = false;
	}
	else if(controller->Button.SELECT && processChangeComp)
	{
		current--;
		if (current < 0) current = 0;
		processChangeComp = false;
	}
	else if(!controller->Button.SELECT && !controller->Button.START) processChangeComp = true;
	#endif
	
	#ifdef USE_MOTOR
	ACTUATORHUB::MOTOR::Motor::Update(motor);
	#endif
	
	#ifdef USE_SOLENOID
	ACTUATORHUB::SOLENOID::Solenoid::Update(solenoid);
	#endif

	#ifdef USE_RS485
	ACTUATORHUB::ActuatorHub::Update();
	#endif
	
}



void SystemProcess()
{
	SystemProcessInitialize();

	while(1)
	{     
	   /*wait(0.1);
	   //wheel.getPulses()...どちらの方向にどれだけ回ったか
	   pc.printf("Pulses:%07d \r\n",wheel.getPulses());
	   //軸が何回転したか
	   pc.printf("Rotate:%04.3f \r\n",(double)wheel.getPulses()/(ROTATE_PER_REVOLUTIONS*2));
	   */
	   
	   /*	float x = 0, y= 0, z = 0;
	    
	    x = acc[0]*1000;
	    y = acc[1]*1000;
	    z = acc[2]*1000;
	    
	    pc.printf("X:%3.1f , Y:%3.1f , Z:%3.1f \r\n",x,y,z);
	    
	    float rotateX = (x - 306)/2.22 - 90;
	    float rotateY = (y - 305)/2.21 - 90;
	    float rotateZ = (z - 300)/1.18 - 90;
	    pc.printf("X:%3.1f , Y:%3.1f , Z:%3.1f \r\n" , rotateX , rotateY , rotateZ);
		wait_ms(50);
		*/
		/*if(LimitSw::IsPressed(9)) LED_DEBUG0 = LED_ON;
		else LED_DEBUG0 = LED_OFF;*/

		#ifdef USE_MU
		controller = CONTROLLER::Controller::GetData();
		#endif

		#ifdef USE_ERRORCHECK
		if(SAFTY::ErrorCheck::Check() & SAFTY::Error::ControllerLost)
		{
			CONTROLLER::Controller::DataReset();
			AllActuatorReset();
			lock = true;
		}
		else
		#endif
		{

			#ifdef USE_SUBPROCESS
			if(!lock)
			{
				Process[current]();
			}
			else
			#endif
			{
				//ロック時の処理
			}
		}
		
		SystemProcessUpdate();
	}
}


	

#pragma region PROCESS
#ifdef USE_SUBPROCESS
#if USE_PROCESS_NUM>0
static void Process0()
{
	if(LimitSw::IsPressed(Lim_AR) && motor[Angle_R].dir == FOR && motor[Angle_L].dir == BACK){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}else if(LimitSw::IsPressed(Lim_AL) && motor[Angle_L].dir == BACK && motor[Angle_L].dir == FOR){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}	
	for(int i = 0;i<20;i++){
		float y = 0;
		y = acc[1]*1000;
		float rotateY = (y - 305)/2.21 - 90;
		Angle += rotateY;
	}
	Angle = Angle /20;
	int gyropwm = gyro.SetPV(Angle,Angle_I);
	
	if(controller->Button.A){
		Angle_flagI = true;
	}
	if (Angle_flagI){
		motor[Angle_R].dir = SetStatus(gyropwm);
		motor[Angle_L].dir = SetStatus(-gyropwm);
		motor[Angle_R].pwm = SetPWM(gyropwm);
		motor[Angle_L].pwm = SetPWM(gyropwm);
		if(Angle_I - 2 < Angle && Angle < Angle_I + 2){
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
		Angle_flagI = false;
		}
	}
}
#endif

#if USE_PROCESS_NUM>1
static void Process1()
{
       
	   
    motor[TIRE_FR].dir = SetStatus(-mecanum[controller->AnalogL.Y][14-controller->AnalogL.X]     + curve[controller->AnalogR.X]);
    motor[TIRE_FL].dir = SetStatus(mecanum[controller->AnalogL.Y][controller->AnalogL.X]         + curve[controller->AnalogR.X]);
    motor[TIRE_BR].dir = SetStatus(-mecanum[14-controller->AnalogL.X][14-controller->AnalogL.Y]  + curve[controller->AnalogR.X]); 
    motor[TIRE_BL].dir = SetStatus(mecanum[controller->AnalogL.X][14-controller->AnalogL.Y]      + curve[controller->AnalogR.X]);
         
    motor[TIRE_FR].pwm = SetPWM(mecanum[controller->AnalogL.Y][14-controller->AnalogL.X])    *0.8;
   	motor[TIRE_FL].pwm = SetPWM(mecanum[controller->AnalogL.Y][controller->AnalogL.X])       *0.8;
    motor[TIRE_BR].pwm = SetPWM(mecanum[14-controller->AnalogL.X][14-controller->AnalogL.Y]) *0.8;
    motor[TIRE_BL].pwm = SetPWM(mecanum[controller->AnalogL.X][14-controller->AnalogL.Y])    *0.8;
                  
    if (abs(controller->AnalogL.X-7) <= 4 && controller->AnalogL.X!=7 && controller->AnalogL.Y!=7 && controller->AnalogR.X==7){
    motor[TIRE_FR].pwm = motor[TIRE_FR].pwm * 1.3;
    motor[TIRE_FL].pwm = motor[TIRE_FL].pwm * 1.3;
    }
    
    
	   //wheel.getPulses()...どちらの方向にどれだけ回ったか
	   pc.printf("Pulses:%07d \r\n",wheel.getPulses());
	   //軸が何回転したか
	   pc.printf("Rotate:%04.3f \r\n",(double)wheel.getPulses()/(ROTATE_PER_REVOLUTIONS*2));
}
#endif

#if USE_PROCESS_NUM>2
static void Process2()
{
	static bool color_flag = false;
	
	static bool traceon = false;//fase1
	static bool yokofla = false;//fase2
	static bool boxslip = false;//fase3
	
	static bool compA = false;
	static bool compB = false;
	static bool compC = false;
	static bool compD = false;
	
	static bool invationA = false;
	static bool invationB = false;
	static bool invationC = false;
	static bool invationD = false;
	
	ColorDetection();
	//
	if(Color_A[0] > Point[0] && Color_A[1] > Point[1] && Color_A[2] > Point[2] && !compA)//白
	{
	invationA ^= 1;//start false,over true
	compA = true;//on true,noon false
	}	
	else if(!(Color_A[0] > Point[0] && Color_A[1] > Point[1] && Color_A[2] > Point[2]))compA = false;//茶
	
	if(Color_B[0] > Point[0] && Color_B[1] > Point[1] && Color_B[2] > Point[2] && !compB)//白
	{
	invationB ^= 1;//start false,over true
	compB = true;//on true,noon false
	}	
	else if(!(Color_B[0] > Point[0] && Color_B[1] > Point[1] && Color_B[2] > Point[2]))compB = false;//茶
	
	if(Color_C[0] > Point[0] && Color_C[1] > Point[1] && Color_C[2] > Point[2] && !compC)//白
	{
	invationC ^= 1;//start false,over true
	compC = true;//on true,noon false
	}	
	else if(!(Color_C[0] > Point[0] && Color_C[1] > Point[1] && Color_C[2] > Point[2]))compC = false;//茶
	
	if(Color_D[0] > Point[0] && Color_D[1] > Point[1] && Color_D[2] > Point[2] && !compD)//白
	{
	invationD ^= 1;//start false,over true
	compD = true;//on true,noon false
	}	
	else if(!(Color_D[0] > Point[0] && Color_D[1] > Point[1] && Color_D[2] > Point[2]))compD = false;//茶


	//
	
	if(controller->Button.B && !color_flag)
	{
		traceon ^= 1;
		color_flag = true;
	}
	else if(!controller->Button.B)color_flag = false;
	
	if(traceon && !yokofla && !boxslip)
	{
		if(!invationA && !compA && !invationB && !compB)
		{
		motor[TIRE_FR].dir = FOR;
		motor[TIRE_FL].dir = FOR;
		motor[TIRE_BR].dir = BACK;
		motor[TIRE_BL].dir = BACK;
		
		motor[TIRE_FR].pwm = startP;
		motor[TIRE_FL].pwm = startP;
		motor[TIRE_BR].pwm = startP;
		motor[TIRE_BL].pwm = startP;
		}
	    else if(invationA && compA && !invationB && !compB)
	    {
	    motor[TIRE_FR].dir = FOR;
		motor[TIRE_FL].dir = FOR;
		motor[TIRE_BR].dir = BACK;
		motor[TIRE_BL].dir = BACK;
		
		motor[TIRE_FR].pwm = startP - downP;
		motor[TIRE_FL].pwm = startP - downP;
		motor[TIRE_BR].pwm = startP - downP;
		motor[TIRE_BL].pwm = startP - downP;
	    }
		else if(invationA && !compA && !invationB && !compB)
	    {
	    motor[TIRE_FR].dir = BRAKE;
		motor[TIRE_FL].dir = BRAKE;
		motor[TIRE_BR].dir = BRAKE;
		motor[TIRE_BL].dir = BRAKE;
		
		wait(2);
		
		yokofla = true;
		traceon = false;
		}
		else{
		motor[TIRE_FR].dir = BRAKE;
		motor[TIRE_FL].dir = BRAKE;
		motor[TIRE_BR].dir = BRAKE;
		motor[TIRE_BL].dir = BRAKE;
		}
	}
		
	if(!traceon && yokofla && !boxslip)
	 {
		if(LimitSw::IsPressed(Lim_R) && LimitSw::IsPressed(Lim_L))
		{
		motor[TIRE_FR].dir = BRAKE;
		motor[TIRE_FL].dir = BRAKE;
		motor[TIRE_BR].dir = BRAKE;
		motor[TIRE_BL].dir = BRAKE;
		
		wait(2);
		
		boxslip = true;
		yokofla = false;
		}
		else if(invationA && !compA && invationB)
		{
		motor[TIRE_FR].dir = BACK;
		motor[TIRE_FL].dir = BACK;
		motor[TIRE_BR].dir = FOR;
		motor[TIRE_BL].dir = FOR;
		
		motor[TIRE_FR].pwm = startP;
		motor[TIRE_FL].pwm = startP;
		motor[TIRE_BR].pwm = startP;
		motor[TIRE_BL].pwm = startP;
		}
		else if(!invationA && !compB && !invationB)
		{
		motor[TIRE_FR].dir = FOR;
		motor[TIRE_FL].dir = FOR;
		motor[TIRE_BR].dir = BACK;
		motor[TIRE_BL].dir = BACK;
		
		motor[TIRE_FR].pwm = startP;
		motor[TIRE_FL].pwm = startP;
		motor[TIRE_BR].pwm = startP;
		motor[TIRE_BL].pwm = startP;
		}
		else if(invationA && compA && !invationB && !compB)
		{
		motor[TIRE_FR].dir = FOR;
		motor[TIRE_FL].dir = FOR;
		motor[TIRE_BR].dir = BACK;
		motor[TIRE_BL].dir = BACK;
		
		motor[TIRE_FR].pwm = startP;
		motor[TIRE_FL].pwm = startP;
		motor[TIRE_BR].pwm = startP;
		motor[TIRE_BL].pwm = startP;
		}
		else if(compB && invationB)
		{
		motor[TIRE_FR].dir = FOR;
		motor[TIRE_FL].dir = BACK;
		motor[TIRE_BR].dir = FOR;
		motor[TIRE_BL].dir = BACK;
		
		motor[TIRE_FR].pwm = startP;
		motor[TIRE_FL].pwm = startP;
		motor[TIRE_BR].pwm = startP;
		motor[TIRE_BL].pwm = startP;
		}
		else
		{
		motor[TIRE_FR].dir = FOR;
		motor[TIRE_FL].dir = BACK;
		motor[TIRE_BR].dir = FOR;
		motor[TIRE_BL].dir = BACK;
		
		motor[TIRE_FR].pwm = startP;
		motor[TIRE_FL].pwm = startP;
		motor[TIRE_BR].pwm = startP;
		motor[TIRE_BL].pwm = startP;	
		}
	}
		
	if(!traceon && !yokofla && boxslip)
	 {
	 	if(LimitSw::IsPressed(Lim_R) && LimitSw::IsPressed(Lim_L))
	 	{
	 	motor[TIRE_FR].dir = FOR;
		motor[TIRE_FL].dir = FOR;
		motor[TIRE_BR].dir = BACK;
		motor[TIRE_BL].dir = BACK;
		
		motor[TIRE_FR].pwm = startP;
		motor[TIRE_FL].pwm = startP;
		motor[TIRE_BR].pwm = startP;
		motor[TIRE_BL].pwm = startP;
	 	}
	 	else if(!LimitSw::IsPressed(Lim_R) && !LimitSw::IsPressed(Lim_L))
	 	{
	 	motor[TIRE_FR].dir = BRAKE;
		motor[TIRE_FL].dir = BRAKE;
		motor[TIRE_BR].dir = BRAKE;
		motor[TIRE_BL].dir = BRAKE;
		}
	 }
		/*////
		motor[0].dir = BACK;
		motor[1].dir = BACK;
		motor[2].dir = FOR;
		motor[3].dir = FOR;
		
		motor[0].pwm = startP;
		motor[1].pwm = startP;
		motor[2].pwm = startP;
		motor[3].pwm = startP;
		else if()
		{
		motor[0].dir = BRAKE;
		motor[1].dir = BRAKE;
		motor[2].dir = BRAKE;
		motor[3].dir = BRAKE;
		
		motor[0].pwm = 255;
		motor[1].pwm = 255;
		motor[2].pwm = 255;
		motor[3].pwm = 255;
		}*///////
}
#endif

#if USE_PROCESS_NUM>3
static void Process3()
{
	if(controller->Button.R){
	    motor[Angle_R].dir = FOR;
	    motor[Angle_L].dir = BACK;
	    motor[Angle_R].pwm = 150;
	    motor[Angle_L].pwm = 150;
	}else if(controller->Button.L){
	    motor[Angle_R].dir = BACK;
	    motor[Angle_L].dir = FOR;
	    motor[Angle_R].pwm = 150;
	    motor[Angle_L].pwm = 150;
	}else{
		motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	}
	
	if(LimitSw::IsPressed(Lim_AR) && motor[Angle_R].dir == FOR && motor[Angle_L].dir == BACK){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}else if(LimitSw::IsPressed(Lim_AL) && motor[Angle_R].dir == BACK && motor[Angle_L].dir == FOR){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}
}
#endif

#if USE_PROCESS_NUM>4
static void Process4()
{
	
	if(LimitSw::IsPressed(Lim_AR) && motor[Angle_R].dir == FOR && motor[Angle_L].dir == BACK){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}else if(LimitSw::IsPressed(Lim_AL) && motor[Angle_R].dir == BACK && motor[Angle_L].dir == FOR){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}
	for(int i = 0;i<20;i++){
		float y = 0;
		y = acc[1]*1000;
		float rotateY = (y - 305)/2.21 - 90;
		Angle += rotateY;
	}
	Angle = Angle /20;
	int gyropwmX = gyro.SetPV(Angle,AngletargetX);
	int gyropwmY = gyro.SetPV(Angle,AngletargetY);
	
	if(controller->Button.X){
		Angle_flagX = true;
	}
	if(controller->Button.Y){
		Angle_flagY = true;
	}
	
	if (Angle_flagX){
		motor[Angle_R].dir = SetStatus(gyropwmX);
		motor[Angle_L].dir = SetStatus(-gyropwmX);
		motor[Angle_R].pwm = SetPWM(gyropwmX);
		motor[Angle_L].pwm = SetPWM(gyropwmX);
		if(AngletargetX - 2 < Angle && Angle < AngletargetX + 2){
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
		Angle_flagX = false;
		}
	}
	
	if (Angle_flagY){
		motor[Angle_R].dir = SetStatus(gyropwmY);
		motor[Angle_L].dir = SetStatus(-gyropwmY);
		motor[Angle_R].pwm = SetPWM(gyropwmY);
		motor[Angle_L].pwm = SetPWM(gyropwmY);
		if(AngletargetY - 2 < Angle && Angle < AngletargetY + 2){
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
		Angle_flagY = false;
		}
	}
	/*float y = 0;
    y = acc[1]*1000;
	float rotateY = (y - 305)/2.21 - 90;	
	int gyropwm = gyro.SetPV(rotateY , Angletarget);
	
	if(controller->Button.X){
		Angle_flag = true;
	}
	if (Angle_flag){
		motor[Angle_R].dir = SetStatus(gyropwm);
		motor[Angle_L].dir = SetStatus(-gyropwm);
		motor[Angle_R].pwm = SetPWM(gyropwm);
		motor[Angle_L].pwm = SetPWM(gyropwm);
		if(Angletarget - 2 < rotateY && rotateY < Angletarget + 2){
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
		Angle_flag = false;
		}
	}*/
	else{
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
	}
}
#endif

#if USE_PROCESS_NUM>5
static void Process5()
{
	
}
#endif

#if USE_PROCESS_NUM>6
static void Process6()
{

}
#endif

#if USE_PROCESS_NUM>7
static void Process7()
{
  
}
#endif

#if USE_PROCESS_NUM>8
static void Process8()
{

}
#endif

#if USE_PROCESS_NUM>9
static void Process9()
{

}
#endif
#endif
#pragma endregion PROCESS

static void AllActuatorReset()
{

	#ifdef USE_SOLENOID
	solenoid.all = ALL_SOLENOID_OFF;
	#endif

	#ifdef USE_MOTOR
	for (uint8_t i = 0; i < MOUNTING_MOTOR_NUM; i++)
	{
		motor[i].dir = FREE;
		motor[i].pwm = 0;
	}
	#endif
}

#pragma region USER-DEFINED-FUNCTIONS
void rotconpulex()
   {
   	
   }


void ColorDetection(){
	GATE = 0;
		   
	CK[0] = 0;
	CK[1] = 0;
	CK[2] = 0;
	CK[3] = 0;
        
    RANGE = 1;
        
    GATE = 1;
    wait_ms(intergration);
    GATE = 0;
    wait_us(4);
        
	Color_A[0] = ColorIn(0); //赤
    wait_us(3);
	Color_A[1] = ColorIn(0); //青
    wait_us(3);
    Color_A[2] = ColorIn(0); //緑
        
    Color_B[0] = ColorIn(1);
    wait_us(3);
    Color_B[1] = ColorIn(1);
    wait_us(3);
    Color_B[2] = ColorIn(1);
         
    Color_C[0] = ColorIn(2);
    wait_us(3);
    Color_C[1] = ColorIn(2);
    wait_us(3);
    Color_C[2] = ColorIn(2);
        
    Color_D[0] = ColorIn(3);
    wait_us(3);
    Color_D[1] = ColorIn(3);
    wait_us(3);
    Color_D[2] = ColorIn(3);
}
#pragma endregion