mbed-os
Fork of mbed-os by
targets/TARGET_NXP/TARGET_LPC176X/serial_api.c@1:3deb71413561, 2017-07-20 (annotated)
- Committer:
- xuaner
- Date:
- Thu Jul 20 14:26:57 2017 +0000
- Revision:
- 1:3deb71413561
- Parent:
- 0:f269e3021894
mbed_os
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
elessair | 0:f269e3021894 | 1 | /* mbed Microcontroller Library |
elessair | 0:f269e3021894 | 2 | * Copyright (c) 2006-2013 ARM Limited |
elessair | 0:f269e3021894 | 3 | * |
elessair | 0:f269e3021894 | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
elessair | 0:f269e3021894 | 5 | * you may not use this file except in compliance with the License. |
elessair | 0:f269e3021894 | 6 | * You may obtain a copy of the License at |
elessair | 0:f269e3021894 | 7 | * |
elessair | 0:f269e3021894 | 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
elessair | 0:f269e3021894 | 9 | * |
elessair | 0:f269e3021894 | 10 | * Unless required by applicable law or agreed to in writing, software |
elessair | 0:f269e3021894 | 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
elessair | 0:f269e3021894 | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
elessair | 0:f269e3021894 | 13 | * See the License for the specific language governing permissions and |
elessair | 0:f269e3021894 | 14 | * limitations under the License. |
elessair | 0:f269e3021894 | 15 | */ |
elessair | 0:f269e3021894 | 16 | // math.h required for floating point operations for baud rate calculation |
elessair | 0:f269e3021894 | 17 | #include "mbed_assert.h" |
elessair | 0:f269e3021894 | 18 | #include <math.h> |
elessair | 0:f269e3021894 | 19 | #include <string.h> |
elessair | 0:f269e3021894 | 20 | #include <stdlib.h> |
elessair | 0:f269e3021894 | 21 | |
elessair | 0:f269e3021894 | 22 | #include "serial_api.h" |
elessair | 0:f269e3021894 | 23 | #include "cmsis.h" |
elessair | 0:f269e3021894 | 24 | #include "pinmap.h" |
elessair | 0:f269e3021894 | 25 | #include "gpio_api.h" |
elessair | 0:f269e3021894 | 26 | |
elessair | 0:f269e3021894 | 27 | /****************************************************************************** |
elessair | 0:f269e3021894 | 28 | * INITIALIZATION |
elessair | 0:f269e3021894 | 29 | ******************************************************************************/ |
elessair | 0:f269e3021894 | 30 | #define UART_NUM 4 |
elessair | 0:f269e3021894 | 31 | |
elessair | 0:f269e3021894 | 32 | static const PinMap PinMap_UART_TX[] = { |
elessair | 0:f269e3021894 | 33 | {P0_0, UART_3, 2}, |
elessair | 0:f269e3021894 | 34 | {P0_2, UART_0, 1}, |
elessair | 0:f269e3021894 | 35 | {P0_10, UART_2, 1}, |
elessair | 0:f269e3021894 | 36 | {P0_15, UART_1, 1}, |
elessair | 0:f269e3021894 | 37 | {P0_25, UART_3, 3}, |
elessair | 0:f269e3021894 | 38 | {P2_0 , UART_1, 2}, |
elessair | 0:f269e3021894 | 39 | {P2_8 , UART_2, 2}, |
elessair | 0:f269e3021894 | 40 | {P4_28, UART_3, 3}, |
elessair | 0:f269e3021894 | 41 | {NC , NC , 0} |
elessair | 0:f269e3021894 | 42 | }; |
elessair | 0:f269e3021894 | 43 | |
elessair | 0:f269e3021894 | 44 | static const PinMap PinMap_UART_RX[] = { |
elessair | 0:f269e3021894 | 45 | {P0_1 , UART_3, 2}, |
elessair | 0:f269e3021894 | 46 | {P0_3 , UART_0, 1}, |
elessair | 0:f269e3021894 | 47 | {P0_11, UART_2, 1}, |
elessair | 0:f269e3021894 | 48 | {P0_16, UART_1, 1}, |
elessair | 0:f269e3021894 | 49 | {P0_26, UART_3, 3}, |
elessair | 0:f269e3021894 | 50 | {P2_1 , UART_1, 2}, |
elessair | 0:f269e3021894 | 51 | {P2_9 , UART_2, 2}, |
elessair | 0:f269e3021894 | 52 | {P4_29, UART_3, 3}, |
elessair | 0:f269e3021894 | 53 | {NC , NC , 0} |
elessair | 0:f269e3021894 | 54 | }; |
elessair | 0:f269e3021894 | 55 | |
elessair | 0:f269e3021894 | 56 | static const PinMap PinMap_UART_RTS[] = { |
elessair | 0:f269e3021894 | 57 | {P0_22, UART_1, 1}, |
elessair | 0:f269e3021894 | 58 | {P2_7, UART_1, 2}, |
elessair | 0:f269e3021894 | 59 | {NC, NC, 0} |
elessair | 0:f269e3021894 | 60 | }; |
elessair | 0:f269e3021894 | 61 | |
elessair | 0:f269e3021894 | 62 | static const PinMap PinMap_UART_CTS[] = { |
elessair | 0:f269e3021894 | 63 | {P0_17, UART_1, 1}, |
elessair | 0:f269e3021894 | 64 | {P2_2, UART_1, 2}, |
elessair | 0:f269e3021894 | 65 | {NC, NC, 0} |
elessair | 0:f269e3021894 | 66 | }; |
elessair | 0:f269e3021894 | 67 | |
elessair | 0:f269e3021894 | 68 | #define UART_MCR_RTSEN_MASK (1 << 6) |
elessair | 0:f269e3021894 | 69 | #define UART_MCR_CTSEN_MASK (1 << 7) |
elessair | 0:f269e3021894 | 70 | #define UART_MCR_FLOWCTRL_MASK (UART_MCR_RTSEN_MASK | UART_MCR_CTSEN_MASK) |
elessair | 0:f269e3021894 | 71 | |
elessair | 0:f269e3021894 | 72 | static uart_irq_handler irq_handler; |
elessair | 0:f269e3021894 | 73 | |
elessair | 0:f269e3021894 | 74 | int stdio_uart_inited = 0; |
elessair | 0:f269e3021894 | 75 | serial_t stdio_uart; |
elessair | 0:f269e3021894 | 76 | |
elessair | 0:f269e3021894 | 77 | struct serial_global_data_s { |
elessair | 0:f269e3021894 | 78 | uint32_t serial_irq_id; |
elessair | 0:f269e3021894 | 79 | gpio_t sw_rts, sw_cts; |
elessair | 0:f269e3021894 | 80 | uint8_t count, rx_irq_set_flow, rx_irq_set_api; |
elessair | 0:f269e3021894 | 81 | }; |
elessair | 0:f269e3021894 | 82 | |
elessair | 0:f269e3021894 | 83 | static struct serial_global_data_s uart_data[UART_NUM]; |
elessair | 0:f269e3021894 | 84 | |
elessair | 0:f269e3021894 | 85 | void serial_init(serial_t *obj, PinName tx, PinName rx) { |
elessair | 0:f269e3021894 | 86 | int is_stdio_uart = 0; |
elessair | 0:f269e3021894 | 87 | |
elessair | 0:f269e3021894 | 88 | // determine the UART to use |
elessair | 0:f269e3021894 | 89 | UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); |
elessair | 0:f269e3021894 | 90 | UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); |
elessair | 0:f269e3021894 | 91 | UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); |
elessair | 0:f269e3021894 | 92 | MBED_ASSERT((int)uart != NC); |
elessair | 0:f269e3021894 | 93 | |
elessair | 0:f269e3021894 | 94 | obj->uart = (LPC_UART_TypeDef *)uart; |
elessair | 0:f269e3021894 | 95 | // enable power |
elessair | 0:f269e3021894 | 96 | switch (uart) { |
elessair | 0:f269e3021894 | 97 | case UART_0: LPC_SC->PCONP |= 1 << 3; break; |
elessair | 0:f269e3021894 | 98 | case UART_1: LPC_SC->PCONP |= 1 << 4; break; |
elessair | 0:f269e3021894 | 99 | case UART_2: LPC_SC->PCONP |= 1 << 24; break; |
elessair | 0:f269e3021894 | 100 | case UART_3: LPC_SC->PCONP |= 1 << 25; break; |
elessair | 0:f269e3021894 | 101 | } |
elessair | 0:f269e3021894 | 102 | |
elessair | 0:f269e3021894 | 103 | // enable fifos and default rx trigger level |
elessair | 0:f269e3021894 | 104 | obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled |
elessair | 0:f269e3021894 | 105 | | 0 << 1 // Rx Fifo Reset |
elessair | 0:f269e3021894 | 106 | | 0 << 2 // Tx Fifo Reset |
elessair | 0:f269e3021894 | 107 | | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars |
elessair | 0:f269e3021894 | 108 | |
elessair | 0:f269e3021894 | 109 | // disable irqs |
elessair | 0:f269e3021894 | 110 | obj->uart->IER = 0 << 0 // Rx Data available irq enable |
elessair | 0:f269e3021894 | 111 | | 0 << 1 // Tx Fifo empty irq enable |
elessair | 0:f269e3021894 | 112 | | 0 << 2; // Rx Line Status irq enable |
elessair | 0:f269e3021894 | 113 | |
elessair | 0:f269e3021894 | 114 | // set default baud rate and format |
elessair | 0:f269e3021894 | 115 | serial_baud (obj, 9600); |
elessair | 0:f269e3021894 | 116 | serial_format(obj, 8, ParityNone, 1); |
elessair | 0:f269e3021894 | 117 | |
elessair | 0:f269e3021894 | 118 | // pinout the chosen uart |
elessair | 0:f269e3021894 | 119 | pinmap_pinout(tx, PinMap_UART_TX); |
elessair | 0:f269e3021894 | 120 | pinmap_pinout(rx, PinMap_UART_RX); |
elessair | 0:f269e3021894 | 121 | |
elessair | 0:f269e3021894 | 122 | // set rx/tx pins in PullUp mode |
elessair | 0:f269e3021894 | 123 | if (tx != NC) { |
elessair | 0:f269e3021894 | 124 | pin_mode(tx, PullUp); |
elessair | 0:f269e3021894 | 125 | } |
elessair | 0:f269e3021894 | 126 | if (rx != NC) { |
elessair | 0:f269e3021894 | 127 | pin_mode(rx, PullUp); |
elessair | 0:f269e3021894 | 128 | } |
elessair | 0:f269e3021894 | 129 | |
elessair | 0:f269e3021894 | 130 | switch (uart) { |
elessair | 0:f269e3021894 | 131 | case UART_0: obj->index = 0; break; |
elessair | 0:f269e3021894 | 132 | case UART_1: obj->index = 1; break; |
elessair | 0:f269e3021894 | 133 | case UART_2: obj->index = 2; break; |
elessair | 0:f269e3021894 | 134 | case UART_3: obj->index = 3; break; |
elessair | 0:f269e3021894 | 135 | } |
elessair | 0:f269e3021894 | 136 | uart_data[obj->index].sw_rts.pin = NC; |
elessair | 0:f269e3021894 | 137 | uart_data[obj->index].sw_cts.pin = NC; |
elessair | 0:f269e3021894 | 138 | serial_set_flow_control(obj, FlowControlNone, NC, NC); |
elessair | 0:f269e3021894 | 139 | |
elessair | 0:f269e3021894 | 140 | is_stdio_uart = (uart == STDIO_UART) ? (1) : (0); |
elessair | 0:f269e3021894 | 141 | |
elessair | 0:f269e3021894 | 142 | if (is_stdio_uart) { |
elessair | 0:f269e3021894 | 143 | stdio_uart_inited = 1; |
elessair | 0:f269e3021894 | 144 | memcpy(&stdio_uart, obj, sizeof(serial_t)); |
elessair | 0:f269e3021894 | 145 | } |
elessair | 0:f269e3021894 | 146 | } |
elessair | 0:f269e3021894 | 147 | |
elessair | 0:f269e3021894 | 148 | void serial_free(serial_t *obj) { |
elessair | 0:f269e3021894 | 149 | uart_data[obj->index].serial_irq_id = 0; |
elessair | 0:f269e3021894 | 150 | } |
elessair | 0:f269e3021894 | 151 | |
elessair | 0:f269e3021894 | 152 | // serial_baud |
elessair | 0:f269e3021894 | 153 | // set the baud rate, taking in to account the current SystemFrequency |
elessair | 0:f269e3021894 | 154 | void serial_baud(serial_t *obj, int baudrate) { |
elessair | 0:f269e3021894 | 155 | MBED_ASSERT((int)obj->uart <= UART_3); |
elessair | 0:f269e3021894 | 156 | // The LPC2300 and LPC1700 have a divider and a fractional divider to control the |
elessair | 0:f269e3021894 | 157 | // baud rate. The formula is: |
elessair | 0:f269e3021894 | 158 | // |
elessair | 0:f269e3021894 | 159 | // Baudrate = (1 / PCLK) * 16 * DL * (1 + DivAddVal / MulVal) |
elessair | 0:f269e3021894 | 160 | // where: |
elessair | 0:f269e3021894 | 161 | // 1 < MulVal <= 15 |
elessair | 0:f269e3021894 | 162 | // 0 <= DivAddVal < 14 |
elessair | 0:f269e3021894 | 163 | // DivAddVal < MulVal |
elessair | 0:f269e3021894 | 164 | // |
elessair | 0:f269e3021894 | 165 | // set pclk to /1 |
elessair | 0:f269e3021894 | 166 | switch ((int)obj->uart) { |
elessair | 0:f269e3021894 | 167 | case UART_0: LPC_SC->PCLKSEL0 &= ~(0x3 << 6); LPC_SC->PCLKSEL0 |= (0x1 << 6); break; |
elessair | 0:f269e3021894 | 168 | case UART_1: LPC_SC->PCLKSEL0 &= ~(0x3 << 8); LPC_SC->PCLKSEL0 |= (0x1 << 8); break; |
elessair | 0:f269e3021894 | 169 | case UART_2: LPC_SC->PCLKSEL1 &= ~(0x3 << 16); LPC_SC->PCLKSEL1 |= (0x1 << 16); break; |
elessair | 0:f269e3021894 | 170 | case UART_3: LPC_SC->PCLKSEL1 &= ~(0x3 << 18); LPC_SC->PCLKSEL1 |= (0x1 << 18); break; |
elessair | 0:f269e3021894 | 171 | default: break; |
elessair | 0:f269e3021894 | 172 | } |
elessair | 0:f269e3021894 | 173 | |
elessair | 0:f269e3021894 | 174 | uint32_t PCLK = SystemCoreClock; |
elessair | 0:f269e3021894 | 175 | |
elessair | 0:f269e3021894 | 176 | // First we check to see if the basic divide with no DivAddVal/MulVal |
elessair | 0:f269e3021894 | 177 | // ratio gives us an integer result. If it does, we set DivAddVal = 0, |
elessair | 0:f269e3021894 | 178 | // MulVal = 1. Otherwise, we search the valid ratio value range to find |
elessair | 0:f269e3021894 | 179 | // the closest match. This could be more elegant, using search methods |
elessair | 0:f269e3021894 | 180 | // and/or lookup tables, but the brute force method is not that much |
elessair | 0:f269e3021894 | 181 | // slower, and is more maintainable. |
elessair | 0:f269e3021894 | 182 | uint16_t DL = PCLK / (16 * baudrate); |
elessair | 0:f269e3021894 | 183 | |
elessair | 0:f269e3021894 | 184 | uint8_t DivAddVal = 0; |
elessair | 0:f269e3021894 | 185 | uint8_t MulVal = 1; |
elessair | 0:f269e3021894 | 186 | int hit = 0; |
elessair | 0:f269e3021894 | 187 | uint16_t dlv; |
elessair | 0:f269e3021894 | 188 | uint8_t mv, dav; |
elessair | 0:f269e3021894 | 189 | if ((PCLK % (16 * baudrate)) != 0) { // Checking for zero remainder |
elessair | 0:f269e3021894 | 190 | int err_best = baudrate, b; |
elessair | 0:f269e3021894 | 191 | for (mv = 1; mv < 16 && !hit; mv++) |
elessair | 0:f269e3021894 | 192 | { |
elessair | 0:f269e3021894 | 193 | for (dav = 0; dav < mv; dav++) |
elessair | 0:f269e3021894 | 194 | { |
elessair | 0:f269e3021894 | 195 | // baudrate = PCLK / (16 * dlv * (1 + (DivAdd / Mul)) |
elessair | 0:f269e3021894 | 196 | // solving for dlv, we get dlv = mul * PCLK / (16 * baudrate * (divadd + mul)) |
elessair | 0:f269e3021894 | 197 | // mul has 4 bits, PCLK has 27 so we have 1 bit headroom which can be used for rounding |
elessair | 0:f269e3021894 | 198 | // for many values of mul and PCLK we have 2 or more bits of headroom which can be used to improve precision |
elessair | 0:f269e3021894 | 199 | // note: X / 32 doesn't round correctly. Instead, we use ((X / 16) + 1) / 2 for correct rounding |
elessair | 0:f269e3021894 | 200 | |
elessair | 0:f269e3021894 | 201 | if ((mv * PCLK * 2) & 0x80000000) // 1 bit headroom |
elessair | 0:f269e3021894 | 202 | dlv = ((((2 * mv * PCLK) / (baudrate * (dav + mv))) / 16) + 1) / 2; |
elessair | 0:f269e3021894 | 203 | else // 2 bits headroom, use more precision |
elessair | 0:f269e3021894 | 204 | dlv = ((((4 * mv * PCLK) / (baudrate * (dav + mv))) / 32) + 1) / 2; |
elessair | 0:f269e3021894 | 205 | |
elessair | 0:f269e3021894 | 206 | // datasheet says if DLL==DLM==0, then 1 is used instead since divide by zero is ungood |
elessair | 0:f269e3021894 | 207 | if (dlv == 0) |
elessair | 0:f269e3021894 | 208 | dlv = 1; |
elessair | 0:f269e3021894 | 209 | |
elessair | 0:f269e3021894 | 210 | // datasheet says if dav > 0 then DL must be >= 2 |
elessair | 0:f269e3021894 | 211 | if ((dav > 0) && (dlv < 2)) |
elessair | 0:f269e3021894 | 212 | dlv = 2; |
elessair | 0:f269e3021894 | 213 | |
elessair | 0:f269e3021894 | 214 | // integer rearrangement of the baudrate equation (with rounding) |
elessair | 0:f269e3021894 | 215 | b = ((PCLK * mv / (dlv * (dav + mv) * 8)) + 1) / 2; |
elessair | 0:f269e3021894 | 216 | |
elessair | 0:f269e3021894 | 217 | // check to see how we went |
elessair | 0:f269e3021894 | 218 | b = abs(b - baudrate); |
elessair | 0:f269e3021894 | 219 | if (b < err_best) |
elessair | 0:f269e3021894 | 220 | { |
elessair | 0:f269e3021894 | 221 | err_best = b; |
elessair | 0:f269e3021894 | 222 | |
elessair | 0:f269e3021894 | 223 | DL = dlv; |
elessair | 0:f269e3021894 | 224 | MulVal = mv; |
elessair | 0:f269e3021894 | 225 | DivAddVal = dav; |
elessair | 0:f269e3021894 | 226 | |
elessair | 0:f269e3021894 | 227 | if (b == baudrate) |
elessair | 0:f269e3021894 | 228 | { |
elessair | 0:f269e3021894 | 229 | hit = 1; |
elessair | 0:f269e3021894 | 230 | break; |
elessair | 0:f269e3021894 | 231 | } |
elessair | 0:f269e3021894 | 232 | } |
elessair | 0:f269e3021894 | 233 | } |
elessair | 0:f269e3021894 | 234 | } |
elessair | 0:f269e3021894 | 235 | } |
elessair | 0:f269e3021894 | 236 | |
elessair | 0:f269e3021894 | 237 | // set LCR[DLAB] to enable writing to divider registers |
elessair | 0:f269e3021894 | 238 | obj->uart->LCR |= (1 << 7); |
elessair | 0:f269e3021894 | 239 | |
elessair | 0:f269e3021894 | 240 | // set divider values |
elessair | 0:f269e3021894 | 241 | obj->uart->DLM = (DL >> 8) & 0xFF; |
elessair | 0:f269e3021894 | 242 | obj->uart->DLL = (DL >> 0) & 0xFF; |
elessair | 0:f269e3021894 | 243 | obj->uart->FDR = (uint32_t) DivAddVal << 0 |
elessair | 0:f269e3021894 | 244 | | (uint32_t) MulVal << 4; |
elessair | 0:f269e3021894 | 245 | |
elessair | 0:f269e3021894 | 246 | // clear LCR[DLAB] |
elessair | 0:f269e3021894 | 247 | obj->uart->LCR &= ~(1 << 7); |
elessair | 0:f269e3021894 | 248 | } |
elessair | 0:f269e3021894 | 249 | |
elessair | 0:f269e3021894 | 250 | void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { |
elessair | 0:f269e3021894 | 251 | MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // 0: 1 stop bits, 1: 2 stop bits |
elessair | 0:f269e3021894 | 252 | MBED_ASSERT((data_bits > 4) && (data_bits < 9)); // 0: 5 data bits ... 3: 8 data bits |
elessair | 0:f269e3021894 | 253 | MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) || |
elessair | 0:f269e3021894 | 254 | (parity == ParityForced1) || (parity == ParityForced0)); |
elessair | 0:f269e3021894 | 255 | |
elessair | 0:f269e3021894 | 256 | stop_bits -= 1; |
elessair | 0:f269e3021894 | 257 | data_bits -= 5; |
elessair | 0:f269e3021894 | 258 | |
elessair | 0:f269e3021894 | 259 | int parity_enable, parity_select; |
elessair | 0:f269e3021894 | 260 | switch (parity) { |
elessair | 0:f269e3021894 | 261 | case ParityNone: parity_enable = 0; parity_select = 0; break; |
elessair | 0:f269e3021894 | 262 | case ParityOdd : parity_enable = 1; parity_select = 0; break; |
elessair | 0:f269e3021894 | 263 | case ParityEven: parity_enable = 1; parity_select = 1; break; |
elessair | 0:f269e3021894 | 264 | case ParityForced1: parity_enable = 1; parity_select = 2; break; |
elessair | 0:f269e3021894 | 265 | case ParityForced0: parity_enable = 1; parity_select = 3; break; |
elessair | 0:f269e3021894 | 266 | default: |
elessair | 0:f269e3021894 | 267 | parity_enable = 0, parity_select = 0; |
elessair | 0:f269e3021894 | 268 | break; |
elessair | 0:f269e3021894 | 269 | } |
elessair | 0:f269e3021894 | 270 | |
elessair | 0:f269e3021894 | 271 | obj->uart->LCR = data_bits << 0 |
elessair | 0:f269e3021894 | 272 | | stop_bits << 2 |
elessair | 0:f269e3021894 | 273 | | parity_enable << 3 |
elessair | 0:f269e3021894 | 274 | | parity_select << 4; |
elessair | 0:f269e3021894 | 275 | } |
elessair | 0:f269e3021894 | 276 | |
elessair | 0:f269e3021894 | 277 | /****************************************************************************** |
elessair | 0:f269e3021894 | 278 | * INTERRUPTS HANDLING |
elessair | 0:f269e3021894 | 279 | ******************************************************************************/ |
elessair | 0:f269e3021894 | 280 | static inline void uart_irq(uint32_t iir, uint32_t index, LPC_UART_TypeDef *puart) { |
elessair | 0:f269e3021894 | 281 | // [Chapter 14] LPC17xx UART0/2/3: UARTn Interrupt Handling |
elessair | 0:f269e3021894 | 282 | SerialIrq irq_type; |
elessair | 0:f269e3021894 | 283 | switch (iir) { |
elessair | 0:f269e3021894 | 284 | case 1: irq_type = TxIrq; break; |
elessair | 0:f269e3021894 | 285 | case 2: irq_type = RxIrq; break; |
elessair | 0:f269e3021894 | 286 | default: return; |
elessair | 0:f269e3021894 | 287 | } |
elessair | 0:f269e3021894 | 288 | if ((RxIrq == irq_type) && (NC != uart_data[index].sw_rts.pin)) { |
elessair | 0:f269e3021894 | 289 | gpio_write(&uart_data[index].sw_rts, 1); |
elessair | 0:f269e3021894 | 290 | // Disable interrupt if it wasn't enabled by other part of the application |
elessair | 0:f269e3021894 | 291 | if (!uart_data[index].rx_irq_set_api) |
elessair | 0:f269e3021894 | 292 | puart->IER &= ~(1 << RxIrq); |
elessair | 0:f269e3021894 | 293 | } |
elessair | 0:f269e3021894 | 294 | if (uart_data[index].serial_irq_id != 0) |
elessair | 0:f269e3021894 | 295 | if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api)) |
elessair | 0:f269e3021894 | 296 | irq_handler(uart_data[index].serial_irq_id, irq_type); |
elessair | 0:f269e3021894 | 297 | } |
elessair | 0:f269e3021894 | 298 | |
elessair | 0:f269e3021894 | 299 | void uart0_irq() {uart_irq((LPC_UART0->IIR >> 1) & 0x7, 0, (LPC_UART_TypeDef*)LPC_UART0);} |
elessair | 0:f269e3021894 | 300 | void uart1_irq() {uart_irq((LPC_UART1->IIR >> 1) & 0x7, 1, (LPC_UART_TypeDef*)LPC_UART1);} |
elessair | 0:f269e3021894 | 301 | void uart2_irq() {uart_irq((LPC_UART2->IIR >> 1) & 0x7, 2, (LPC_UART_TypeDef*)LPC_UART2);} |
elessair | 0:f269e3021894 | 302 | void uart3_irq() {uart_irq((LPC_UART3->IIR >> 1) & 0x7, 3, (LPC_UART_TypeDef*)LPC_UART3);} |
elessair | 0:f269e3021894 | 303 | |
elessair | 0:f269e3021894 | 304 | void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { |
elessair | 0:f269e3021894 | 305 | irq_handler = handler; |
elessair | 0:f269e3021894 | 306 | uart_data[obj->index].serial_irq_id = id; |
elessair | 0:f269e3021894 | 307 | } |
elessair | 0:f269e3021894 | 308 | |
elessair | 0:f269e3021894 | 309 | static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) { |
elessair | 0:f269e3021894 | 310 | IRQn_Type irq_n = (IRQn_Type)0; |
elessair | 0:f269e3021894 | 311 | uint32_t vector = 0; |
elessair | 0:f269e3021894 | 312 | switch ((int)obj->uart) { |
elessair | 0:f269e3021894 | 313 | case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break; |
elessair | 0:f269e3021894 | 314 | case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break; |
elessair | 0:f269e3021894 | 315 | case UART_2: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break; |
elessair | 0:f269e3021894 | 316 | case UART_3: irq_n=UART3_IRQn; vector = (uint32_t)&uart3_irq; break; |
elessair | 0:f269e3021894 | 317 | } |
elessair | 0:f269e3021894 | 318 | |
elessair | 0:f269e3021894 | 319 | if (enable) { |
elessair | 0:f269e3021894 | 320 | obj->uart->IER |= 1 << irq; |
elessair | 0:f269e3021894 | 321 | NVIC_SetVector(irq_n, vector); |
elessair | 0:f269e3021894 | 322 | NVIC_EnableIRQ(irq_n); |
elessair | 0:f269e3021894 | 323 | } else if ((TxIrq == irq) || (uart_data[obj->index].rx_irq_set_api + uart_data[obj->index].rx_irq_set_flow == 0)) { // disable |
elessair | 0:f269e3021894 | 324 | int all_disabled = 0; |
elessair | 0:f269e3021894 | 325 | SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); |
elessair | 0:f269e3021894 | 326 | obj->uart->IER &= ~(1 << irq); |
elessair | 0:f269e3021894 | 327 | all_disabled = (obj->uart->IER & (1 << other_irq)) == 0; |
elessair | 0:f269e3021894 | 328 | if (all_disabled) |
elessair | 0:f269e3021894 | 329 | NVIC_DisableIRQ(irq_n); |
elessair | 0:f269e3021894 | 330 | } |
elessair | 0:f269e3021894 | 331 | } |
elessair | 0:f269e3021894 | 332 | |
elessair | 0:f269e3021894 | 333 | void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { |
elessair | 0:f269e3021894 | 334 | if (RxIrq == irq) |
elessair | 0:f269e3021894 | 335 | uart_data[obj->index].rx_irq_set_api = enable; |
elessair | 0:f269e3021894 | 336 | serial_irq_set_internal(obj, irq, enable); |
elessair | 0:f269e3021894 | 337 | } |
elessair | 0:f269e3021894 | 338 | |
elessair | 0:f269e3021894 | 339 | static void serial_flow_irq_set(serial_t *obj, uint32_t enable) { |
elessair | 0:f269e3021894 | 340 | uart_data[obj->index].rx_irq_set_flow = enable; |
elessair | 0:f269e3021894 | 341 | serial_irq_set_internal(obj, RxIrq, enable); |
elessair | 0:f269e3021894 | 342 | } |
elessair | 0:f269e3021894 | 343 | |
elessair | 0:f269e3021894 | 344 | /****************************************************************************** |
elessair | 0:f269e3021894 | 345 | * READ/WRITE |
elessair | 0:f269e3021894 | 346 | ******************************************************************************/ |
elessair | 0:f269e3021894 | 347 | int serial_getc(serial_t *obj) { |
elessair | 0:f269e3021894 | 348 | while (!serial_readable(obj)); |
elessair | 0:f269e3021894 | 349 | int data = obj->uart->RBR; |
elessair | 0:f269e3021894 | 350 | if (NC != uart_data[obj->index].sw_rts.pin) { |
elessair | 0:f269e3021894 | 351 | gpio_write(&uart_data[obj->index].sw_rts, 0); |
elessair | 0:f269e3021894 | 352 | obj->uart->IER |= 1 << RxIrq; |
elessair | 0:f269e3021894 | 353 | } |
elessair | 0:f269e3021894 | 354 | return data; |
elessair | 0:f269e3021894 | 355 | } |
elessair | 0:f269e3021894 | 356 | |
elessair | 0:f269e3021894 | 357 | void serial_putc(serial_t *obj, int c) { |
elessair | 0:f269e3021894 | 358 | while (!serial_writable(obj)); |
elessair | 0:f269e3021894 | 359 | obj->uart->THR = c; |
elessair | 0:f269e3021894 | 360 | uart_data[obj->index].count++; |
elessair | 0:f269e3021894 | 361 | } |
elessair | 0:f269e3021894 | 362 | |
elessair | 0:f269e3021894 | 363 | int serial_readable(serial_t *obj) { |
elessair | 0:f269e3021894 | 364 | return obj->uart->LSR & 0x01; |
elessair | 0:f269e3021894 | 365 | } |
elessair | 0:f269e3021894 | 366 | |
elessair | 0:f269e3021894 | 367 | int serial_writable(serial_t *obj) { |
elessair | 0:f269e3021894 | 368 | int isWritable = 1; |
elessair | 0:f269e3021894 | 369 | if (NC != uart_data[obj->index].sw_cts.pin) |
elessair | 0:f269e3021894 | 370 | isWritable = (gpio_read(&uart_data[obj->index].sw_cts) == 0) && (obj->uart->LSR & 0x40); //If flow control: writable if CTS low + UART done |
elessair | 0:f269e3021894 | 371 | else { |
elessair | 0:f269e3021894 | 372 | if (obj->uart->LSR & 0x20) |
elessair | 0:f269e3021894 | 373 | uart_data[obj->index].count = 0; |
elessair | 0:f269e3021894 | 374 | else if (uart_data[obj->index].count >= 16) |
elessair | 0:f269e3021894 | 375 | isWritable = 0; |
elessair | 0:f269e3021894 | 376 | } |
elessair | 0:f269e3021894 | 377 | return isWritable; |
elessair | 0:f269e3021894 | 378 | } |
elessair | 0:f269e3021894 | 379 | |
elessair | 0:f269e3021894 | 380 | void serial_clear(serial_t *obj) { |
elessair | 0:f269e3021894 | 381 | obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled |
elessair | 0:f269e3021894 | 382 | | 1 << 1 // rx FIFO reset |
elessair | 0:f269e3021894 | 383 | | 1 << 2 // tx FIFO reset |
elessair | 0:f269e3021894 | 384 | | 0 << 6; // interrupt depth |
elessair | 0:f269e3021894 | 385 | } |
elessair | 0:f269e3021894 | 386 | |
elessair | 0:f269e3021894 | 387 | void serial_pinout_tx(PinName tx) { |
elessair | 0:f269e3021894 | 388 | pinmap_pinout(tx, PinMap_UART_TX); |
elessair | 0:f269e3021894 | 389 | } |
elessair | 0:f269e3021894 | 390 | |
elessair | 0:f269e3021894 | 391 | void serial_break_set(serial_t *obj) { |
elessair | 0:f269e3021894 | 392 | obj->uart->LCR |= (1 << 6); |
elessair | 0:f269e3021894 | 393 | } |
elessair | 0:f269e3021894 | 394 | |
elessair | 0:f269e3021894 | 395 | void serial_break_clear(serial_t *obj) { |
elessair | 0:f269e3021894 | 396 | obj->uart->LCR &= ~(1 << 6); |
elessair | 0:f269e3021894 | 397 | } |
elessair | 0:f269e3021894 | 398 | |
elessair | 0:f269e3021894 | 399 | void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { |
elessair | 0:f269e3021894 | 400 | // Only UART1 has hardware flow control on LPC176x |
elessair | 0:f269e3021894 | 401 | LPC_UART1_TypeDef *uart1 = (uint32_t)obj->uart == (uint32_t)LPC_UART1 ? LPC_UART1 : NULL; |
elessair | 0:f269e3021894 | 402 | int index = obj->index; |
elessair | 0:f269e3021894 | 403 | |
elessair | 0:f269e3021894 | 404 | // First, disable flow control completely |
elessair | 0:f269e3021894 | 405 | if (uart1) |
elessair | 0:f269e3021894 | 406 | uart1->MCR = uart1->MCR & ~UART_MCR_FLOWCTRL_MASK; |
elessair | 0:f269e3021894 | 407 | uart_data[index].sw_rts.pin = uart_data[index].sw_cts.pin = NC; |
elessair | 0:f269e3021894 | 408 | serial_flow_irq_set(obj, 0); |
elessair | 0:f269e3021894 | 409 | if (FlowControlNone == type) |
elessair | 0:f269e3021894 | 410 | return; |
elessair | 0:f269e3021894 | 411 | // Check type(s) of flow control to use |
elessair | 0:f269e3021894 | 412 | UARTName uart_rts = (UARTName)pinmap_find_peripheral(rxflow, PinMap_UART_RTS); |
elessair | 0:f269e3021894 | 413 | UARTName uart_cts = (UARTName)pinmap_find_peripheral(txflow, PinMap_UART_CTS); |
elessair | 0:f269e3021894 | 414 | if (((FlowControlCTS == type) || (FlowControlRTSCTS == type)) && (NC != txflow)) { |
elessair | 0:f269e3021894 | 415 | // Can this be enabled in hardware? |
elessair | 0:f269e3021894 | 416 | if ((UART_1 == uart_cts) && (NULL != uart1)) { |
elessair | 0:f269e3021894 | 417 | // Enable auto-CTS mode |
elessair | 0:f269e3021894 | 418 | uart1->MCR |= UART_MCR_CTSEN_MASK; |
elessair | 0:f269e3021894 | 419 | pinmap_pinout(txflow, PinMap_UART_CTS); |
elessair | 0:f269e3021894 | 420 | } else { |
elessair | 0:f269e3021894 | 421 | // Can't enable in hardware, use software emulation |
elessair | 0:f269e3021894 | 422 | gpio_init_in(&uart_data[index].sw_cts, txflow); |
elessair | 0:f269e3021894 | 423 | } |
elessair | 0:f269e3021894 | 424 | } |
elessair | 0:f269e3021894 | 425 | if (((FlowControlRTS == type) || (FlowControlRTSCTS == type)) && (NC != rxflow)) { |
elessair | 0:f269e3021894 | 426 | // Enable FIFOs, trigger level of 1 char on RX FIFO |
elessair | 0:f269e3021894 | 427 | obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled |
elessair | 0:f269e3021894 | 428 | | 1 << 1 // Rx Fifo Reset |
elessair | 0:f269e3021894 | 429 | | 1 << 2 // Tx Fifo Reset |
elessair | 0:f269e3021894 | 430 | | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars |
elessair | 0:f269e3021894 | 431 | // Can this be enabled in hardware? |
elessair | 0:f269e3021894 | 432 | if ((UART_1 == uart_rts) && (NULL != uart1)) { |
elessair | 0:f269e3021894 | 433 | // Enable auto-RTS mode |
elessair | 0:f269e3021894 | 434 | uart1->MCR |= UART_MCR_RTSEN_MASK; |
elessair | 0:f269e3021894 | 435 | pinmap_pinout(rxflow, PinMap_UART_RTS); |
elessair | 0:f269e3021894 | 436 | } else { // can't enable in hardware, use software emulation |
elessair | 0:f269e3021894 | 437 | gpio_init_out_ex(&uart_data[index].sw_rts, rxflow, 0); |
elessair | 0:f269e3021894 | 438 | // Enable RX interrupt |
elessair | 0:f269e3021894 | 439 | serial_flow_irq_set(obj, 1); |
elessair | 0:f269e3021894 | 440 | } |
elessair | 0:f269e3021894 | 441 | } |
elessair | 0:f269e3021894 | 442 | } |
elessair | 0:f269e3021894 | 443 |