mbed-os
Fork of mbed-os by
targets/TARGET_NUVOTON/TARGET_NUC472/spi_api.c@1:3deb71413561, 2017-07-20 (annotated)
- Committer:
- xuaner
- Date:
- Thu Jul 20 14:26:57 2017 +0000
- Revision:
- 1:3deb71413561
- Parent:
- 0:f269e3021894
mbed_os
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
elessair | 0:f269e3021894 | 1 | /* mbed Microcontroller Library |
elessair | 0:f269e3021894 | 2 | * Copyright (c) 2015-2016 Nuvoton |
elessair | 0:f269e3021894 | 3 | * |
elessair | 0:f269e3021894 | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
elessair | 0:f269e3021894 | 5 | * you may not use this file except in compliance with the License. |
elessair | 0:f269e3021894 | 6 | * You may obtain a copy of the License at |
elessair | 0:f269e3021894 | 7 | * |
elessair | 0:f269e3021894 | 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
elessair | 0:f269e3021894 | 9 | * |
elessair | 0:f269e3021894 | 10 | * Unless required by applicable law or agreed to in writing, software |
elessair | 0:f269e3021894 | 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
elessair | 0:f269e3021894 | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
elessair | 0:f269e3021894 | 13 | * See the License for the specific language governing permissions and |
elessair | 0:f269e3021894 | 14 | * limitations under the License. |
elessair | 0:f269e3021894 | 15 | */ |
elessair | 0:f269e3021894 | 16 | |
elessair | 0:f269e3021894 | 17 | #include "spi_api.h" |
elessair | 0:f269e3021894 | 18 | |
elessair | 0:f269e3021894 | 19 | #if DEVICE_SPI |
elessair | 0:f269e3021894 | 20 | |
elessair | 0:f269e3021894 | 21 | #include "cmsis.h" |
elessair | 0:f269e3021894 | 22 | #include "pinmap.h" |
elessair | 0:f269e3021894 | 23 | #include "PeripheralPins.h" |
elessair | 0:f269e3021894 | 24 | #include "nu_modutil.h" |
elessair | 0:f269e3021894 | 25 | #include "nu_miscutil.h" |
elessair | 0:f269e3021894 | 26 | #include "nu_bitutil.h" |
elessair | 0:f269e3021894 | 27 | |
elessair | 0:f269e3021894 | 28 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 29 | #include "dma_api.h" |
elessair | 0:f269e3021894 | 30 | #include "dma.h" |
elessair | 0:f269e3021894 | 31 | #endif |
elessair | 0:f269e3021894 | 32 | |
elessair | 0:f269e3021894 | 33 | #define NU_SPI_FRAME_MIN 8 |
elessair | 0:f269e3021894 | 34 | #define NU_SPI_FRAME_MAX 32 |
elessair | 0:f269e3021894 | 35 | #define NU_SPI_FIFO_DEPTH 8 |
elessair | 0:f269e3021894 | 36 | |
elessair | 0:f269e3021894 | 37 | struct nu_spi_var { |
elessair | 0:f269e3021894 | 38 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 39 | uint8_t pdma_perp_tx; |
elessair | 0:f269e3021894 | 40 | uint8_t pdma_perp_rx; |
elessair | 0:f269e3021894 | 41 | #endif |
elessair | 0:f269e3021894 | 42 | }; |
elessair | 0:f269e3021894 | 43 | |
elessair | 0:f269e3021894 | 44 | static struct nu_spi_var spi0_var = { |
elessair | 0:f269e3021894 | 45 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 46 | .pdma_perp_tx = PDMA_SPI0_TX, |
elessair | 0:f269e3021894 | 47 | .pdma_perp_rx = PDMA_SPI0_RX |
elessair | 0:f269e3021894 | 48 | #endif |
elessair | 0:f269e3021894 | 49 | }; |
elessair | 0:f269e3021894 | 50 | static struct nu_spi_var spi1_var = { |
elessair | 0:f269e3021894 | 51 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 52 | .pdma_perp_tx = PDMA_SPI1_TX, |
elessair | 0:f269e3021894 | 53 | .pdma_perp_rx = PDMA_SPI1_RX |
elessair | 0:f269e3021894 | 54 | #endif |
elessair | 0:f269e3021894 | 55 | }; |
elessair | 0:f269e3021894 | 56 | static struct nu_spi_var spi2_var = { |
elessair | 0:f269e3021894 | 57 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 58 | .pdma_perp_tx = PDMA_SPI2_TX, |
elessair | 0:f269e3021894 | 59 | .pdma_perp_rx = PDMA_SPI2_RX |
elessair | 0:f269e3021894 | 60 | #endif |
elessair | 0:f269e3021894 | 61 | }; |
elessair | 0:f269e3021894 | 62 | static struct nu_spi_var spi3_var = { |
elessair | 0:f269e3021894 | 63 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 64 | .pdma_perp_tx = PDMA_SPI3_TX, |
elessair | 0:f269e3021894 | 65 | .pdma_perp_rx = PDMA_SPI3_RX |
elessair | 0:f269e3021894 | 66 | #endif |
elessair | 0:f269e3021894 | 67 | }; |
elessair | 0:f269e3021894 | 68 | |
elessair | 0:f269e3021894 | 69 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 70 | static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable); |
elessair | 0:f269e3021894 | 71 | static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable); |
elessair | 0:f269e3021894 | 72 | static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit); |
elessair | 0:f269e3021894 | 73 | static uint32_t spi_master_read_asynch(spi_t *obj); |
elessair | 0:f269e3021894 | 74 | static uint32_t spi_event_check(spi_t *obj); |
elessair | 0:f269e3021894 | 75 | static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable); |
elessair | 0:f269e3021894 | 76 | static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length); |
elessair | 0:f269e3021894 | 77 | static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx); |
elessair | 0:f269e3021894 | 78 | static uint8_t spi_get_data_width(spi_t *obj); |
elessair | 0:f269e3021894 | 79 | static int spi_is_tx_complete(spi_t *obj); |
elessair | 0:f269e3021894 | 80 | static int spi_is_rx_complete(spi_t *obj); |
elessair | 0:f269e3021894 | 81 | static int spi_writeable(spi_t * obj); |
elessair | 0:f269e3021894 | 82 | static int spi_readable(spi_t * obj); |
elessair | 0:f269e3021894 | 83 | static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma); |
elessair | 0:f269e3021894 | 84 | static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma); |
elessair | 0:f269e3021894 | 85 | #endif |
elessair | 0:f269e3021894 | 86 | |
elessair | 0:f269e3021894 | 87 | static uint32_t spi_modinit_mask = 0; |
elessair | 0:f269e3021894 | 88 | |
elessair | 0:f269e3021894 | 89 | static const struct nu_modinit_s spi_modinit_tab[] = { |
elessair | 0:f269e3021894 | 90 | {SPI_0, SPI0_MODULE, 0, 0, SPI0_RST, SPI0_IRQn, &spi0_var}, |
elessair | 0:f269e3021894 | 91 | {SPI_1, SPI1_MODULE, 0, 0, SPI1_RST, SPI1_IRQn, &spi1_var}, |
elessair | 0:f269e3021894 | 92 | {SPI_2, SPI2_MODULE, 0, 0, SPI2_RST, SPI2_IRQn, &spi2_var}, |
elessair | 0:f269e3021894 | 93 | {SPI_3, SPI3_MODULE, 0, 0, SPI3_RST, SPI3_IRQn, &spi3_var}, |
elessair | 0:f269e3021894 | 94 | |
elessair | 0:f269e3021894 | 95 | {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL} |
elessair | 0:f269e3021894 | 96 | }; |
elessair | 0:f269e3021894 | 97 | |
elessair | 0:f269e3021894 | 98 | void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { |
elessair | 0:f269e3021894 | 99 | // Determine which SPI_x the pins are used for |
elessair | 0:f269e3021894 | 100 | uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI); |
elessair | 0:f269e3021894 | 101 | uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO); |
elessair | 0:f269e3021894 | 102 | uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK); |
elessair | 0:f269e3021894 | 103 | uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL); |
elessair | 0:f269e3021894 | 104 | uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso); |
elessair | 0:f269e3021894 | 105 | uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel); |
elessair | 0:f269e3021894 | 106 | obj->spi.spi = (SPIName) pinmap_merge(spi_data, spi_cntl); |
elessair | 0:f269e3021894 | 107 | MBED_ASSERT((int)obj->spi.spi != NC); |
elessair | 0:f269e3021894 | 108 | |
elessair | 0:f269e3021894 | 109 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
elessair | 0:f269e3021894 | 110 | MBED_ASSERT(modinit != NULL); |
elessair | 0:f269e3021894 | 111 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
elessair | 0:f269e3021894 | 112 | |
elessair | 0:f269e3021894 | 113 | // Reset this module |
elessair | 0:f269e3021894 | 114 | SYS_ResetModule(modinit->rsetidx); |
elessair | 0:f269e3021894 | 115 | |
elessair | 0:f269e3021894 | 116 | // Enable IP clock |
elessair | 0:f269e3021894 | 117 | CLK_EnableModuleClock(modinit->clkidx); |
elessair | 0:f269e3021894 | 118 | |
elessair | 0:f269e3021894 | 119 | //SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 120 | |
elessair | 0:f269e3021894 | 121 | pinmap_pinout(mosi, PinMap_SPI_MOSI); |
elessair | 0:f269e3021894 | 122 | pinmap_pinout(miso, PinMap_SPI_MISO); |
elessair | 0:f269e3021894 | 123 | pinmap_pinout(sclk, PinMap_SPI_SCLK); |
elessair | 0:f269e3021894 | 124 | pinmap_pinout(ssel, PinMap_SPI_SSEL); |
elessair | 0:f269e3021894 | 125 | |
elessair | 0:f269e3021894 | 126 | obj->spi.pin_mosi = mosi; |
elessair | 0:f269e3021894 | 127 | obj->spi.pin_miso = miso; |
elessair | 0:f269e3021894 | 128 | obj->spi.pin_sclk = sclk; |
elessair | 0:f269e3021894 | 129 | obj->spi.pin_ssel = ssel; |
elessair | 0:f269e3021894 | 130 | |
elessair | 0:f269e3021894 | 131 | // Configure the SPI data format and frequency |
elessair | 0:f269e3021894 | 132 | //spi_format(obj, 8, 0, SPI_MSB); // 8 bits, mode 0 |
elessair | 0:f269e3021894 | 133 | //spi_frequency(obj, 1000000); |
elessair | 0:f269e3021894 | 134 | |
elessair | 0:f269e3021894 | 135 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 136 | obj->spi.dma_usage = DMA_USAGE_NEVER; |
elessair | 0:f269e3021894 | 137 | obj->spi.event = 0; |
elessair | 0:f269e3021894 | 138 | obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; |
elessair | 0:f269e3021894 | 139 | obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; |
elessair | 0:f269e3021894 | 140 | #endif |
elessair | 0:f269e3021894 | 141 | |
elessair | 0:f269e3021894 | 142 | // Mark this module to be inited. |
elessair | 0:f269e3021894 | 143 | int i = modinit - spi_modinit_tab; |
elessair | 0:f269e3021894 | 144 | spi_modinit_mask |= 1 << i; |
elessair | 0:f269e3021894 | 145 | } |
elessair | 0:f269e3021894 | 146 | |
elessair | 0:f269e3021894 | 147 | void spi_free(spi_t *obj) |
elessair | 0:f269e3021894 | 148 | { |
elessair | 0:f269e3021894 | 149 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 150 | if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { |
elessair | 0:f269e3021894 | 151 | dma_channel_free(obj->spi.dma_chn_id_tx); |
elessair | 0:f269e3021894 | 152 | obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; |
elessair | 0:f269e3021894 | 153 | } |
elessair | 0:f269e3021894 | 154 | if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { |
elessair | 0:f269e3021894 | 155 | dma_channel_free(obj->spi.dma_chn_id_rx); |
elessair | 0:f269e3021894 | 156 | obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; |
elessair | 0:f269e3021894 | 157 | } |
elessair | 0:f269e3021894 | 158 | #endif |
elessair | 0:f269e3021894 | 159 | |
elessair | 0:f269e3021894 | 160 | SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi)); |
elessair | 0:f269e3021894 | 161 | |
elessair | 0:f269e3021894 | 162 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
elessair | 0:f269e3021894 | 163 | MBED_ASSERT(modinit != NULL); |
elessair | 0:f269e3021894 | 164 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
elessair | 0:f269e3021894 | 165 | |
elessair | 0:f269e3021894 | 166 | SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOVIEN_MASK | SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK)); |
elessair | 0:f269e3021894 | 167 | NVIC_DisableIRQ(modinit->irq_n); |
elessair | 0:f269e3021894 | 168 | |
elessair | 0:f269e3021894 | 169 | // Disable IP clock |
elessair | 0:f269e3021894 | 170 | CLK_DisableModuleClock(modinit->clkidx); |
elessair | 0:f269e3021894 | 171 | |
elessair | 0:f269e3021894 | 172 | //((struct nu_spi_var *) modinit->var)->obj = NULL; |
elessair | 0:f269e3021894 | 173 | |
elessair | 0:f269e3021894 | 174 | // Mark this module to be deinited. |
elessair | 0:f269e3021894 | 175 | int i = modinit - spi_modinit_tab; |
elessair | 0:f269e3021894 | 176 | spi_modinit_mask &= ~(1 << i); |
elessair | 0:f269e3021894 | 177 | } |
elessair | 0:f269e3021894 | 178 | void spi_format(spi_t *obj, int bits, int mode, int slave) |
elessair | 0:f269e3021894 | 179 | { |
elessair | 0:f269e3021894 | 180 | MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX); |
elessair | 0:f269e3021894 | 181 | |
elessair | 0:f269e3021894 | 182 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 183 | |
elessair | 0:f269e3021894 | 184 | // NOTE 1: All configurations should be ready before enabling SPI peripheral. |
elessair | 0:f269e3021894 | 185 | // NOTE 2: Re-configuration is allowed only as SPI peripheral is idle. |
elessair | 0:f269e3021894 | 186 | while (SPI_IS_BUSY(spi_base)); |
elessair | 0:f269e3021894 | 187 | SPI_DISABLE(spi_base); |
elessair | 0:f269e3021894 | 188 | |
elessair | 0:f269e3021894 | 189 | SPI_Open(spi_base, |
elessair | 0:f269e3021894 | 190 | slave ? SPI_SLAVE : SPI_MASTER, |
elessair | 0:f269e3021894 | 191 | (mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3, |
elessair | 0:f269e3021894 | 192 | bits, |
elessair | 0:f269e3021894 | 193 | SPI_GetBusClock(spi_base)); |
elessair | 0:f269e3021894 | 194 | // NOTE: Hardcode to be MSB first. |
elessair | 0:f269e3021894 | 195 | SPI_SET_MSB_FIRST(spi_base); |
elessair | 0:f269e3021894 | 196 | |
elessair | 0:f269e3021894 | 197 | if (! slave) { |
elessair | 0:f269e3021894 | 198 | // Master |
elessair | 0:f269e3021894 | 199 | if (obj->spi.pin_ssel != NC) { |
elessair | 0:f269e3021894 | 200 | // Configure SS as low active. |
elessair | 0:f269e3021894 | 201 | SPI_EnableAutoSS(spi_base, SPI_SS0, SPI_SS_ACTIVE_LOW); |
elessair | 0:f269e3021894 | 202 | // NOTE: In NUC472 series, all SPI SS pins are SS0, so we can hardcode SS0 here. |
elessair | 0:f269e3021894 | 203 | } |
elessair | 0:f269e3021894 | 204 | else { |
elessair | 0:f269e3021894 | 205 | SPI_DisableAutoSS(spi_base); |
elessair | 0:f269e3021894 | 206 | } |
elessair | 0:f269e3021894 | 207 | } |
elessair | 0:f269e3021894 | 208 | else { |
elessair | 0:f269e3021894 | 209 | // Slave |
elessair | 0:f269e3021894 | 210 | // Configure SS as low active. |
elessair | 0:f269e3021894 | 211 | spi_base->SSCTL &= ~SPI_SSCTL_SSACTPOL_Msk; |
elessair | 0:f269e3021894 | 212 | // NOTE: SPI_SS0 is defined as the slave select input in Slave mode. |
elessair | 0:f269e3021894 | 213 | } |
elessair | 0:f269e3021894 | 214 | } |
elessair | 0:f269e3021894 | 215 | |
elessair | 0:f269e3021894 | 216 | void spi_frequency(spi_t *obj, int hz) |
elessair | 0:f269e3021894 | 217 | { |
elessair | 0:f269e3021894 | 218 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 219 | |
elessair | 0:f269e3021894 | 220 | while (SPI_IS_BUSY(spi_base)); |
elessair | 0:f269e3021894 | 221 | SPI_DISABLE(spi_base); |
elessair | 0:f269e3021894 | 222 | |
elessair | 0:f269e3021894 | 223 | SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz); |
elessair | 0:f269e3021894 | 224 | } |
elessair | 0:f269e3021894 | 225 | |
elessair | 0:f269e3021894 | 226 | |
elessair | 0:f269e3021894 | 227 | int spi_master_write(spi_t *obj, int value) |
elessair | 0:f269e3021894 | 228 | { |
elessair | 0:f269e3021894 | 229 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 230 | |
elessair | 0:f269e3021894 | 231 | // NOTE: Data in receive FIFO can be read out via ICE. |
elessair | 0:f269e3021894 | 232 | SPI_ENABLE(spi_base); |
elessair | 0:f269e3021894 | 233 | |
elessair | 0:f269e3021894 | 234 | // Wait for tx buffer empty |
elessair | 0:f269e3021894 | 235 | while(! spi_writeable(obj)); |
elessair | 0:f269e3021894 | 236 | SPI_WRITE_TX(spi_base, value); |
elessair | 0:f269e3021894 | 237 | |
elessair | 0:f269e3021894 | 238 | // Wait for rx buffer full |
elessair | 0:f269e3021894 | 239 | while (! spi_readable(obj)); |
elessair | 0:f269e3021894 | 240 | int value2 = SPI_READ_RX(spi_base); |
elessair | 0:f269e3021894 | 241 | |
elessair | 0:f269e3021894 | 242 | SPI_DISABLE(spi_base); |
elessair | 0:f269e3021894 | 243 | |
elessair | 0:f269e3021894 | 244 | return value2; |
elessair | 0:f269e3021894 | 245 | } |
elessair | 0:f269e3021894 | 246 | |
elessair | 0:f269e3021894 | 247 | #if DEVICE_SPISLAVE |
elessair | 0:f269e3021894 | 248 | int spi_slave_receive(spi_t *obj) |
elessair | 0:f269e3021894 | 249 | { |
elessair | 0:f269e3021894 | 250 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 251 | |
elessair | 0:f269e3021894 | 252 | SPI_ENABLE(spi_base); |
elessair | 0:f269e3021894 | 253 | |
elessair | 0:f269e3021894 | 254 | return spi_readable(obj); |
elessair | 0:f269e3021894 | 255 | }; |
elessair | 0:f269e3021894 | 256 | |
elessair | 0:f269e3021894 | 257 | int spi_slave_read(spi_t *obj) |
elessair | 0:f269e3021894 | 258 | { |
elessair | 0:f269e3021894 | 259 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 260 | |
elessair | 0:f269e3021894 | 261 | SPI_ENABLE(spi_base); |
elessair | 0:f269e3021894 | 262 | |
elessair | 0:f269e3021894 | 263 | // Wait for rx buffer full |
elessair | 0:f269e3021894 | 264 | while (! spi_readable(obj)); |
elessair | 0:f269e3021894 | 265 | int value = SPI_READ_RX(spi_base); |
elessair | 0:f269e3021894 | 266 | return value; |
elessair | 0:f269e3021894 | 267 | } |
elessair | 0:f269e3021894 | 268 | |
elessair | 0:f269e3021894 | 269 | void spi_slave_write(spi_t *obj, int value) |
elessair | 0:f269e3021894 | 270 | { |
elessair | 0:f269e3021894 | 271 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 272 | |
elessair | 0:f269e3021894 | 273 | SPI_ENABLE(spi_base); |
elessair | 0:f269e3021894 | 274 | |
elessair | 0:f269e3021894 | 275 | // Wait for tx buffer empty |
elessair | 0:f269e3021894 | 276 | while(! spi_writeable(obj)); |
elessair | 0:f269e3021894 | 277 | SPI_WRITE_TX(spi_base, value); |
elessair | 0:f269e3021894 | 278 | } |
elessair | 0:f269e3021894 | 279 | #endif |
elessair | 0:f269e3021894 | 280 | |
elessair | 0:f269e3021894 | 281 | #if DEVICE_SPI_ASYNCH |
elessair | 0:f269e3021894 | 282 | void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) |
elessair | 0:f269e3021894 | 283 | { |
elessair | 0:f269e3021894 | 284 | //MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX); |
elessair | 0:f269e3021894 | 285 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 286 | SPI_SET_DATA_WIDTH(spi_base, bit_width); |
elessair | 0:f269e3021894 | 287 | |
elessair | 0:f269e3021894 | 288 | obj->spi.dma_usage = hint; |
elessair | 0:f269e3021894 | 289 | spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx); |
elessair | 0:f269e3021894 | 290 | uint32_t data_width = spi_get_data_width(obj); |
elessair | 0:f269e3021894 | 291 | // Conditions to go DMA way: |
elessair | 0:f269e3021894 | 292 | // (1) No DMA support for non-8 multiple data width. |
elessair | 0:f269e3021894 | 293 | // (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx. |
elessair | 0:f269e3021894 | 294 | if ((data_width % 8) || |
elessair | 0:f269e3021894 | 295 | (tx_length < rx_length)) { |
elessair | 0:f269e3021894 | 296 | obj->spi.dma_usage = DMA_USAGE_NEVER; |
elessair | 0:f269e3021894 | 297 | dma_channel_free(obj->spi.dma_chn_id_tx); |
elessair | 0:f269e3021894 | 298 | obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; |
elessair | 0:f269e3021894 | 299 | dma_channel_free(obj->spi.dma_chn_id_rx); |
elessair | 0:f269e3021894 | 300 | obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; |
elessair | 0:f269e3021894 | 301 | } |
elessair | 0:f269e3021894 | 302 | |
elessair | 0:f269e3021894 | 303 | // SPI IRQ is necessary for both interrupt way and DMA way |
elessair | 0:f269e3021894 | 304 | spi_enable_event(obj, event, 1); |
elessair | 0:f269e3021894 | 305 | spi_buffer_set(obj, tx, tx_length, rx, rx_length); |
elessair | 0:f269e3021894 | 306 | |
elessair | 0:f269e3021894 | 307 | SPI_ENABLE(spi_base); |
elessair | 0:f269e3021894 | 308 | |
elessair | 0:f269e3021894 | 309 | if (obj->spi.dma_usage == DMA_USAGE_NEVER) { |
elessair | 0:f269e3021894 | 310 | // Interrupt way |
elessair | 0:f269e3021894 | 311 | spi_master_write_asynch(obj, NU_SPI_FIFO_DEPTH / 2); |
elessair | 0:f269e3021894 | 312 | spi_enable_vector_interrupt(obj, handler, 1); |
elessair | 0:f269e3021894 | 313 | spi_master_enable_interrupt(obj, 1); |
elessair | 0:f269e3021894 | 314 | } else { |
elessair | 0:f269e3021894 | 315 | // DMA way |
elessair | 0:f269e3021894 | 316 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
elessair | 0:f269e3021894 | 317 | MBED_ASSERT(modinit != NULL); |
elessair | 0:f269e3021894 | 318 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
elessair | 0:f269e3021894 | 319 | |
elessair | 0:f269e3021894 | 320 | // Configure tx DMA |
elessair | 0:f269e3021894 | 321 | PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel |
elessair | 0:f269e3021894 | 322 | PDMA_SetTransferMode(obj->spi.dma_chn_id_tx, |
elessair | 0:f269e3021894 | 323 | ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA |
elessair | 0:f269e3021894 | 324 | 0, // Scatter-gather disabled |
elessair | 0:f269e3021894 | 325 | 0); // Scatter-gather descriptor address |
elessair | 0:f269e3021894 | 326 | PDMA_SetTransferCnt(obj->spi.dma_chn_id_tx, |
elessair | 0:f269e3021894 | 327 | (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, |
elessair | 0:f269e3021894 | 328 | tx_length); |
elessair | 0:f269e3021894 | 329 | PDMA_SetTransferAddr(obj->spi.dma_chn_id_tx, |
elessair | 0:f269e3021894 | 330 | ((uint32_t) tx) + (data_width / 8) * tx_length, // NOTE: End of source address |
elessair | 0:f269e3021894 | 331 | PDMA_SAR_INC, // Source address incremental |
elessair | 0:f269e3021894 | 332 | (uint32_t) &spi_base->TX, // Destination address |
elessair | 0:f269e3021894 | 333 | PDMA_DAR_FIX); // Destination address fixed |
elessair | 0:f269e3021894 | 334 | PDMA_SetBurstType(obj->spi.dma_chn_id_tx, |
elessair | 0:f269e3021894 | 335 | PDMA_REQ_SINGLE, // Single mode |
elessair | 0:f269e3021894 | 336 | 0); // Burst size |
elessair | 0:f269e3021894 | 337 | PDMA_EnableInt(obj->spi.dma_chn_id_tx, |
elessair | 0:f269e3021894 | 338 | 0); // Interrupt type. No use here |
elessair | 0:f269e3021894 | 339 | // Register DMA event handler |
elessair | 0:f269e3021894 | 340 | dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL); |
elessair | 0:f269e3021894 | 341 | |
elessair | 0:f269e3021894 | 342 | // Configure rx DMA |
elessair | 0:f269e3021894 | 343 | PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel |
elessair | 0:f269e3021894 | 344 | PDMA_SetTransferMode(obj->spi.dma_chn_id_rx, |
elessair | 0:f269e3021894 | 345 | ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA |
elessair | 0:f269e3021894 | 346 | 0, // Scatter-gather disabled |
elessair | 0:f269e3021894 | 347 | 0); // Scatter-gather descriptor address |
elessair | 0:f269e3021894 | 348 | PDMA_SetTransferCnt(obj->spi.dma_chn_id_rx, |
elessair | 0:f269e3021894 | 349 | (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, |
elessair | 0:f269e3021894 | 350 | rx_length); |
elessair | 0:f269e3021894 | 351 | PDMA_SetTransferAddr(obj->spi.dma_chn_id_rx, |
elessair | 0:f269e3021894 | 352 | (uint32_t) &spi_base->RX, // Source address |
elessair | 0:f269e3021894 | 353 | PDMA_SAR_FIX, // Source address fixed |
elessair | 0:f269e3021894 | 354 | ((uint32_t) rx) + (data_width / 8) * rx_length, // NOTE: End of destination address |
elessair | 0:f269e3021894 | 355 | PDMA_DAR_INC); // Destination address incremental |
elessair | 0:f269e3021894 | 356 | PDMA_SetBurstType(obj->spi.dma_chn_id_rx, |
elessair | 0:f269e3021894 | 357 | PDMA_REQ_SINGLE, // Single mode |
elessair | 0:f269e3021894 | 358 | 0); // Burst size |
elessair | 0:f269e3021894 | 359 | PDMA_EnableInt(obj->spi.dma_chn_id_rx, |
elessair | 0:f269e3021894 | 360 | 0); // Interrupt type. No use here |
elessair | 0:f269e3021894 | 361 | // Register DMA event handler |
elessair | 0:f269e3021894 | 362 | dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL); |
elessair | 0:f269e3021894 | 363 | |
elessair | 0:f269e3021894 | 364 | // Start tx/rx DMA transfer |
elessair | 0:f269e3021894 | 365 | spi_enable_vector_interrupt(obj, handler, 1); |
elessair | 0:f269e3021894 | 366 | // NOTE: It is safer to start rx DMA first and then tx DMA. Otherwise, receive FIFO is subject to overflow by tx DMA. |
elessair | 0:f269e3021894 | 367 | SPI_TRIGGER_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
elessair | 0:f269e3021894 | 368 | SPI_TRIGGER_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
elessair | 0:f269e3021894 | 369 | spi_master_enable_interrupt(obj, 1); |
elessair | 0:f269e3021894 | 370 | } |
elessair | 0:f269e3021894 | 371 | } |
elessair | 0:f269e3021894 | 372 | |
elessair | 0:f269e3021894 | 373 | /** |
elessair | 0:f269e3021894 | 374 | * Abort an SPI transfer |
elessair | 0:f269e3021894 | 375 | * This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing |
elessair | 0:f269e3021894 | 376 | * transfers |
elessair | 0:f269e3021894 | 377 | * @param[in] obj The SPI peripheral to stop |
elessair | 0:f269e3021894 | 378 | */ |
elessair | 0:f269e3021894 | 379 | void spi_abort_asynch(spi_t *obj) |
elessair | 0:f269e3021894 | 380 | { |
elessair | 0:f269e3021894 | 381 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 382 | |
elessair | 0:f269e3021894 | 383 | if (obj->spi.dma_usage != DMA_USAGE_NEVER) { |
elessair | 0:f269e3021894 | 384 | // Receive FIFO Overrun in case of tx length > rx length on DMA way |
elessair | 0:f269e3021894 | 385 | if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) { |
elessair | 0:f269e3021894 | 386 | spi_base->STATUS = SPI_STATUS_RXOVIF_Msk; |
elessair | 0:f269e3021894 | 387 | } |
elessair | 0:f269e3021894 | 388 | |
elessair | 0:f269e3021894 | 389 | if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { |
elessair | 0:f269e3021894 | 390 | PDMA_DisableInt(obj->spi.dma_chn_id_tx, 0); |
elessair | 0:f269e3021894 | 391 | // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. |
elessair | 0:f269e3021894 | 392 | //PDMA_STOP(obj->spi.dma_chn_id_tx); |
elessair | 0:f269e3021894 | 393 | PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx); |
elessair | 0:f269e3021894 | 394 | } |
elessair | 0:f269e3021894 | 395 | SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
elessair | 0:f269e3021894 | 396 | |
elessair | 0:f269e3021894 | 397 | if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { |
elessair | 0:f269e3021894 | 398 | PDMA_DisableInt(obj->spi.dma_chn_id_rx, 0); |
elessair | 0:f269e3021894 | 399 | // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. |
elessair | 0:f269e3021894 | 400 | //PDMA_STOP(obj->spi.dma_chn_id_rx); |
elessair | 0:f269e3021894 | 401 | PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx); |
elessair | 0:f269e3021894 | 402 | } |
elessair | 0:f269e3021894 | 403 | SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
elessair | 0:f269e3021894 | 404 | } |
elessair | 0:f269e3021894 | 405 | |
elessair | 0:f269e3021894 | 406 | // Necessary for both interrupt way and DMA way |
elessair | 0:f269e3021894 | 407 | spi_enable_vector_interrupt(obj, 0, 0); |
elessair | 0:f269e3021894 | 408 | spi_master_enable_interrupt(obj, 0); |
elessair | 0:f269e3021894 | 409 | |
elessair | 0:f269e3021894 | 410 | // FIXME: SPI H/W may get out of state without the busy check. |
elessair | 0:f269e3021894 | 411 | while (SPI_IS_BUSY(spi_base)); |
elessair | 0:f269e3021894 | 412 | SPI_DISABLE(spi_base); |
elessair | 0:f269e3021894 | 413 | |
elessair | 0:f269e3021894 | 414 | SPI_ClearRxFIFO(spi_base); |
elessair | 0:f269e3021894 | 415 | SPI_ClearTxFIFO(spi_base); |
elessair | 0:f269e3021894 | 416 | } |
elessair | 0:f269e3021894 | 417 | |
elessair | 0:f269e3021894 | 418 | /** |
elessair | 0:f269e3021894 | 419 | * Handle the SPI interrupt |
elessair | 0:f269e3021894 | 420 | * Read frames until the RX FIFO is empty. Write at most as many frames as were read. This way, |
elessair | 0:f269e3021894 | 421 | * it is unlikely that the RX FIFO will overflow. |
elessair | 0:f269e3021894 | 422 | * @param[in] obj The SPI peripheral that generated the interrupt |
elessair | 0:f269e3021894 | 423 | * @return |
elessair | 0:f269e3021894 | 424 | */ |
elessair | 0:f269e3021894 | 425 | uint32_t spi_irq_handler_asynch(spi_t *obj) |
elessair | 0:f269e3021894 | 426 | { |
elessair | 0:f269e3021894 | 427 | // Check for SPI events |
elessair | 0:f269e3021894 | 428 | uint32_t event = spi_event_check(obj); |
elessair | 0:f269e3021894 | 429 | if (event) { |
elessair | 0:f269e3021894 | 430 | spi_abort_asynch(obj); |
elessair | 0:f269e3021894 | 431 | } |
elessair | 0:f269e3021894 | 432 | |
elessair | 0:f269e3021894 | 433 | return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0); |
elessair | 0:f269e3021894 | 434 | } |
elessair | 0:f269e3021894 | 435 | |
elessair | 0:f269e3021894 | 436 | uint8_t spi_active(spi_t *obj) |
elessair | 0:f269e3021894 | 437 | { |
elessair | 0:f269e3021894 | 438 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 439 | // FIXME |
elessair | 0:f269e3021894 | 440 | /* |
elessair | 0:f269e3021894 | 441 | if ((obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) |
elessair | 0:f269e3021894 | 442 | || (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) ){ |
elessair | 0:f269e3021894 | 443 | return 1; |
elessair | 0:f269e3021894 | 444 | } else { |
elessair | 0:f269e3021894 | 445 | // interrupts are disabled, all transaction have been completed |
elessair | 0:f269e3021894 | 446 | // TODO: checking rx fifo, it reports data eventhough RFDF is not set |
elessair | 0:f269e3021894 | 447 | return DSPI_HAL_GetIntMode(obj->spi.address, kDspiRxFifoDrainRequest); |
elessair | 0:f269e3021894 | 448 | }*/ |
elessair | 0:f269e3021894 | 449 | |
elessair | 0:f269e3021894 | 450 | //return SPI_IS_BUSY(spi_base); |
elessair | 0:f269e3021894 | 451 | return (spi_base->CTL & SPI_CTL_SPIEN_Msk); |
elessair | 0:f269e3021894 | 452 | } |
elessair | 0:f269e3021894 | 453 | |
elessair | 0:f269e3021894 | 454 | int spi_allow_powerdown(void) |
elessair | 0:f269e3021894 | 455 | { |
elessair | 0:f269e3021894 | 456 | uint32_t modinit_mask = spi_modinit_mask; |
elessair | 0:f269e3021894 | 457 | while (modinit_mask) { |
elessair | 0:f269e3021894 | 458 | int spi_idx = nu_ctz(modinit_mask); |
elessair | 0:f269e3021894 | 459 | const struct nu_modinit_s *modinit = spi_modinit_tab + spi_idx; |
elessair | 0:f269e3021894 | 460 | if (modinit->modname != NC) { |
elessair | 0:f269e3021894 | 461 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(modinit->modname); |
elessair | 0:f269e3021894 | 462 | // Disallow entering power-down mode if SPI transfer is enabled. |
elessair | 0:f269e3021894 | 463 | if (spi_base->CTL & SPI_CTL_SPIEN_Msk) { |
elessair | 0:f269e3021894 | 464 | return 0; |
elessair | 0:f269e3021894 | 465 | } |
elessair | 0:f269e3021894 | 466 | } |
elessair | 0:f269e3021894 | 467 | modinit_mask &= ~(1 << spi_idx); |
elessair | 0:f269e3021894 | 468 | } |
elessair | 0:f269e3021894 | 469 | |
elessair | 0:f269e3021894 | 470 | return 1; |
elessair | 0:f269e3021894 | 471 | } |
elessair | 0:f269e3021894 | 472 | |
elessair | 0:f269e3021894 | 473 | static int spi_writeable(spi_t * obj) |
elessair | 0:f269e3021894 | 474 | { |
elessair | 0:f269e3021894 | 475 | // Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive |
elessair | 0:f269e3021894 | 476 | //return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))) && (SPI_GET_RX_FIFO_COUNT(((SPI_T *) NU_MODBASE(obj->spi.spi))) < NU_SPI_FIFO_DEPTH); |
elessair | 0:f269e3021894 | 477 | return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))); |
elessair | 0:f269e3021894 | 478 | } |
elessair | 0:f269e3021894 | 479 | |
elessair | 0:f269e3021894 | 480 | static int spi_readable(spi_t * obj) |
elessair | 0:f269e3021894 | 481 | { |
elessair | 0:f269e3021894 | 482 | return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
elessair | 0:f269e3021894 | 483 | } |
elessair | 0:f269e3021894 | 484 | |
elessair | 0:f269e3021894 | 485 | static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable) |
elessair | 0:f269e3021894 | 486 | { |
elessair | 0:f269e3021894 | 487 | obj->spi.event &= ~SPI_EVENT_ALL; |
elessair | 0:f269e3021894 | 488 | obj->spi.event |= (event & SPI_EVENT_ALL); |
elessair | 0:f269e3021894 | 489 | if (event & SPI_EVENT_RX_OVERFLOW) { |
elessair | 0:f269e3021894 | 490 | SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOVIEN_MASK); |
elessair | 0:f269e3021894 | 491 | } |
elessair | 0:f269e3021894 | 492 | } |
elessair | 0:f269e3021894 | 493 | |
elessair | 0:f269e3021894 | 494 | static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable) |
elessair | 0:f269e3021894 | 495 | { |
elessair | 0:f269e3021894 | 496 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
elessair | 0:f269e3021894 | 497 | MBED_ASSERT(modinit != NULL); |
elessair | 0:f269e3021894 | 498 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
elessair | 0:f269e3021894 | 499 | |
elessair | 0:f269e3021894 | 500 | if (enable) { |
elessair | 0:f269e3021894 | 501 | NVIC_SetVector(modinit->irq_n, handler); |
elessair | 0:f269e3021894 | 502 | NVIC_EnableIRQ(modinit->irq_n); |
elessair | 0:f269e3021894 | 503 | } |
elessair | 0:f269e3021894 | 504 | else { |
elessair | 0:f269e3021894 | 505 | //NVIC_SetVector(modinit->irq_n, handler); |
elessair | 0:f269e3021894 | 506 | NVIC_DisableIRQ(modinit->irq_n); |
elessair | 0:f269e3021894 | 507 | } |
elessair | 0:f269e3021894 | 508 | } |
elessair | 0:f269e3021894 | 509 | |
elessair | 0:f269e3021894 | 510 | static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable) |
elessair | 0:f269e3021894 | 511 | { |
elessair | 0:f269e3021894 | 512 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 513 | |
elessair | 0:f269e3021894 | 514 | if (enable) { |
elessair | 0:f269e3021894 | 515 | SPI_SetFIFOThreshold(spi_base, 4, 4); |
elessair | 0:f269e3021894 | 516 | //SPI_SET_SUSPEND_CYCLE(spi_base, 4); |
elessair | 0:f269e3021894 | 517 | // Enable tx/rx FIFO threshold interrupt |
elessair | 0:f269e3021894 | 518 | SPI_EnableInt(spi_base, SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK); |
elessair | 0:f269e3021894 | 519 | } |
elessair | 0:f269e3021894 | 520 | else { |
elessair | 0:f269e3021894 | 521 | SPI_DisableInt(spi_base, SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK); |
elessair | 0:f269e3021894 | 522 | } |
elessair | 0:f269e3021894 | 523 | } |
elessair | 0:f269e3021894 | 524 | |
elessair | 0:f269e3021894 | 525 | static uint32_t spi_event_check(spi_t *obj) |
elessair | 0:f269e3021894 | 526 | { |
elessair | 0:f269e3021894 | 527 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 528 | uint32_t event = 0; |
elessair | 0:f269e3021894 | 529 | |
elessair | 0:f269e3021894 | 530 | if (obj->spi.dma_usage == DMA_USAGE_NEVER) { |
elessair | 0:f269e3021894 | 531 | uint32_t n_rec = spi_master_read_asynch(obj); |
elessair | 0:f269e3021894 | 532 | spi_master_write_asynch(obj, n_rec); |
elessair | 0:f269e3021894 | 533 | } |
elessair | 0:f269e3021894 | 534 | |
elessair | 0:f269e3021894 | 535 | if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) { |
elessair | 0:f269e3021894 | 536 | event |= SPI_EVENT_COMPLETE; |
elessair | 0:f269e3021894 | 537 | } |
elessair | 0:f269e3021894 | 538 | |
elessair | 0:f269e3021894 | 539 | // Receive FIFO Overrun |
elessair | 0:f269e3021894 | 540 | if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) { |
elessair | 0:f269e3021894 | 541 | spi_base->STATUS = SPI_STATUS_RXOVIF_Msk; |
elessair | 0:f269e3021894 | 542 | // In case of tx length > rx length on DMA way |
elessair | 0:f269e3021894 | 543 | if (obj->spi.dma_usage == DMA_USAGE_NEVER) { |
elessair | 0:f269e3021894 | 544 | event |= SPI_EVENT_RX_OVERFLOW; |
elessair | 0:f269e3021894 | 545 | } |
elessair | 0:f269e3021894 | 546 | } |
elessair | 0:f269e3021894 | 547 | |
elessair | 0:f269e3021894 | 548 | // Receive Time-Out |
elessair | 0:f269e3021894 | 549 | if (spi_base->STATUS & SPI_STATUS_RXTOIF_Msk) { |
elessair | 0:f269e3021894 | 550 | spi_base->STATUS = SPI_STATUS_RXTOIF_Msk; |
elessair | 0:f269e3021894 | 551 | //event |= SPI_EVENT_ERROR; |
elessair | 0:f269e3021894 | 552 | } |
elessair | 0:f269e3021894 | 553 | // Transmit FIFO Under-Run |
elessair | 0:f269e3021894 | 554 | if (spi_base->STATUS & SPI_STATUS_TXUFIF_Msk) { |
elessair | 0:f269e3021894 | 555 | spi_base->STATUS = SPI_STATUS_TXUFIF_Msk; |
elessair | 0:f269e3021894 | 556 | event |= SPI_EVENT_ERROR; |
elessair | 0:f269e3021894 | 557 | } |
elessair | 0:f269e3021894 | 558 | |
elessair | 0:f269e3021894 | 559 | return event; |
elessair | 0:f269e3021894 | 560 | } |
elessair | 0:f269e3021894 | 561 | |
elessair | 0:f269e3021894 | 562 | /** |
elessair | 0:f269e3021894 | 563 | * Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full |
elessair | 0:f269e3021894 | 564 | * tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed. |
elessair | 0:f269e3021894 | 565 | * @param[in] obj The SPI object on which to operate |
elessair | 0:f269e3021894 | 566 | * @param[in] tx_limit The maximum number of words to send |
elessair | 0:f269e3021894 | 567 | * @return The number of SPI words that have been transfered |
elessair | 0:f269e3021894 | 568 | */ |
elessair | 0:f269e3021894 | 569 | static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit) |
elessair | 0:f269e3021894 | 570 | { |
elessair | 0:f269e3021894 | 571 | uint32_t n_words = 0; |
elessair | 0:f269e3021894 | 572 | uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos; |
elessair | 0:f269e3021894 | 573 | uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos; |
elessair | 0:f269e3021894 | 574 | uint32_t max_tx = NU_MAX(tx_rmn, rx_rmn); |
elessair | 0:f269e3021894 | 575 | max_tx = NU_MIN(max_tx, tx_limit); |
elessair | 0:f269e3021894 | 576 | uint8_t data_width = spi_get_data_width(obj); |
elessair | 0:f269e3021894 | 577 | uint8_t bytes_per_word = (data_width + 7) / 8; |
elessair | 0:f269e3021894 | 578 | uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos; |
elessair | 0:f269e3021894 | 579 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 580 | |
elessair | 0:f269e3021894 | 581 | while ((n_words < max_tx) && spi_writeable(obj)) { |
elessair | 0:f269e3021894 | 582 | if (spi_is_tx_complete(obj)) { |
elessair | 0:f269e3021894 | 583 | // Transmit dummy as transmit buffer is empty |
elessair | 0:f269e3021894 | 584 | SPI_WRITE_TX(spi_base, 0); |
elessair | 0:f269e3021894 | 585 | } |
elessair | 0:f269e3021894 | 586 | else { |
elessair | 0:f269e3021894 | 587 | switch (bytes_per_word) { |
elessair | 0:f269e3021894 | 588 | case 4: |
elessair | 0:f269e3021894 | 589 | SPI_WRITE_TX(spi_base, nu_get32_le(tx)); |
elessair | 0:f269e3021894 | 590 | tx += 4; |
elessair | 0:f269e3021894 | 591 | break; |
elessair | 0:f269e3021894 | 592 | case 2: |
elessair | 0:f269e3021894 | 593 | SPI_WRITE_TX(spi_base, nu_get16_le(tx)); |
elessair | 0:f269e3021894 | 594 | tx += 2; |
elessair | 0:f269e3021894 | 595 | break; |
elessair | 0:f269e3021894 | 596 | case 1: |
elessair | 0:f269e3021894 | 597 | SPI_WRITE_TX(spi_base, *((uint8_t *) tx)); |
elessair | 0:f269e3021894 | 598 | tx += 1; |
elessair | 0:f269e3021894 | 599 | break; |
elessair | 0:f269e3021894 | 600 | } |
elessair | 0:f269e3021894 | 601 | |
elessair | 0:f269e3021894 | 602 | obj->tx_buff.pos ++; |
elessair | 0:f269e3021894 | 603 | } |
elessair | 0:f269e3021894 | 604 | n_words ++; |
elessair | 0:f269e3021894 | 605 | } |
elessair | 0:f269e3021894 | 606 | |
elessair | 0:f269e3021894 | 607 | //Return the number of words that have been sent |
elessair | 0:f269e3021894 | 608 | return n_words; |
elessair | 0:f269e3021894 | 609 | } |
elessair | 0:f269e3021894 | 610 | |
elessair | 0:f269e3021894 | 611 | /** |
elessair | 0:f269e3021894 | 612 | * Read SPI words out of the RX FIFO |
elessair | 0:f269e3021894 | 613 | * Continues reading words out of the RX FIFO until the following condition is met: |
elessair | 0:f269e3021894 | 614 | * o There are no more words in the FIFO |
elessair | 0:f269e3021894 | 615 | * OR BOTH OF: |
elessair | 0:f269e3021894 | 616 | * o At least as many words as the TX buffer have been received |
elessair | 0:f269e3021894 | 617 | * o At least as many words as the RX buffer have been received |
elessair | 0:f269e3021894 | 618 | * This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size |
elessair | 0:f269e3021894 | 619 | * @param[in] obj The SPI object on which to operate |
elessair | 0:f269e3021894 | 620 | * @return Returns the number of words extracted from the RX FIFO |
elessair | 0:f269e3021894 | 621 | */ |
elessair | 0:f269e3021894 | 622 | static uint32_t spi_master_read_asynch(spi_t *obj) |
elessair | 0:f269e3021894 | 623 | { |
elessair | 0:f269e3021894 | 624 | uint32_t n_words = 0; |
elessair | 0:f269e3021894 | 625 | uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos; |
elessair | 0:f269e3021894 | 626 | uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos; |
elessair | 0:f269e3021894 | 627 | uint32_t max_rx = NU_MAX(tx_rmn, rx_rmn); |
elessair | 0:f269e3021894 | 628 | uint8_t data_width = spi_get_data_width(obj); |
elessair | 0:f269e3021894 | 629 | uint8_t bytes_per_word = (data_width + 7) / 8; |
elessair | 0:f269e3021894 | 630 | uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos; |
elessair | 0:f269e3021894 | 631 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 632 | |
elessair | 0:f269e3021894 | 633 | while ((n_words < max_rx) && spi_readable(obj)) { |
elessair | 0:f269e3021894 | 634 | if (spi_is_rx_complete(obj)) { |
elessair | 0:f269e3021894 | 635 | // Disregard as receive buffer is full |
elessair | 0:f269e3021894 | 636 | SPI_READ_RX(spi_base); |
elessair | 0:f269e3021894 | 637 | } |
elessair | 0:f269e3021894 | 638 | else { |
elessair | 0:f269e3021894 | 639 | switch (bytes_per_word) { |
elessair | 0:f269e3021894 | 640 | case 4: { |
elessair | 0:f269e3021894 | 641 | uint32_t val = SPI_READ_RX(spi_base); |
elessair | 0:f269e3021894 | 642 | nu_set32_le(rx, val); |
elessair | 0:f269e3021894 | 643 | rx += 4; |
elessair | 0:f269e3021894 | 644 | break; |
elessair | 0:f269e3021894 | 645 | } |
elessair | 0:f269e3021894 | 646 | case 2: { |
elessair | 0:f269e3021894 | 647 | uint16_t val = SPI_READ_RX(spi_base); |
elessair | 0:f269e3021894 | 648 | nu_set16_le(rx, val); |
elessair | 0:f269e3021894 | 649 | rx += 2; |
elessair | 0:f269e3021894 | 650 | break; |
elessair | 0:f269e3021894 | 651 | } |
elessair | 0:f269e3021894 | 652 | case 1: |
elessair | 0:f269e3021894 | 653 | *rx ++ = SPI_READ_RX(spi_base); |
elessair | 0:f269e3021894 | 654 | break; |
elessair | 0:f269e3021894 | 655 | } |
elessair | 0:f269e3021894 | 656 | |
elessair | 0:f269e3021894 | 657 | obj->rx_buff.pos ++; |
elessair | 0:f269e3021894 | 658 | } |
elessair | 0:f269e3021894 | 659 | n_words ++; |
elessair | 0:f269e3021894 | 660 | } |
elessair | 0:f269e3021894 | 661 | |
elessair | 0:f269e3021894 | 662 | // Return the number of words received |
elessair | 0:f269e3021894 | 663 | return n_words; |
elessair | 0:f269e3021894 | 664 | } |
elessair | 0:f269e3021894 | 665 | |
elessair | 0:f269e3021894 | 666 | static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length) |
elessair | 0:f269e3021894 | 667 | { |
elessair | 0:f269e3021894 | 668 | obj->tx_buff.buffer = (void *) tx; |
elessair | 0:f269e3021894 | 669 | obj->tx_buff.length = tx_length; |
elessair | 0:f269e3021894 | 670 | obj->tx_buff.pos = 0; |
elessair | 0:f269e3021894 | 671 | obj->tx_buff.width = spi_get_data_width(obj); |
elessair | 0:f269e3021894 | 672 | obj->rx_buff.buffer = rx; |
elessair | 0:f269e3021894 | 673 | obj->rx_buff.length = rx_length; |
elessair | 0:f269e3021894 | 674 | obj->rx_buff.pos = 0; |
elessair | 0:f269e3021894 | 675 | obj->rx_buff.width = spi_get_data_width(obj); |
elessair | 0:f269e3021894 | 676 | } |
elessair | 0:f269e3021894 | 677 | |
elessair | 0:f269e3021894 | 678 | static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx) |
elessair | 0:f269e3021894 | 679 | { |
elessair | 0:f269e3021894 | 680 | if (*dma_usage != DMA_USAGE_NEVER) { |
elessair | 0:f269e3021894 | 681 | if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) { |
elessair | 0:f269e3021894 | 682 | *dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE); |
elessair | 0:f269e3021894 | 683 | } |
elessair | 0:f269e3021894 | 684 | if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) { |
elessair | 0:f269e3021894 | 685 | *dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE); |
elessair | 0:f269e3021894 | 686 | } |
elessair | 0:f269e3021894 | 687 | |
elessair | 0:f269e3021894 | 688 | if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) { |
elessair | 0:f269e3021894 | 689 | *dma_usage = DMA_USAGE_NEVER; |
elessair | 0:f269e3021894 | 690 | } |
elessair | 0:f269e3021894 | 691 | } |
elessair | 0:f269e3021894 | 692 | |
elessair | 0:f269e3021894 | 693 | if (*dma_usage == DMA_USAGE_NEVER) { |
elessair | 0:f269e3021894 | 694 | dma_channel_free(*dma_ch_tx); |
elessair | 0:f269e3021894 | 695 | *dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS; |
elessair | 0:f269e3021894 | 696 | dma_channel_free(*dma_ch_rx); |
elessair | 0:f269e3021894 | 697 | *dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS; |
elessair | 0:f269e3021894 | 698 | } |
elessair | 0:f269e3021894 | 699 | } |
elessair | 0:f269e3021894 | 700 | |
elessair | 0:f269e3021894 | 701 | static uint8_t spi_get_data_width(spi_t *obj) |
elessair | 0:f269e3021894 | 702 | { |
elessair | 0:f269e3021894 | 703 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
elessair | 0:f269e3021894 | 704 | |
elessair | 0:f269e3021894 | 705 | return ((spi_base->CTL & SPI_CTL_DWIDTH_Msk) >> SPI_CTL_DWIDTH_Pos); |
elessair | 0:f269e3021894 | 706 | } |
elessair | 0:f269e3021894 | 707 | |
elessair | 0:f269e3021894 | 708 | static int spi_is_tx_complete(spi_t *obj) |
elessair | 0:f269e3021894 | 709 | { |
elessair | 0:f269e3021894 | 710 | // ???: Exclude tx fifo empty check due to no such interrupt on DMA way |
elessair | 0:f269e3021894 | 711 | return (obj->tx_buff.pos == obj->tx_buff.length); |
elessair | 0:f269e3021894 | 712 | //return (obj->tx_buff.pos == obj->tx_buff.length && SPI_GET_TX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))); |
elessair | 0:f269e3021894 | 713 | } |
elessair | 0:f269e3021894 | 714 | |
elessair | 0:f269e3021894 | 715 | static int spi_is_rx_complete(spi_t *obj) |
elessair | 0:f269e3021894 | 716 | { |
elessair | 0:f269e3021894 | 717 | return (obj->rx_buff.pos == obj->rx_buff.length); |
elessair | 0:f269e3021894 | 718 | } |
elessair | 0:f269e3021894 | 719 | |
elessair | 0:f269e3021894 | 720 | static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma) |
elessair | 0:f269e3021894 | 721 | { |
elessair | 0:f269e3021894 | 722 | spi_t *obj = (spi_t *) id; |
elessair | 0:f269e3021894 | 723 | |
elessair | 0:f269e3021894 | 724 | // FIXME: Pass this error to caller |
elessair | 0:f269e3021894 | 725 | if (event_dma & DMA_EVENT_ABORT) { |
elessair | 0:f269e3021894 | 726 | } |
elessair | 0:f269e3021894 | 727 | // Expect SPI IRQ will catch this transfer done event |
elessair | 0:f269e3021894 | 728 | if (event_dma & DMA_EVENT_TRANSFER_DONE) { |
elessair | 0:f269e3021894 | 729 | obj->tx_buff.pos = obj->tx_buff.length; |
elessair | 0:f269e3021894 | 730 | } |
elessair | 0:f269e3021894 | 731 | // FIXME: Pass this error to caller |
elessair | 0:f269e3021894 | 732 | if (event_dma & DMA_EVENT_TIMEOUT) { |
elessair | 0:f269e3021894 | 733 | } |
elessair | 0:f269e3021894 | 734 | |
elessair | 0:f269e3021894 | 735 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
elessair | 0:f269e3021894 | 736 | MBED_ASSERT(modinit != NULL); |
elessair | 0:f269e3021894 | 737 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
elessair | 0:f269e3021894 | 738 | |
elessair | 0:f269e3021894 | 739 | void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n); |
elessair | 0:f269e3021894 | 740 | vec(); |
elessair | 0:f269e3021894 | 741 | } |
elessair | 0:f269e3021894 | 742 | |
elessair | 0:f269e3021894 | 743 | static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma) |
elessair | 0:f269e3021894 | 744 | { |
elessair | 0:f269e3021894 | 745 | spi_t *obj = (spi_t *) id; |
elessair | 0:f269e3021894 | 746 | |
elessair | 0:f269e3021894 | 747 | // FIXME: Pass this error to caller |
elessair | 0:f269e3021894 | 748 | if (event_dma & DMA_EVENT_ABORT) { |
elessair | 0:f269e3021894 | 749 | } |
elessair | 0:f269e3021894 | 750 | // Expect SPI IRQ will catch this transfer done event |
elessair | 0:f269e3021894 | 751 | if (event_dma & DMA_EVENT_TRANSFER_DONE) { |
elessair | 0:f269e3021894 | 752 | obj->rx_buff.pos = obj->rx_buff.length; |
elessair | 0:f269e3021894 | 753 | } |
elessair | 0:f269e3021894 | 754 | // FIXME: Pass this error to caller |
elessair | 0:f269e3021894 | 755 | if (event_dma & DMA_EVENT_TIMEOUT) { |
elessair | 0:f269e3021894 | 756 | } |
elessair | 0:f269e3021894 | 757 | |
elessair | 0:f269e3021894 | 758 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
elessair | 0:f269e3021894 | 759 | MBED_ASSERT(modinit != NULL); |
elessair | 0:f269e3021894 | 760 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
elessair | 0:f269e3021894 | 761 | |
elessair | 0:f269e3021894 | 762 | void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n); |
elessair | 0:f269e3021894 | 763 | vec(); |
elessair | 0:f269e3021894 | 764 | } |
elessair | 0:f269e3021894 | 765 | |
elessair | 0:f269e3021894 | 766 | #endif |
elessair | 0:f269e3021894 | 767 | |
elessair | 0:f269e3021894 | 768 | #endif |