mbed-os
Fork of mbed-os by
targets/TARGET_NXP/TARGET_LPC176X/serial_api.c
- Committer:
- elessair
- Date:
- 2016-10-23
- Revision:
- 0:f269e3021894
File content as of revision 0:f269e3021894:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // math.h required for floating point operations for baud rate calculation #include "mbed_assert.h" #include <math.h> #include <string.h> #include <stdlib.h> #include "serial_api.h" #include "cmsis.h" #include "pinmap.h" #include "gpio_api.h" /****************************************************************************** * INITIALIZATION ******************************************************************************/ #define UART_NUM 4 static const PinMap PinMap_UART_TX[] = { {P0_0, UART_3, 2}, {P0_2, UART_0, 1}, {P0_10, UART_2, 1}, {P0_15, UART_1, 1}, {P0_25, UART_3, 3}, {P2_0 , UART_1, 2}, {P2_8 , UART_2, 2}, {P4_28, UART_3, 3}, {NC , NC , 0} }; static const PinMap PinMap_UART_RX[] = { {P0_1 , UART_3, 2}, {P0_3 , UART_0, 1}, {P0_11, UART_2, 1}, {P0_16, UART_1, 1}, {P0_26, UART_3, 3}, {P2_1 , UART_1, 2}, {P2_9 , UART_2, 2}, {P4_29, UART_3, 3}, {NC , NC , 0} }; static const PinMap PinMap_UART_RTS[] = { {P0_22, UART_1, 1}, {P2_7, UART_1, 2}, {NC, NC, 0} }; static const PinMap PinMap_UART_CTS[] = { {P0_17, UART_1, 1}, {P2_2, UART_1, 2}, {NC, NC, 0} }; #define UART_MCR_RTSEN_MASK (1 << 6) #define UART_MCR_CTSEN_MASK (1 << 7) #define UART_MCR_FLOWCTRL_MASK (UART_MCR_RTSEN_MASK | UART_MCR_CTSEN_MASK) static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; struct serial_global_data_s { uint32_t serial_irq_id; gpio_t sw_rts, sw_cts; uint8_t count, rx_irq_set_flow, rx_irq_set_api; }; static struct serial_global_data_s uart_data[UART_NUM]; void serial_init(serial_t *obj, PinName tx, PinName rx) { int is_stdio_uart = 0; // determine the UART to use UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); MBED_ASSERT((int)uart != NC); obj->uart = (LPC_UART_TypeDef *)uart; // enable power switch (uart) { case UART_0: LPC_SC->PCONP |= 1 << 3; break; case UART_1: LPC_SC->PCONP |= 1 << 4; break; case UART_2: LPC_SC->PCONP |= 1 << 24; break; case UART_3: LPC_SC->PCONP |= 1 << 25; break; } // enable fifos and default rx trigger level obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled | 0 << 1 // Rx Fifo Reset | 0 << 2 // Tx Fifo Reset | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars // disable irqs obj->uart->IER = 0 << 0 // Rx Data available irq enable | 0 << 1 // Tx Fifo empty irq enable | 0 << 2; // Rx Line Status irq enable // set default baud rate and format serial_baud (obj, 9600); serial_format(obj, 8, ParityNone, 1); // pinout the chosen uart pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); // set rx/tx pins in PullUp mode if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } switch (uart) { case UART_0: obj->index = 0; break; case UART_1: obj->index = 1; break; case UART_2: obj->index = 2; break; case UART_3: obj->index = 3; break; } uart_data[obj->index].sw_rts.pin = NC; uart_data[obj->index].sw_cts.pin = NC; serial_set_flow_control(obj, FlowControlNone, NC, NC); is_stdio_uart = (uart == STDIO_UART) ? (1) : (0); if (is_stdio_uart) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { uart_data[obj->index].serial_irq_id = 0; } // serial_baud // set the baud rate, taking in to account the current SystemFrequency void serial_baud(serial_t *obj, int baudrate) { MBED_ASSERT((int)obj->uart <= UART_3); // The LPC2300 and LPC1700 have a divider and a fractional divider to control the // baud rate. The formula is: // // Baudrate = (1 / PCLK) * 16 * DL * (1 + DivAddVal / MulVal) // where: // 1 < MulVal <= 15 // 0 <= DivAddVal < 14 // DivAddVal < MulVal // // set pclk to /1 switch ((int)obj->uart) { case UART_0: LPC_SC->PCLKSEL0 &= ~(0x3 << 6); LPC_SC->PCLKSEL0 |= (0x1 << 6); break; case UART_1: LPC_SC->PCLKSEL0 &= ~(0x3 << 8); LPC_SC->PCLKSEL0 |= (0x1 << 8); break; case UART_2: LPC_SC->PCLKSEL1 &= ~(0x3 << 16); LPC_SC->PCLKSEL1 |= (0x1 << 16); break; case UART_3: LPC_SC->PCLKSEL1 &= ~(0x3 << 18); LPC_SC->PCLKSEL1 |= (0x1 << 18); break; default: break; } uint32_t PCLK = SystemCoreClock; // First we check to see if the basic divide with no DivAddVal/MulVal // ratio gives us an integer result. If it does, we set DivAddVal = 0, // MulVal = 1. Otherwise, we search the valid ratio value range to find // the closest match. This could be more elegant, using search methods // and/or lookup tables, but the brute force method is not that much // slower, and is more maintainable. uint16_t DL = PCLK / (16 * baudrate); uint8_t DivAddVal = 0; uint8_t MulVal = 1; int hit = 0; uint16_t dlv; uint8_t mv, dav; if ((PCLK % (16 * baudrate)) != 0) { // Checking for zero remainder int err_best = baudrate, b; for (mv = 1; mv < 16 && !hit; mv++) { for (dav = 0; dav < mv; dav++) { // baudrate = PCLK / (16 * dlv * (1 + (DivAdd / Mul)) // solving for dlv, we get dlv = mul * PCLK / (16 * baudrate * (divadd + mul)) // mul has 4 bits, PCLK has 27 so we have 1 bit headroom which can be used for rounding // for many values of mul and PCLK we have 2 or more bits of headroom which can be used to improve precision // note: X / 32 doesn't round correctly. Instead, we use ((X / 16) + 1) / 2 for correct rounding if ((mv * PCLK * 2) & 0x80000000) // 1 bit headroom dlv = ((((2 * mv * PCLK) / (baudrate * (dav + mv))) / 16) + 1) / 2; else // 2 bits headroom, use more precision dlv = ((((4 * mv * PCLK) / (baudrate * (dav + mv))) / 32) + 1) / 2; // datasheet says if DLL==DLM==0, then 1 is used instead since divide by zero is ungood if (dlv == 0) dlv = 1; // datasheet says if dav > 0 then DL must be >= 2 if ((dav > 0) && (dlv < 2)) dlv = 2; // integer rearrangement of the baudrate equation (with rounding) b = ((PCLK * mv / (dlv * (dav + mv) * 8)) + 1) / 2; // check to see how we went b = abs(b - baudrate); if (b < err_best) { err_best = b; DL = dlv; MulVal = mv; DivAddVal = dav; if (b == baudrate) { hit = 1; break; } } } } } // set LCR[DLAB] to enable writing to divider registers obj->uart->LCR |= (1 << 7); // set divider values obj->uart->DLM = (DL >> 8) & 0xFF; obj->uart->DLL = (DL >> 0) & 0xFF; obj->uart->FDR = (uint32_t) DivAddVal << 0 | (uint32_t) MulVal << 4; // clear LCR[DLAB] obj->uart->LCR &= ~(1 << 7); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // 0: 1 stop bits, 1: 2 stop bits MBED_ASSERT((data_bits > 4) && (data_bits < 9)); // 0: 5 data bits ... 3: 8 data bits MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) || (parity == ParityForced1) || (parity == ParityForced0)); stop_bits -= 1; data_bits -= 5; int parity_enable, parity_select; switch (parity) { case ParityNone: parity_enable = 0; parity_select = 0; break; case ParityOdd : parity_enable = 1; parity_select = 0; break; case ParityEven: parity_enable = 1; parity_select = 1; break; case ParityForced1: parity_enable = 1; parity_select = 2; break; case ParityForced0: parity_enable = 1; parity_select = 3; break; default: parity_enable = 0, parity_select = 0; break; } obj->uart->LCR = data_bits << 0 | stop_bits << 2 | parity_enable << 3 | parity_select << 4; } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint32_t iir, uint32_t index, LPC_UART_TypeDef *puart) { // [Chapter 14] LPC17xx UART0/2/3: UARTn Interrupt Handling SerialIrq irq_type; switch (iir) { case 1: irq_type = TxIrq; break; case 2: irq_type = RxIrq; break; default: return; } if ((RxIrq == irq_type) && (NC != uart_data[index].sw_rts.pin)) { gpio_write(&uart_data[index].sw_rts, 1); // Disable interrupt if it wasn't enabled by other part of the application if (!uart_data[index].rx_irq_set_api) puart->IER &= ~(1 << RxIrq); } if (uart_data[index].serial_irq_id != 0) if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api)) irq_handler(uart_data[index].serial_irq_id, irq_type); } void uart0_irq() {uart_irq((LPC_UART0->IIR >> 1) & 0x7, 0, (LPC_UART_TypeDef*)LPC_UART0);} void uart1_irq() {uart_irq((LPC_UART1->IIR >> 1) & 0x7, 1, (LPC_UART_TypeDef*)LPC_UART1);} void uart2_irq() {uart_irq((LPC_UART2->IIR >> 1) & 0x7, 2, (LPC_UART_TypeDef*)LPC_UART2);} void uart3_irq() {uart_irq((LPC_UART3->IIR >> 1) & 0x7, 3, (LPC_UART_TypeDef*)LPC_UART3);} void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; uart_data[obj->index].serial_irq_id = id; } static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; switch ((int)obj->uart) { case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break; case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break; case UART_2: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break; case UART_3: irq_n=UART3_IRQn; vector = (uint32_t)&uart3_irq; break; } if (enable) { obj->uart->IER |= 1 << irq; NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else if ((TxIrq == irq) || (uart_data[obj->index].rx_irq_set_api + uart_data[obj->index].rx_irq_set_flow == 0)) { // disable int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); obj->uart->IER &= ~(1 << irq); all_disabled = (obj->uart->IER & (1 << other_irq)) == 0; if (all_disabled) NVIC_DisableIRQ(irq_n); } } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { if (RxIrq == irq) uart_data[obj->index].rx_irq_set_api = enable; serial_irq_set_internal(obj, irq, enable); } static void serial_flow_irq_set(serial_t *obj, uint32_t enable) { uart_data[obj->index].rx_irq_set_flow = enable; serial_irq_set_internal(obj, RxIrq, enable); } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { while (!serial_readable(obj)); int data = obj->uart->RBR; if (NC != uart_data[obj->index].sw_rts.pin) { gpio_write(&uart_data[obj->index].sw_rts, 0); obj->uart->IER |= 1 << RxIrq; } return data; } void serial_putc(serial_t *obj, int c) { while (!serial_writable(obj)); obj->uart->THR = c; uart_data[obj->index].count++; } int serial_readable(serial_t *obj) { return obj->uart->LSR & 0x01; } int serial_writable(serial_t *obj) { int isWritable = 1; if (NC != uart_data[obj->index].sw_cts.pin) isWritable = (gpio_read(&uart_data[obj->index].sw_cts) == 0) && (obj->uart->LSR & 0x40); //If flow control: writable if CTS low + UART done else { if (obj->uart->LSR & 0x20) uart_data[obj->index].count = 0; else if (uart_data[obj->index].count >= 16) isWritable = 0; } return isWritable; } void serial_clear(serial_t *obj) { obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled | 1 << 1 // rx FIFO reset | 1 << 2 // tx FIFO reset | 0 << 6; // interrupt depth } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { obj->uart->LCR |= (1 << 6); } void serial_break_clear(serial_t *obj) { obj->uart->LCR &= ~(1 << 6); } void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { // Only UART1 has hardware flow control on LPC176x LPC_UART1_TypeDef *uart1 = (uint32_t)obj->uart == (uint32_t)LPC_UART1 ? LPC_UART1 : NULL; int index = obj->index; // First, disable flow control completely if (uart1) uart1->MCR = uart1->MCR & ~UART_MCR_FLOWCTRL_MASK; uart_data[index].sw_rts.pin = uart_data[index].sw_cts.pin = NC; serial_flow_irq_set(obj, 0); if (FlowControlNone == type) return; // Check type(s) of flow control to use UARTName uart_rts = (UARTName)pinmap_find_peripheral(rxflow, PinMap_UART_RTS); UARTName uart_cts = (UARTName)pinmap_find_peripheral(txflow, PinMap_UART_CTS); if (((FlowControlCTS == type) || (FlowControlRTSCTS == type)) && (NC != txflow)) { // Can this be enabled in hardware? if ((UART_1 == uart_cts) && (NULL != uart1)) { // Enable auto-CTS mode uart1->MCR |= UART_MCR_CTSEN_MASK; pinmap_pinout(txflow, PinMap_UART_CTS); } else { // Can't enable in hardware, use software emulation gpio_init_in(&uart_data[index].sw_cts, txflow); } } if (((FlowControlRTS == type) || (FlowControlRTSCTS == type)) && (NC != rxflow)) { // Enable FIFOs, trigger level of 1 char on RX FIFO obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled | 1 << 1 // Rx Fifo Reset | 1 << 2 // Tx Fifo Reset | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars // Can this be enabled in hardware? if ((UART_1 == uart_rts) && (NULL != uart1)) { // Enable auto-RTS mode uart1->MCR |= UART_MCR_RTSEN_MASK; pinmap_pinout(rxflow, PinMap_UART_RTS); } else { // can't enable in hardware, use software emulation gpio_init_out_ex(&uart_data[index].sw_rts, rxflow, 0); // Enable RX interrupt serial_flow_irq_set(obj, 1); } } }