mbed-os
Fork of mbed-os by
targets/TARGET_NXP/TARGET_LPC176X/can_api.c
- Committer:
- xuaner
- Date:
- 2017-07-20
- Revision:
- 1:3deb71413561
- Parent:
- 0:f269e3021894
File content as of revision 1:3deb71413561:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include "can_api.h" #include "cmsis.h" #include "pinmap.h" #include <math.h> #include <string.h> #define CAN_NUM 2 /* Acceptance filter mode in AFMR register */ #define ACCF_OFF 0x01 #define ACCF_BYPASS 0x02 #define ACCF_ON 0x00 #define ACCF_FULLCAN 0x04 /* There are several bit timing calculators on the internet. http://www.port.de/engl/canprod/sv_req_form.html http://www.kvaser.com/can/index.htm */ static const PinMap PinMap_CAN_RD[] = { {P0_0 , CAN_1, 1}, {P0_4 , CAN_2, 2}, {P0_21, CAN_1, 3}, {P2_7 , CAN_2, 1}, {NC , NC , 0} }; static const PinMap PinMap_CAN_TD[] = { {P0_1 , CAN_1, 1}, {P0_5 , CAN_2, 2}, {P0_22, CAN_1, 3}, {P2_8 , CAN_2, 1}, {NC , NC , 0} }; // Type definition to hold a CAN message struct CANMsg { unsigned int reserved1 : 16; unsigned int dlc : 4; // Bits 16..19: DLC - Data Length Counter unsigned int reserved0 : 10; unsigned int rtr : 1; // Bit 30: Set if this is a RTR message unsigned int type : 1; // Bit 31: Set if this is a 29-bit ID message unsigned int id; // CAN Message ID (11-bit or 29-bit) unsigned char data[8]; // CAN Message Data Bytes 0-7 }; typedef struct CANMsg CANMsg; static uint32_t can_irq_ids[CAN_NUM] = {0}; static can_irq_handler irq_handler; static uint32_t can_disable(can_t *obj) { uint32_t sm = obj->dev->MOD; obj->dev->MOD |= 1; return sm; } static inline void can_enable(can_t *obj) { if (obj->dev->MOD & 1) { obj->dev->MOD &= ~(1); } } int can_mode(can_t *obj, CanMode mode) { int success = 0; switch (mode) { case MODE_RESET: // Clear all special modes can_reset(obj); obj->dev->MOD &=~ 0x06; success = 1; break; case MODE_NORMAL: // Clear all special modes can_disable(obj); obj->dev->MOD &=~ 0x06; can_enable(obj); success = 1; break; case MODE_SILENT: // Set listen-only mode and clear self-test mode can_disable(obj); obj->dev->MOD |= 0x02; obj->dev->MOD &=~ 0x04; can_enable(obj); success = 1; break; case MODE_TEST_LOCAL: // Set self-test mode and clear listen-only mode can_disable(obj); obj->dev->MOD |= 0x04; obj->dev->MOD &=~ 0x02; can_enable(obj); success = 1; break; case MODE_TEST_SILENT: case MODE_TEST_GLOBAL: default: success = 0; break; } return success; } int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) { return 0; // not implemented } static inline void can_irq(uint32_t icr, uint32_t index) { uint32_t i; for(i = 0; i < 8; i++) { if((can_irq_ids[index] != 0) && (icr & (1 << i))) { switch (i) { case 0: irq_handler(can_irq_ids[index], IRQ_RX); break; case 1: irq_handler(can_irq_ids[index], IRQ_TX); break; case 2: irq_handler(can_irq_ids[index], IRQ_ERROR); break; case 3: irq_handler(can_irq_ids[index], IRQ_OVERRUN); break; case 4: irq_handler(can_irq_ids[index], IRQ_WAKEUP); break; case 5: irq_handler(can_irq_ids[index], IRQ_PASSIVE); break; case 6: irq_handler(can_irq_ids[index], IRQ_ARB); break; case 7: irq_handler(can_irq_ids[index], IRQ_BUS); break; case 8: irq_handler(can_irq_ids[index], IRQ_READY); break; } } } } // Have to check that the CAN block is active before reading the Interrupt // Control Register, or the mbed hangs void can_irq_n() { uint32_t icr; if(LPC_SC->PCONP & (1 << 13)) { icr = LPC_CAN1->ICR & 0x1FF; can_irq(icr, 0); } if(LPC_SC->PCONP & (1 << 14)) { icr = LPC_CAN2->ICR & 0x1FF; can_irq(icr, 1); } } // Register CAN object's irq handler void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) { irq_handler = handler; can_irq_ids[obj->index] = id; } // Unregister CAN object's irq handler void can_irq_free(can_t *obj) { obj->dev->IER &= ~(1); can_irq_ids[obj->index] = 0; if ((can_irq_ids[0] == 0) && (can_irq_ids[1] == 0)) { NVIC_DisableIRQ(CAN_IRQn); } } // Clear or set a irq void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) { uint32_t ier; switch (type) { case IRQ_RX: ier = (1 << 0); break; case IRQ_TX: ier = (1 << 1); break; case IRQ_ERROR: ier = (1 << 2); break; case IRQ_OVERRUN: ier = (1 << 3); break; case IRQ_WAKEUP: ier = (1 << 4); break; case IRQ_PASSIVE: ier = (1 << 5); break; case IRQ_ARB: ier = (1 << 6); break; case IRQ_BUS: ier = (1 << 7); break; case IRQ_READY: ier = (1 << 8); break; default: return; } obj->dev->MOD |= 1; if(enable == 0) { obj->dev->IER &= ~ier; } else { obj->dev->IER |= ier; } obj->dev->MOD &= ~(1); // Enable NVIC if at least 1 interrupt is active if(((LPC_SC->PCONP & (1 << 13)) && LPC_CAN1->IER) || ((LPC_SC->PCONP & (1 << 14)) && LPC_CAN2->IER)) { NVIC_SetVector(CAN_IRQn, (uint32_t) &can_irq_n); NVIC_EnableIRQ(CAN_IRQn); } else { NVIC_DisableIRQ(CAN_IRQn); } } static int can_pclk(can_t *obj) { int value = 0; switch ((int)obj->dev) { case CAN_1: value = (LPC_SC->PCLKSEL0 & (0x3 << 26)) >> 26; break; case CAN_2: value = (LPC_SC->PCLKSEL0 & (0x3 << 28)) >> 28; break; } switch (value) { case 1: return 1; case 2: return 2; case 3: return 6; default: return 4; } } // This table has the sampling points as close to 75% as possible. The first // value is TSEG1, the second TSEG2. static const int timing_pts[23][2] = { {0x0, 0x0}, // 2, 50% {0x1, 0x0}, // 3, 67% {0x2, 0x0}, // 4, 75% {0x3, 0x0}, // 5, 80% {0x3, 0x1}, // 6, 67% {0x4, 0x1}, // 7, 71% {0x5, 0x1}, // 8, 75% {0x6, 0x1}, // 9, 78% {0x6, 0x2}, // 10, 70% {0x7, 0x2}, // 11, 73% {0x8, 0x2}, // 12, 75% {0x9, 0x2}, // 13, 77% {0x9, 0x3}, // 14, 71% {0xA, 0x3}, // 15, 73% {0xB, 0x3}, // 16, 75% {0xC, 0x3}, // 17, 76% {0xD, 0x3}, // 18, 78% {0xD, 0x4}, // 19, 74% {0xE, 0x4}, // 20, 75% {0xF, 0x4}, // 21, 76% {0xF, 0x5}, // 22, 73% {0xF, 0x6}, // 23, 70% {0xF, 0x7}, // 24, 67% }; static unsigned int can_speed(unsigned int sclk, unsigned int pclk, unsigned int cclk, unsigned char psjw) { uint32_t btr; uint16_t brp = 0; uint32_t calcbit; uint32_t bitwidth; int hit = 0; int bits; bitwidth = sclk / (pclk * cclk); brp = bitwidth / 0x18; while ((!hit) && (brp < bitwidth / 4)) { brp++; for (bits = 22; bits > 0; bits--) { calcbit = (bits + 3) * (brp + 1); if (calcbit == bitwidth) { hit = 1; break; } } } if (hit) { btr = ((timing_pts[bits][1] << 20) & 0x00700000) | ((timing_pts[bits][0] << 16) & 0x000F0000) | ((psjw << 14) & 0x0000C000) | ((brp << 0) & 0x000003FF); } else { btr = 0xFFFFFFFF; } return btr; } void can_init(can_t *obj, PinName rd, PinName td) { CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD); CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD); obj->dev = (LPC_CAN_TypeDef *)pinmap_merge(can_rd, can_td); MBED_ASSERT((int)obj->dev != NC); switch ((int)obj->dev) { case CAN_1: LPC_SC->PCONP |= 1 << 13; break; case CAN_2: LPC_SC->PCONP |= 1 << 14; break; } pinmap_pinout(rd, PinMap_CAN_RD); pinmap_pinout(td, PinMap_CAN_TD); switch ((int)obj->dev) { case CAN_1: obj->index = 0; break; case CAN_2: obj->index = 1; break; } can_reset(obj); obj->dev->IER = 0; // Disable Interrupts can_frequency(obj, 100000); LPC_CANAF->AFMR = ACCF_BYPASS; // Bypass Filter } void can_free(can_t *obj) { switch ((int)obj->dev) { case CAN_1: LPC_SC->PCONP &= ~(1 << 13); break; case CAN_2: LPC_SC->PCONP &= ~(1 << 14); break; } } int can_frequency(can_t *obj, int f) { int pclk = can_pclk(obj); int btr = can_speed(SystemCoreClock, pclk, (unsigned int)f, 1); if (btr > 0) { uint32_t modmask = can_disable(obj); obj->dev->BTR = btr; obj->dev->MOD = modmask; return 1; } else { return 0; } } int can_write(can_t *obj, CAN_Message msg, int cc) { unsigned int CANStatus; CANMsg m; can_enable(obj); m.id = msg.id ; m.dlc = msg.len & 0xF; m.rtr = msg.type; m.type = msg.format; memcpy(m.data, msg.data, msg.len); const unsigned int *buf = (const unsigned int *)&m; CANStatus = obj->dev->SR; // Send the message to ourself if in a test mode if (obj->dev->MOD & 0x04) { cc = 1; } if (CANStatus & 0x00000004) { obj->dev->TFI1 = buf[0] & 0xC00F0000; obj->dev->TID1 = buf[1]; obj->dev->TDA1 = buf[2]; obj->dev->TDB1 = buf[3]; if(cc) { obj->dev->CMR = 0x30; } else { obj->dev->CMR = 0x21; } return 1; } else if (CANStatus & 0x00000400) { obj->dev->TFI2 = buf[0] & 0xC00F0000; obj->dev->TID2 = buf[1]; obj->dev->TDA2 = buf[2]; obj->dev->TDB2 = buf[3]; if (cc) { obj->dev->CMR = 0x50; } else { obj->dev->CMR = 0x41; } return 1; } else if (CANStatus & 0x00040000) { obj->dev->TFI3 = buf[0] & 0xC00F0000; obj->dev->TID3 = buf[1]; obj->dev->TDA3 = buf[2]; obj->dev->TDB3 = buf[3]; if (cc) { obj->dev->CMR = 0x90; } else { obj->dev->CMR = 0x81; } return 1; } return 0; } int can_read(can_t *obj, CAN_Message *msg, int handle) { CANMsg x; unsigned int *i = (unsigned int *)&x; can_enable(obj); if (obj->dev->GSR & 0x1) { *i++ = obj->dev->RFS; // Frame *i++ = obj->dev->RID; // ID *i++ = obj->dev->RDA; // Data A *i++ = obj->dev->RDB; // Data B obj->dev->CMR = 0x04; // release receive buffer msg->id = x.id; msg->len = x.dlc; msg->format = (x.type)? CANExtended : CANStandard; msg->type = (x.rtr)? CANRemote: CANData; memcpy(msg->data,x.data,x.dlc); return 1; } return 0; } void can_reset(can_t *obj) { can_disable(obj); obj->dev->GSR = 0; // Reset error counter when CAN1MOD is in reset } unsigned char can_rderror(can_t *obj) { return (obj->dev->GSR >> 16) & 0xFF; } unsigned char can_tderror(can_t *obj) { return (obj->dev->GSR >> 24) & 0xFF; } void can_monitor(can_t *obj, int silent) { uint32_t mod_mask = can_disable(obj); if (silent) { obj->dev->MOD |= (1 << 1); } else { obj->dev->MOD &= ~(1 << 1); } if (!(mod_mask & 1)) { can_enable(obj); } }