mbed-os
Fork of mbed-os by
targets/TARGET_NXP/TARGET_LPC82X/i2c_api.c@1:3deb71413561, 2017-07-20 (annotated)
- Committer:
- xuaner
- Date:
- Thu Jul 20 14:26:57 2017 +0000
- Revision:
- 1:3deb71413561
- Parent:
- 0:f269e3021894
mbed_os
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
elessair | 0:f269e3021894 | 1 | /* mbed Microcontroller Library |
elessair | 0:f269e3021894 | 2 | * Copyright (c) 2006-2013 ARM Limited |
elessair | 0:f269e3021894 | 3 | * |
elessair | 0:f269e3021894 | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
elessair | 0:f269e3021894 | 5 | * you may not use this file except in compliance with the License. |
elessair | 0:f269e3021894 | 6 | * You may obtain a copy of the License at |
elessair | 0:f269e3021894 | 7 | * |
elessair | 0:f269e3021894 | 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
elessair | 0:f269e3021894 | 9 | * |
elessair | 0:f269e3021894 | 10 | * Unless required by applicable law or agreed to in writing, software |
elessair | 0:f269e3021894 | 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
elessair | 0:f269e3021894 | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
elessair | 0:f269e3021894 | 13 | * See the License for the specific language governing permissions and |
elessair | 0:f269e3021894 | 14 | * limitations under the License. |
elessair | 0:f269e3021894 | 15 | */ |
elessair | 0:f269e3021894 | 16 | #include <stdlib.h> |
elessair | 0:f269e3021894 | 17 | #include <string.h> |
elessair | 0:f269e3021894 | 18 | |
elessair | 0:f269e3021894 | 19 | #include "i2c_api.h" |
elessair | 0:f269e3021894 | 20 | #include "cmsis.h" |
elessair | 0:f269e3021894 | 21 | #include "pinmap.h" |
elessair | 0:f269e3021894 | 22 | |
elessair | 0:f269e3021894 | 23 | #define LPC824_I2C0_FMPLUS 1 |
elessair | 0:f269e3021894 | 24 | |
elessair | 0:f269e3021894 | 25 | #if DEVICE_I2C |
elessair | 0:f269e3021894 | 26 | |
elessair | 0:f269e3021894 | 27 | static const SWM_Map SWM_I2C_SDA[] = { |
elessair | 0:f269e3021894 | 28 | //PINASSIGN Register ID, Pinselect bitfield position |
elessair | 0:f269e3021894 | 29 | { 9, 8}, |
elessair | 0:f269e3021894 | 30 | { 9, 24}, |
elessair | 0:f269e3021894 | 31 | {10, 8}, |
elessair | 0:f269e3021894 | 32 | }; |
elessair | 0:f269e3021894 | 33 | |
elessair | 0:f269e3021894 | 34 | static const SWM_Map SWM_I2C_SCL[] = { |
elessair | 0:f269e3021894 | 35 | //PINASSIGN Register ID, Pinselect bitfield position |
elessair | 0:f269e3021894 | 36 | { 9, 16}, |
elessair | 0:f269e3021894 | 37 | {10, 0}, |
elessair | 0:f269e3021894 | 38 | {10, 16}, |
elessair | 0:f269e3021894 | 39 | }; |
elessair | 0:f269e3021894 | 40 | |
elessair | 0:f269e3021894 | 41 | |
elessair | 0:f269e3021894 | 42 | static int i2c_used = 0; |
elessair | 0:f269e3021894 | 43 | static uint8_t repeated_start = 0; |
elessair | 0:f269e3021894 | 44 | |
elessair | 0:f269e3021894 | 45 | #define I2C_DAT(x) (x->i2c->MSTDAT) |
elessair | 0:f269e3021894 | 46 | #define I2C_STAT(x) ((x->i2c->STAT >> 1) & (0x07)) |
elessair | 0:f269e3021894 | 47 | |
elessair | 0:f269e3021894 | 48 | static inline void i2c_power_enable(int ch) |
elessair | 0:f269e3021894 | 49 | { |
elessair | 0:f269e3021894 | 50 | switch(ch) { |
elessair | 0:f269e3021894 | 51 | case 0: |
elessair | 0:f269e3021894 | 52 | // I2C0, Same as for LPC812 |
elessair | 0:f269e3021894 | 53 | LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 5); |
elessair | 0:f269e3021894 | 54 | LPC_SYSCON->PRESETCTRL &= ~(1 << 6); |
elessair | 0:f269e3021894 | 55 | LPC_SYSCON->PRESETCTRL |= (1 << 6); |
elessair | 0:f269e3021894 | 56 | break; |
elessair | 0:f269e3021894 | 57 | case 1: |
elessair | 0:f269e3021894 | 58 | case 2: |
elessair | 0:f269e3021894 | 59 | case 3: |
elessair | 0:f269e3021894 | 60 | // I2C1,I2C2 or I2C3. Not available for LPC812 |
elessair | 0:f269e3021894 | 61 | LPC_SYSCON->SYSAHBCLKCTRL |= (1 << (20 + ch)); |
elessair | 0:f269e3021894 | 62 | LPC_SYSCON->PRESETCTRL &= ~(1 << (13 + ch)); |
elessair | 0:f269e3021894 | 63 | LPC_SYSCON->PRESETCTRL |= (1 << (13 + ch)); |
elessair | 0:f269e3021894 | 64 | break; |
elessair | 0:f269e3021894 | 65 | default: |
elessair | 0:f269e3021894 | 66 | break; |
elessair | 0:f269e3021894 | 67 | } |
elessair | 0:f269e3021894 | 68 | } |
elessair | 0:f269e3021894 | 69 | |
elessair | 0:f269e3021894 | 70 | |
elessair | 0:f269e3021894 | 71 | static inline void i2c_interface_enable(i2c_t *obj) { |
elessair | 0:f269e3021894 | 72 | obj->i2c->CFG |= (1 << 0); // Enable Master mode |
elessair | 0:f269e3021894 | 73 | // obj->i2c->CFG &= ~(1 << 1); // Disable Slave mode |
elessair | 0:f269e3021894 | 74 | } |
elessair | 0:f269e3021894 | 75 | |
elessair | 0:f269e3021894 | 76 | |
elessair | 0:f269e3021894 | 77 | static int get_available_i2c(void) { |
elessair | 0:f269e3021894 | 78 | int i; |
elessair | 0:f269e3021894 | 79 | for (i=0; i<3; i++) { |
elessair | 0:f269e3021894 | 80 | if ((i2c_used & (1 << i)) == 0) |
elessair | 0:f269e3021894 | 81 | return i+1; |
elessair | 0:f269e3021894 | 82 | } |
elessair | 0:f269e3021894 | 83 | return -1; |
elessair | 0:f269e3021894 | 84 | } |
elessair | 0:f269e3021894 | 85 | |
elessair | 0:f269e3021894 | 86 | void i2c_init(i2c_t *obj, PinName sda, PinName scl) |
elessair | 0:f269e3021894 | 87 | { |
elessair | 0:f269e3021894 | 88 | const SWM_Map *swm; |
elessair | 0:f269e3021894 | 89 | uint32_t regVal; |
elessair | 0:f269e3021894 | 90 | int i2c_ch = 0; |
elessair | 0:f269e3021894 | 91 | |
elessair | 0:f269e3021894 | 92 | //LPC824 |
elessair | 0:f269e3021894 | 93 | //I2C0 can support FM+ but only on P0_11 and P0_10 |
elessair | 0:f269e3021894 | 94 | if (sda == I2C_SDA && scl == I2C_SCL) { |
elessair | 0:f269e3021894 | 95 | //Select I2C mode for P0_11 and P0_10 |
elessair | 0:f269e3021894 | 96 | LPC_SWM->PINENABLE0 &= ~(0x3 << 11); |
elessair | 0:f269e3021894 | 97 | |
elessair | 0:f269e3021894 | 98 | #if(LPC824_I2C0_FMPLUS == 1) |
elessair | 0:f269e3021894 | 99 | // Enable FM+ mode on P0_11, P0_10 |
elessair | 0:f269e3021894 | 100 | LPC_IOCON->PIO0_10 &= ~(0x3 << 8); |
elessair | 0:f269e3021894 | 101 | LPC_IOCON->PIO0_10 |= (0x2 << 8); //FM+ mode |
elessair | 0:f269e3021894 | 102 | LPC_IOCON->PIO0_11 &= ~(0x3 << 8); |
elessair | 0:f269e3021894 | 103 | LPC_IOCON->PIO0_11 |= (0x2 << 8); //FM+ mode |
elessair | 0:f269e3021894 | 104 | #endif |
elessair | 0:f269e3021894 | 105 | } |
elessair | 0:f269e3021894 | 106 | else { |
elessair | 0:f269e3021894 | 107 | //Select any other pin for I2C1, I2C2 or I2C3 |
elessair | 0:f269e3021894 | 108 | i2c_ch = get_available_i2c(); |
elessair | 0:f269e3021894 | 109 | if (i2c_ch == -1) |
elessair | 0:f269e3021894 | 110 | return; |
elessair | 0:f269e3021894 | 111 | i2c_used |= (1 << (i2c_ch - 1)); |
elessair | 0:f269e3021894 | 112 | |
elessair | 0:f269e3021894 | 113 | swm = &SWM_I2C_SDA[i2c_ch - 1]; |
elessair | 0:f269e3021894 | 114 | regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset); |
elessair | 0:f269e3021894 | 115 | LPC_SWM->PINASSIGN[swm->n] = regVal | ((sda >> PIN_SHIFT) << swm->offset); |
elessair | 0:f269e3021894 | 116 | |
elessair | 0:f269e3021894 | 117 | swm = &SWM_I2C_SCL[i2c_ch - 1]; |
elessair | 0:f269e3021894 | 118 | regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset); |
elessair | 0:f269e3021894 | 119 | LPC_SWM->PINASSIGN[swm->n] = regVal | ((scl >> PIN_SHIFT) << swm->offset); |
elessair | 0:f269e3021894 | 120 | } |
elessair | 0:f269e3021894 | 121 | |
elessair | 0:f269e3021894 | 122 | switch(i2c_ch) { |
elessair | 0:f269e3021894 | 123 | case 0: |
elessair | 0:f269e3021894 | 124 | obj->i2c = (LPC_I2C0_Type *)LPC_I2C0; |
elessair | 0:f269e3021894 | 125 | break; |
elessair | 0:f269e3021894 | 126 | case 1: |
elessair | 0:f269e3021894 | 127 | obj->i2c = (LPC_I2C0_Type *)LPC_I2C1; |
elessair | 0:f269e3021894 | 128 | break; |
elessair | 0:f269e3021894 | 129 | case 2: |
elessair | 0:f269e3021894 | 130 | obj->i2c = (LPC_I2C0_Type *)LPC_I2C2; |
elessair | 0:f269e3021894 | 131 | break; |
elessair | 0:f269e3021894 | 132 | case 3: |
elessair | 0:f269e3021894 | 133 | obj->i2c = (LPC_I2C0_Type *)LPC_I2C3; |
elessair | 0:f269e3021894 | 134 | break; |
elessair | 0:f269e3021894 | 135 | default: |
elessair | 0:f269e3021894 | 136 | break; |
elessair | 0:f269e3021894 | 137 | } |
elessair | 0:f269e3021894 | 138 | |
elessair | 0:f269e3021894 | 139 | // enable power |
elessair | 0:f269e3021894 | 140 | i2c_power_enable(i2c_ch); |
elessair | 0:f269e3021894 | 141 | // set default frequency at 100k |
elessair | 0:f269e3021894 | 142 | i2c_frequency(obj, 100000); |
elessair | 0:f269e3021894 | 143 | i2c_interface_enable(obj); |
elessair | 0:f269e3021894 | 144 | } |
elessair | 0:f269e3021894 | 145 | |
elessair | 0:f269e3021894 | 146 | |
elessair | 0:f269e3021894 | 147 | static inline int i2c_status(i2c_t *obj) { |
elessair | 0:f269e3021894 | 148 | return I2C_STAT(obj); |
elessair | 0:f269e3021894 | 149 | } |
elessair | 0:f269e3021894 | 150 | |
elessair | 0:f269e3021894 | 151 | // Wait until the Master Serial Interrupt (SI) is set |
elessair | 0:f269e3021894 | 152 | // Timeout when it takes too long. |
elessair | 0:f269e3021894 | 153 | static int i2c_wait_SI(i2c_t *obj) { |
elessair | 0:f269e3021894 | 154 | int timeout = 0; |
elessair | 0:f269e3021894 | 155 | while (!(obj->i2c->STAT & (1 << 0))) { |
elessair | 0:f269e3021894 | 156 | timeout++; |
elessair | 0:f269e3021894 | 157 | if (timeout > 100000) return -1; |
elessair | 0:f269e3021894 | 158 | } |
elessair | 0:f269e3021894 | 159 | return 0; |
elessair | 0:f269e3021894 | 160 | } |
elessair | 0:f269e3021894 | 161 | |
elessair | 0:f269e3021894 | 162 | |
elessair | 0:f269e3021894 | 163 | //Attention. Spec says: First store Address in DAT before setting STA ! |
elessair | 0:f269e3021894 | 164 | //Undefined state when using single byte I2C operations and too much delay |
elessair | 0:f269e3021894 | 165 | //between i2c_start and do_i2c_write(Address). |
elessair | 0:f269e3021894 | 166 | //Also note that lpc812/824 will immediately continue reading a byte when Address b0 == 1 |
elessair | 0:f269e3021894 | 167 | inline int i2c_start(i2c_t *obj) { |
elessair | 0:f269e3021894 | 168 | int status = 0; |
elessair | 0:f269e3021894 | 169 | if (repeated_start) { |
elessair | 0:f269e3021894 | 170 | obj->i2c->MSTCTL = (1 << 1) | (1 << 0); // STA bit and Continue bit to complete previous RD or WR |
elessair | 0:f269e3021894 | 171 | repeated_start = 0; |
elessair | 0:f269e3021894 | 172 | } else { |
elessair | 0:f269e3021894 | 173 | obj->i2c->MSTCTL = (1 << 1); // STA bit |
elessair | 0:f269e3021894 | 174 | } |
elessair | 0:f269e3021894 | 175 | return status; |
elessair | 0:f269e3021894 | 176 | } |
elessair | 0:f269e3021894 | 177 | |
elessair | 0:f269e3021894 | 178 | //Generate Stop condition and wait until bus is Idle |
elessair | 0:f269e3021894 | 179 | //Will also send NAK for previous RD |
elessair | 0:f269e3021894 | 180 | inline int i2c_stop(i2c_t *obj) { |
elessair | 0:f269e3021894 | 181 | int timeout = 0; |
elessair | 0:f269e3021894 | 182 | |
elessair | 0:f269e3021894 | 183 | // STP bit and Continue bit. Sends NAK to complete previous RD |
elessair | 0:f269e3021894 | 184 | obj->i2c->MSTCTL = (1 << 2) | (1 << 0); |
elessair | 0:f269e3021894 | 185 | |
elessair | 0:f269e3021894 | 186 | //Spin until Ready (b0 == 1)and Status is Idle (b3..b1 == 000) |
elessair | 0:f269e3021894 | 187 | while ((obj->i2c->STAT & ((7 << 1) | (1 << 0))) != ((0 << 1) | (1 << 0))) { |
elessair | 0:f269e3021894 | 188 | timeout ++; |
elessair | 0:f269e3021894 | 189 | if (timeout > 100000) return 1; |
elessair | 0:f269e3021894 | 190 | } |
elessair | 0:f269e3021894 | 191 | |
elessair | 0:f269e3021894 | 192 | // repeated_start = 0; // bus free |
elessair | 0:f269e3021894 | 193 | return 0; |
elessair | 0:f269e3021894 | 194 | } |
elessair | 0:f269e3021894 | 195 | |
elessair | 0:f269e3021894 | 196 | //Spec says: first check Idle and status is Ok |
elessair | 0:f269e3021894 | 197 | static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) { |
elessair | 0:f269e3021894 | 198 | // write the data |
elessair | 0:f269e3021894 | 199 | I2C_DAT(obj) = value; |
elessair | 0:f269e3021894 | 200 | |
elessair | 0:f269e3021894 | 201 | if (!addr) |
elessair | 0:f269e3021894 | 202 | obj->i2c->MSTCTL = (1 << 0); //Set continue for data. Should not be set for addr since that uses STA |
elessair | 0:f269e3021894 | 203 | |
elessair | 0:f269e3021894 | 204 | // wait and return status |
elessair | 0:f269e3021894 | 205 | i2c_wait_SI(obj); |
elessair | 0:f269e3021894 | 206 | return i2c_status(obj); |
elessair | 0:f269e3021894 | 207 | } |
elessair | 0:f269e3021894 | 208 | |
elessair | 0:f269e3021894 | 209 | |
elessair | 0:f269e3021894 | 210 | //Attention, correct Order: wait for data ready, read data, read status, continue, return |
elessair | 0:f269e3021894 | 211 | //Dont read DAT or STAT when not ready, so dont read after setting continue. |
elessair | 0:f269e3021894 | 212 | //Results may be invalid when next read is underway. |
elessair | 0:f269e3021894 | 213 | static inline int i2c_do_read(i2c_t *obj, int last) { |
elessair | 0:f269e3021894 | 214 | // wait for it to arrive |
elessair | 0:f269e3021894 | 215 | i2c_wait_SI(obj); |
elessair | 0:f269e3021894 | 216 | if (!last) |
elessair | 0:f269e3021894 | 217 | obj->i2c->MSTCTL = (1 << 0); //ACK and Continue |
elessair | 0:f269e3021894 | 218 | |
elessair | 0:f269e3021894 | 219 | // return the data |
elessair | 0:f269e3021894 | 220 | return (I2C_DAT(obj) & 0xFF); |
elessair | 0:f269e3021894 | 221 | } |
elessair | 0:f269e3021894 | 222 | |
elessair | 0:f269e3021894 | 223 | |
elessair | 0:f269e3021894 | 224 | void i2c_frequency(i2c_t *obj, int hz) { |
elessair | 0:f269e3021894 | 225 | // No peripheral clock divider on the M0 |
elessair | 0:f269e3021894 | 226 | uint32_t PCLK = SystemCoreClock; |
elessair | 0:f269e3021894 | 227 | |
elessair | 0:f269e3021894 | 228 | uint32_t clkdiv = PCLK / (hz * 4) - 1; |
elessair | 0:f269e3021894 | 229 | |
elessair | 0:f269e3021894 | 230 | obj->i2c->CLKDIV = clkdiv; |
elessair | 0:f269e3021894 | 231 | obj->i2c->MSTTIME = 0; |
elessair | 0:f269e3021894 | 232 | } |
elessair | 0:f269e3021894 | 233 | |
elessair | 0:f269e3021894 | 234 | // The I2C does a read or a write as a whole operation |
elessair | 0:f269e3021894 | 235 | // There are two types of error conditions it can encounter |
elessair | 0:f269e3021894 | 236 | // 1) it can not obtain the bus |
elessair | 0:f269e3021894 | 237 | // 2) it gets error responses at part of the transmission |
elessair | 0:f269e3021894 | 238 | // |
elessair | 0:f269e3021894 | 239 | // We tackle them as follows: |
elessair | 0:f269e3021894 | 240 | // 1) we retry until we get the bus. we could have a "timeout" if we can not get it |
elessair | 0:f269e3021894 | 241 | // which basically turns it in to a 2) |
elessair | 0:f269e3021894 | 242 | // 2) on error, we use the standard error mechanisms to report/debug |
elessair | 0:f269e3021894 | 243 | // |
elessair | 0:f269e3021894 | 244 | // Therefore an I2C transaction should always complete. If it doesn't it is usually |
elessair | 0:f269e3021894 | 245 | // because something is setup wrong (e.g. wiring), and we don't need to programatically |
elessair | 0:f269e3021894 | 246 | // check for that |
elessair | 0:f269e3021894 | 247 | int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) { |
elessair | 0:f269e3021894 | 248 | int count, status; |
elessair | 0:f269e3021894 | 249 | |
elessair | 0:f269e3021894 | 250 | //Store the address+RD and then generate STA |
elessair | 0:f269e3021894 | 251 | I2C_DAT(obj) = address | 0x01; |
elessair | 0:f269e3021894 | 252 | i2c_start(obj); |
elessair | 0:f269e3021894 | 253 | |
elessair | 0:f269e3021894 | 254 | // Wait for completion of STA and Sending of SlaveAddress+RD and first Read byte |
elessair | 0:f269e3021894 | 255 | i2c_wait_SI(obj); |
elessair | 0:f269e3021894 | 256 | status = i2c_status(obj); |
elessair | 0:f269e3021894 | 257 | if (status == 0x03) { // NAK on SlaveAddress |
elessair | 0:f269e3021894 | 258 | i2c_stop(obj); |
elessair | 0:f269e3021894 | 259 | return I2C_ERROR_NO_SLAVE; |
elessair | 0:f269e3021894 | 260 | } |
elessair | 0:f269e3021894 | 261 | |
elessair | 0:f269e3021894 | 262 | // Read in all except last byte |
elessair | 0:f269e3021894 | 263 | for (count = 0; count < (length-1); count++) { |
elessair | 0:f269e3021894 | 264 | |
elessair | 0:f269e3021894 | 265 | // Wait for it to arrive, note that first byte read after address+RD is already waiting |
elessair | 0:f269e3021894 | 266 | i2c_wait_SI(obj); |
elessair | 0:f269e3021894 | 267 | status = i2c_status(obj); |
elessair | 0:f269e3021894 | 268 | if (status != 0x01) { // RX RDY |
elessair | 0:f269e3021894 | 269 | i2c_stop(obj); |
elessair | 0:f269e3021894 | 270 | return count; |
elessair | 0:f269e3021894 | 271 | } |
elessair | 0:f269e3021894 | 272 | data[count] = I2C_DAT(obj) & 0xFF; // Store read byte |
elessair | 0:f269e3021894 | 273 | |
elessair | 0:f269e3021894 | 274 | obj->i2c->MSTCTL = (1 << 0); // Send ACK and Continue to read |
elessair | 0:f269e3021894 | 275 | } |
elessair | 0:f269e3021894 | 276 | |
elessair | 0:f269e3021894 | 277 | // Read final byte |
elessair | 0:f269e3021894 | 278 | // Wait for it to arrive |
elessair | 0:f269e3021894 | 279 | i2c_wait_SI(obj); |
elessair | 0:f269e3021894 | 280 | |
elessair | 0:f269e3021894 | 281 | status = i2c_status(obj); |
elessair | 0:f269e3021894 | 282 | if (status != 0x01) { // RX RDY |
elessair | 0:f269e3021894 | 283 | i2c_stop(obj); |
elessair | 0:f269e3021894 | 284 | return count; |
elessair | 0:f269e3021894 | 285 | } |
elessair | 0:f269e3021894 | 286 | data[count] = I2C_DAT(obj) & 0xFF; // Store final read byte |
elessair | 0:f269e3021894 | 287 | |
elessair | 0:f269e3021894 | 288 | // If not repeated start, send stop. |
elessair | 0:f269e3021894 | 289 | if (stop) { |
elessair | 0:f269e3021894 | 290 | i2c_stop(obj); // Also sends NAK for last read byte |
elessair | 0:f269e3021894 | 291 | } else { |
elessair | 0:f269e3021894 | 292 | repeated_start = 1; |
elessair | 0:f269e3021894 | 293 | } |
elessair | 0:f269e3021894 | 294 | |
elessair | 0:f269e3021894 | 295 | return length; |
elessair | 0:f269e3021894 | 296 | } |
elessair | 0:f269e3021894 | 297 | |
elessair | 0:f269e3021894 | 298 | |
elessair | 0:f269e3021894 | 299 | int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) { |
elessair | 0:f269e3021894 | 300 | int i, status; |
elessair | 0:f269e3021894 | 301 | |
elessair | 0:f269e3021894 | 302 | //Store the address+/WR and then generate STA |
elessair | 0:f269e3021894 | 303 | I2C_DAT(obj) = address & 0xFE; |
elessair | 0:f269e3021894 | 304 | i2c_start(obj); |
elessair | 0:f269e3021894 | 305 | |
elessair | 0:f269e3021894 | 306 | // Wait for completion of STA and Sending of SlaveAddress+/WR |
elessair | 0:f269e3021894 | 307 | i2c_wait_SI(obj); |
elessair | 0:f269e3021894 | 308 | status = i2c_status(obj); |
elessair | 0:f269e3021894 | 309 | if (status == 0x03) { // NAK SlaveAddress |
elessair | 0:f269e3021894 | 310 | i2c_stop(obj); |
elessair | 0:f269e3021894 | 311 | return I2C_ERROR_NO_SLAVE; |
elessair | 0:f269e3021894 | 312 | } |
elessair | 0:f269e3021894 | 313 | |
elessair | 0:f269e3021894 | 314 | //Write all bytes |
elessair | 0:f269e3021894 | 315 | for (i=0; i<length; i++) { |
elessair | 0:f269e3021894 | 316 | status = i2c_do_write(obj, data[i], 0); |
elessair | 0:f269e3021894 | 317 | if (status != 0x02) { // TX RDY. Handles a Slave NAK on datawrite |
elessair | 0:f269e3021894 | 318 | i2c_stop(obj); |
elessair | 0:f269e3021894 | 319 | return i; |
elessair | 0:f269e3021894 | 320 | } |
elessair | 0:f269e3021894 | 321 | } |
elessair | 0:f269e3021894 | 322 | |
elessair | 0:f269e3021894 | 323 | // If not repeated start, send stop. |
elessair | 0:f269e3021894 | 324 | if (stop) { |
elessair | 0:f269e3021894 | 325 | i2c_stop(obj); |
elessair | 0:f269e3021894 | 326 | } else { |
elessair | 0:f269e3021894 | 327 | repeated_start = 1; |
elessair | 0:f269e3021894 | 328 | } |
elessair | 0:f269e3021894 | 329 | |
elessair | 0:f269e3021894 | 330 | return length; |
elessair | 0:f269e3021894 | 331 | } |
elessair | 0:f269e3021894 | 332 | |
elessair | 0:f269e3021894 | 333 | void i2c_reset(i2c_t *obj) { |
elessair | 0:f269e3021894 | 334 | i2c_stop(obj); |
elessair | 0:f269e3021894 | 335 | } |
elessair | 0:f269e3021894 | 336 | |
elessair | 0:f269e3021894 | 337 | int i2c_byte_read(i2c_t *obj, int last) { |
elessair | 0:f269e3021894 | 338 | return (i2c_do_read(obj, last) & 0xFF); |
elessair | 0:f269e3021894 | 339 | // return (i2c_do_read(obj, last, 0) & 0xFF); |
elessair | 0:f269e3021894 | 340 | } |
elessair | 0:f269e3021894 | 341 | |
elessair | 0:f269e3021894 | 342 | int i2c_byte_write(i2c_t *obj, int data) { |
elessair | 0:f269e3021894 | 343 | int ack; |
elessair | 0:f269e3021894 | 344 | int status = i2c_do_write(obj, (data & 0xFF), 0); |
elessair | 0:f269e3021894 | 345 | |
elessair | 0:f269e3021894 | 346 | switch(status) { |
elessair | 0:f269e3021894 | 347 | case 2: // TX RDY. Handles a Slave NAK on datawrite |
elessair | 0:f269e3021894 | 348 | ack = 1; |
elessair | 0:f269e3021894 | 349 | break; |
elessair | 0:f269e3021894 | 350 | default: |
elessair | 0:f269e3021894 | 351 | ack = 0; |
elessair | 0:f269e3021894 | 352 | break; |
elessair | 0:f269e3021894 | 353 | } |
elessair | 0:f269e3021894 | 354 | |
elessair | 0:f269e3021894 | 355 | return ack; |
elessair | 0:f269e3021894 | 356 | } |
elessair | 0:f269e3021894 | 357 | |
elessair | 0:f269e3021894 | 358 | |
elessair | 0:f269e3021894 | 359 | #if DEVICE_I2CSLAVE |
elessair | 0:f269e3021894 | 360 | |
elessair | 0:f269e3021894 | 361 | #define I2C_SLVDAT(x) (x->i2c->SLVDAT) |
elessair | 0:f269e3021894 | 362 | #define I2C_SLVSTAT(x) ((x->i2c->STAT >> 9) & (0x03)) |
elessair | 0:f269e3021894 | 363 | #define I2C_SLVSI(x) ((x->i2c->STAT >> 8) & (0x01)) |
elessair | 0:f269e3021894 | 364 | //#define I2C_SLVCNT(x) (x->i2c->SLVCTL = (1 << 0)) |
elessair | 0:f269e3021894 | 365 | //#define I2C_SLVNAK(x) (x->i2c->SLVCTL = (1 << 1)) |
elessair | 0:f269e3021894 | 366 | |
elessair | 0:f269e3021894 | 367 | #if(0) |
elessair | 0:f269e3021894 | 368 | // Wait until the Slave Serial Interrupt (SI) is set |
elessair | 0:f269e3021894 | 369 | // Timeout when it takes too long. |
elessair | 0:f269e3021894 | 370 | static int i2c_wait_slave_SI(i2c_t *obj) { |
elessair | 0:f269e3021894 | 371 | int timeout = 0; |
elessair | 0:f269e3021894 | 372 | while (!(obj->i2c->STAT & (1 << 8))) { |
elessair | 0:f269e3021894 | 373 | timeout++; |
elessair | 0:f269e3021894 | 374 | if (timeout > 100000) return -1; |
elessair | 0:f269e3021894 | 375 | } |
elessair | 0:f269e3021894 | 376 | return 0; |
elessair | 0:f269e3021894 | 377 | } |
elessair | 0:f269e3021894 | 378 | #endif |
elessair | 0:f269e3021894 | 379 | |
elessair | 0:f269e3021894 | 380 | void i2c_slave_mode(i2c_t *obj, int enable_slave) { |
elessair | 0:f269e3021894 | 381 | |
elessair | 0:f269e3021894 | 382 | if (enable_slave) { |
elessair | 0:f269e3021894 | 383 | // obj->i2c->CFG &= ~(1 << 0); //Disable Master mode |
elessair | 0:f269e3021894 | 384 | obj->i2c->CFG |= (1 << 1); //Enable Slave mode |
elessair | 0:f269e3021894 | 385 | } |
elessair | 0:f269e3021894 | 386 | else { |
elessair | 0:f269e3021894 | 387 | // obj->i2c->CFG |= (1 << 0); //Enable Master mode |
elessair | 0:f269e3021894 | 388 | obj->i2c->CFG &= ~(1 << 1); //Disable Slave mode |
elessair | 0:f269e3021894 | 389 | } |
elessair | 0:f269e3021894 | 390 | } |
elessair | 0:f269e3021894 | 391 | |
elessair | 0:f269e3021894 | 392 | // Wait for next I2C event and find out what is going on |
elessair | 0:f269e3021894 | 393 | // |
elessair | 0:f269e3021894 | 394 | int i2c_slave_receive(i2c_t *obj) { |
elessair | 0:f269e3021894 | 395 | int addr; |
elessair | 0:f269e3021894 | 396 | |
elessair | 0:f269e3021894 | 397 | // Check if there is any data pending |
elessair | 0:f269e3021894 | 398 | if (! I2C_SLVSI(obj)) { |
elessair | 0:f269e3021894 | 399 | return 0; //NoData |
elessair | 0:f269e3021894 | 400 | }; |
elessair | 0:f269e3021894 | 401 | |
elessair | 0:f269e3021894 | 402 | // Check State |
elessair | 0:f269e3021894 | 403 | switch(I2C_SLVSTAT(obj)) { |
elessair | 0:f269e3021894 | 404 | case 0x0: // Slave address plus R/W received |
elessair | 0:f269e3021894 | 405 | // At least one of the four slave addresses has been matched by hardware. |
elessair | 0:f269e3021894 | 406 | // You can figure out which address by checking Slave address match Index in STAT register. |
elessair | 0:f269e3021894 | 407 | |
elessair | 0:f269e3021894 | 408 | // Get the received address |
elessair | 0:f269e3021894 | 409 | addr = I2C_SLVDAT(obj) & 0xFF; |
elessair | 0:f269e3021894 | 410 | // Send ACK on address and Continue |
elessair | 0:f269e3021894 | 411 | obj->i2c->SLVCTL = (1 << 0); |
elessair | 0:f269e3021894 | 412 | |
elessair | 0:f269e3021894 | 413 | if (addr == 0x00) { |
elessair | 0:f269e3021894 | 414 | return 2; //WriteGeneral |
elessair | 0:f269e3021894 | 415 | } |
elessair | 0:f269e3021894 | 416 | //check the RW bit |
elessair | 0:f269e3021894 | 417 | if ((addr & 0x01) == 0x01) { |
elessair | 0:f269e3021894 | 418 | return 1; //ReadAddressed |
elessair | 0:f269e3021894 | 419 | } |
elessair | 0:f269e3021894 | 420 | else { |
elessair | 0:f269e3021894 | 421 | return 3; //WriteAddressed |
elessair | 0:f269e3021894 | 422 | } |
elessair | 0:f269e3021894 | 423 | //break; |
elessair | 0:f269e3021894 | 424 | |
elessair | 0:f269e3021894 | 425 | case 0x1: // Slave receive. Received data is available (Slave Receiver mode). |
elessair | 0:f269e3021894 | 426 | // Oops, should never get here... |
elessair | 0:f269e3021894 | 427 | obj->i2c->SLVCTL = (1 << 1); // Send NACK on received data, try to recover... |
elessair | 0:f269e3021894 | 428 | return 0; //NoData |
elessair | 0:f269e3021894 | 429 | |
elessair | 0:f269e3021894 | 430 | case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode). |
elessair | 0:f269e3021894 | 431 | // Oops, should never get here... |
elessair | 0:f269e3021894 | 432 | I2C_SLVDAT(obj) = 0xFF; // Send dummy data for transmission |
elessair | 0:f269e3021894 | 433 | obj->i2c->SLVCTL = (1 << 0); // Continue and try to recover... |
elessair | 0:f269e3021894 | 434 | return 0; //NoData |
elessair | 0:f269e3021894 | 435 | |
elessair | 0:f269e3021894 | 436 | case 0x3: // Reserved. |
elessair | 0:f269e3021894 | 437 | default: // Oops, should never get here... |
elessair | 0:f269e3021894 | 438 | obj->i2c->SLVCTL = (1 << 0); // Continue and try to recover... |
elessair | 0:f269e3021894 | 439 | return 0; //NoData |
elessair | 0:f269e3021894 | 440 | //break; |
elessair | 0:f269e3021894 | 441 | } //switch status |
elessair | 0:f269e3021894 | 442 | } |
elessair | 0:f269e3021894 | 443 | |
elessair | 0:f269e3021894 | 444 | // The dedicated I2C Slave byte read and byte write functions need to be called |
elessair | 0:f269e3021894 | 445 | // from 'common' mbed I2CSlave API for devices that have separate Master and |
elessair | 0:f269e3021894 | 446 | // Slave engines such as the lpc812 and lpc1549. |
elessair | 0:f269e3021894 | 447 | |
elessair | 0:f269e3021894 | 448 | //Called when Slave is addressed for Write, Slave will receive Data in polling mode |
elessair | 0:f269e3021894 | 449 | //Parameter last=1 means received byte will be NACKed. |
elessair | 0:f269e3021894 | 450 | int i2c_slave_byte_read(i2c_t *obj, int last) { |
elessair | 0:f269e3021894 | 451 | int data; |
elessair | 0:f269e3021894 | 452 | |
elessair | 0:f269e3021894 | 453 | // Wait for data |
elessair | 0:f269e3021894 | 454 | while (!I2C_SLVSI(obj)); // Wait forever |
elessair | 0:f269e3021894 | 455 | //if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout |
elessair | 0:f269e3021894 | 456 | |
elessair | 0:f269e3021894 | 457 | // Dont bother to check State, were not returning it anyhow.. |
elessair | 0:f269e3021894 | 458 | //if (I2C_SLVSTAT(obj)) == 0x01) { |
elessair | 0:f269e3021894 | 459 | // Slave receive. Received data is available (Slave Receiver mode). |
elessair | 0:f269e3021894 | 460 | //}; |
elessair | 0:f269e3021894 | 461 | |
elessair | 0:f269e3021894 | 462 | data = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data |
elessair | 0:f269e3021894 | 463 | if (last) { |
elessair | 0:f269e3021894 | 464 | obj->i2c->SLVCTL = (1 << 1); // Send NACK on received data and Continue |
elessair | 0:f269e3021894 | 465 | } |
elessair | 0:f269e3021894 | 466 | else { |
elessair | 0:f269e3021894 | 467 | obj->i2c->SLVCTL = (1 << 0); // Send ACK on data and Continue to read |
elessair | 0:f269e3021894 | 468 | } |
elessair | 0:f269e3021894 | 469 | |
elessair | 0:f269e3021894 | 470 | return data; |
elessair | 0:f269e3021894 | 471 | } |
elessair | 0:f269e3021894 | 472 | |
elessair | 0:f269e3021894 | 473 | |
elessair | 0:f269e3021894 | 474 | //Called when Slave is addressed for Read, Slave will send Data in polling mode |
elessair | 0:f269e3021894 | 475 | // |
elessair | 0:f269e3021894 | 476 | int i2c_slave_byte_write(i2c_t *obj, int data) { |
elessair | 0:f269e3021894 | 477 | |
elessair | 0:f269e3021894 | 478 | // Wait until Ready |
elessair | 0:f269e3021894 | 479 | while (!I2C_SLVSI(obj)); // Wait forever |
elessair | 0:f269e3021894 | 480 | // if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout |
elessair | 0:f269e3021894 | 481 | |
elessair | 0:f269e3021894 | 482 | // Check State |
elessair | 0:f269e3021894 | 483 | switch(I2C_SLVSTAT(obj)) { |
elessair | 0:f269e3021894 | 484 | case 0x0: // Slave address plus R/W received |
elessair | 0:f269e3021894 | 485 | // At least one of the four slave addresses has been matched by hardware. |
elessair | 0:f269e3021894 | 486 | // You can figure out which address by checking Slave address match Index in STAT register. |
elessair | 0:f269e3021894 | 487 | // I2C Restart occurred |
elessair | 0:f269e3021894 | 488 | return -1; |
elessair | 0:f269e3021894 | 489 | //break; |
elessair | 0:f269e3021894 | 490 | case 0x1: // Slave receive. Received data is available (Slave Receiver mode). |
elessair | 0:f269e3021894 | 491 | // Should not get here... |
elessair | 0:f269e3021894 | 492 | return -2; |
elessair | 0:f269e3021894 | 493 | //break; |
elessair | 0:f269e3021894 | 494 | case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode). |
elessair | 0:f269e3021894 | 495 | I2C_SLVDAT(obj) = data & 0xFF; // Store the data for transmission |
elessair | 0:f269e3021894 | 496 | obj->i2c->SLVCTL = (1 << 0); // Continue to send |
elessair | 0:f269e3021894 | 497 | |
elessair | 0:f269e3021894 | 498 | return 1; |
elessair | 0:f269e3021894 | 499 | //break; |
elessair | 0:f269e3021894 | 500 | case 0x3: // Reserved. |
elessair | 0:f269e3021894 | 501 | default: |
elessair | 0:f269e3021894 | 502 | // Should not get here... |
elessair | 0:f269e3021894 | 503 | return -3; |
elessair | 0:f269e3021894 | 504 | //break; |
elessair | 0:f269e3021894 | 505 | } // switch status |
elessair | 0:f269e3021894 | 506 | } |
elessair | 0:f269e3021894 | 507 | |
elessair | 0:f269e3021894 | 508 | |
elessair | 0:f269e3021894 | 509 | //Called when Slave is addressed for Write, Slave will receive Data in polling mode |
elessair | 0:f269e3021894 | 510 | //Parameter length (>=1) is the maximum allowable number of bytes. All bytes will be ACKed. |
elessair | 0:f269e3021894 | 511 | int i2c_slave_read(i2c_t *obj, char *data, int length) { |
elessair | 0:f269e3021894 | 512 | int count=0; |
elessair | 0:f269e3021894 | 513 | |
elessair | 0:f269e3021894 | 514 | // Read and ACK all expected bytes |
elessair | 0:f269e3021894 | 515 | while (count < length) { |
elessair | 0:f269e3021894 | 516 | // Wait for data |
elessair | 0:f269e3021894 | 517 | while (!I2C_SLVSI(obj)); // Wait forever |
elessair | 0:f269e3021894 | 518 | // if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout |
elessair | 0:f269e3021894 | 519 | |
elessair | 0:f269e3021894 | 520 | // Check State |
elessair | 0:f269e3021894 | 521 | switch(I2C_SLVSTAT(obj)) { |
elessair | 0:f269e3021894 | 522 | case 0x0: // Slave address plus R/W received |
elessair | 0:f269e3021894 | 523 | // At least one of the four slave addresses has been matched by hardware. |
elessair | 0:f269e3021894 | 524 | // You can figure out which address by checking Slave address match Index in STAT register. |
elessair | 0:f269e3021894 | 525 | // I2C Restart occurred |
elessair | 0:f269e3021894 | 526 | return -1; |
elessair | 0:f269e3021894 | 527 | //break; |
elessair | 0:f269e3021894 | 528 | |
elessair | 0:f269e3021894 | 529 | case 0x1: // Slave receive. Received data is available (Slave Receiver mode). |
elessair | 0:f269e3021894 | 530 | data[count] = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data |
elessair | 0:f269e3021894 | 531 | obj->i2c->SLVCTL = (1 << 0); // Send ACK on data and Continue to read |
elessair | 0:f269e3021894 | 532 | break; |
elessair | 0:f269e3021894 | 533 | |
elessair | 0:f269e3021894 | 534 | case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode). |
elessair | 0:f269e3021894 | 535 | case 0x3: // Reserved. |
elessair | 0:f269e3021894 | 536 | default: // Should never get here... |
elessair | 0:f269e3021894 | 537 | return -2; |
elessair | 0:f269e3021894 | 538 | //break; |
elessair | 0:f269e3021894 | 539 | } // switch status |
elessair | 0:f269e3021894 | 540 | |
elessair | 0:f269e3021894 | 541 | count++; |
elessair | 0:f269e3021894 | 542 | } // for all bytes |
elessair | 0:f269e3021894 | 543 | |
elessair | 0:f269e3021894 | 544 | return count; // Received the expected number of bytes |
elessair | 0:f269e3021894 | 545 | } |
elessair | 0:f269e3021894 | 546 | |
elessair | 0:f269e3021894 | 547 | |
elessair | 0:f269e3021894 | 548 | //Called when Slave is addressed for Read, Slave will send Data in polling mode |
elessair | 0:f269e3021894 | 549 | //Parameter length (>=1) is the maximum number of bytes. Exit when Slave byte is NACKed. |
elessair | 0:f269e3021894 | 550 | int i2c_slave_write(i2c_t *obj, const char *data, int length) { |
elessair | 0:f269e3021894 | 551 | int count; |
elessair | 0:f269e3021894 | 552 | |
elessair | 0:f269e3021894 | 553 | // Send and all bytes or Exit on NAK |
elessair | 0:f269e3021894 | 554 | for (count=0; count < length; count++) { |
elessair | 0:f269e3021894 | 555 | // Wait until Ready for data |
elessair | 0:f269e3021894 | 556 | while (!I2C_SLVSI(obj)); // Wait forever |
elessair | 0:f269e3021894 | 557 | // if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout |
elessair | 0:f269e3021894 | 558 | |
elessair | 0:f269e3021894 | 559 | // Check State |
elessair | 0:f269e3021894 | 560 | switch(I2C_SLVSTAT(obj)) { |
elessair | 0:f269e3021894 | 561 | case 0x0: // Slave address plus R/W received |
elessair | 0:f269e3021894 | 562 | // At least one of the four slave addresses has been matched by hardware. |
elessair | 0:f269e3021894 | 563 | // You can figure out which address by checking Slave address match Index in STAT register. |
elessair | 0:f269e3021894 | 564 | // I2C Restart occurred |
elessair | 0:f269e3021894 | 565 | return -1; |
elessair | 0:f269e3021894 | 566 | //break; |
elessair | 0:f269e3021894 | 567 | case 0x1: // Slave receive. Received data is available (Slave Receiver mode). |
elessair | 0:f269e3021894 | 568 | // Should not get here... |
elessair | 0:f269e3021894 | 569 | return -2; |
elessair | 0:f269e3021894 | 570 | //break; |
elessair | 0:f269e3021894 | 571 | case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode). |
elessair | 0:f269e3021894 | 572 | I2C_SLVDAT(obj) = data[count] & 0xFF; // Store the data for transmission |
elessair | 0:f269e3021894 | 573 | obj->i2c->SLVCTL = (1 << 0); // Continue to send |
elessair | 0:f269e3021894 | 574 | break; |
elessair | 0:f269e3021894 | 575 | case 0x3: // Reserved. |
elessair | 0:f269e3021894 | 576 | default: |
elessair | 0:f269e3021894 | 577 | // Should not get here... |
elessair | 0:f269e3021894 | 578 | return -3; |
elessair | 0:f269e3021894 | 579 | //break; |
elessair | 0:f269e3021894 | 580 | } // switch status |
elessair | 0:f269e3021894 | 581 | } // for all bytes |
elessair | 0:f269e3021894 | 582 | |
elessair | 0:f269e3021894 | 583 | return length; // Transmitted the max number of bytes |
elessair | 0:f269e3021894 | 584 | } |
elessair | 0:f269e3021894 | 585 | |
elessair | 0:f269e3021894 | 586 | |
elessair | 0:f269e3021894 | 587 | // Set the four slave addresses. |
elessair | 0:f269e3021894 | 588 | void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) { |
elessair | 0:f269e3021894 | 589 | obj->i2c->SLVADR0 = (address & 0xFE); // Store address in address 0 register |
elessair | 0:f269e3021894 | 590 | obj->i2c->SLVADR1 = (0x00 & 0xFE); // Store general call write address in address 1 register |
elessair | 0:f269e3021894 | 591 | obj->i2c->SLVADR2 = (0x01); // Disable address 2 register |
elessair | 0:f269e3021894 | 592 | obj->i2c->SLVADR3 = (0x01); // Disable address 3 register |
elessair | 0:f269e3021894 | 593 | obj->i2c->SLVQUAL0 = (mask & 0xFE); // Qualifier mask for address 0 register. Any maskbit that is 1 will always be a match |
elessair | 0:f269e3021894 | 594 | } |
elessair | 0:f269e3021894 | 595 | |
elessair | 0:f269e3021894 | 596 | #endif |
elessair | 0:f269e3021894 | 597 | |
elessair | 0:f269e3021894 | 598 | #endif |