The CMSIS DSP 5 library

Dependents:   Nucleo-Heart-Rate ejercicioVrms2 PROYECTOFINAL ejercicioVrms ... more

Committer:
xorjoep
Date:
Thu Jun 21 11:56:27 2018 +0000
Revision:
3:4098b9d3d571
Parent:
1:24714b45cd1b
headers is a folder not a library

Who changed what in which revision?

UserRevisionLine numberNew contents of line
xorjoep 1:24714b45cd1b 1 /* ----------------------------------------------------------------------
xorjoep 1:24714b45cd1b 2 * Project: CMSIS DSP Library
xorjoep 1:24714b45cd1b 3 * Title: arm_mat_scale_f32.c
xorjoep 1:24714b45cd1b 4 * Description: Multiplies a floating-point matrix by a scalar
xorjoep 1:24714b45cd1b 5 *
xorjoep 1:24714b45cd1b 6 * $Date: 27. January 2017
xorjoep 1:24714b45cd1b 7 * $Revision: V.1.5.1
xorjoep 1:24714b45cd1b 8 *
xorjoep 1:24714b45cd1b 9 * Target Processor: Cortex-M cores
xorjoep 1:24714b45cd1b 10 * -------------------------------------------------------------------- */
xorjoep 1:24714b45cd1b 11 /*
xorjoep 1:24714b45cd1b 12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
xorjoep 1:24714b45cd1b 13 *
xorjoep 1:24714b45cd1b 14 * SPDX-License-Identifier: Apache-2.0
xorjoep 1:24714b45cd1b 15 *
xorjoep 1:24714b45cd1b 16 * Licensed under the Apache License, Version 2.0 (the License); you may
xorjoep 1:24714b45cd1b 17 * not use this file except in compliance with the License.
xorjoep 1:24714b45cd1b 18 * You may obtain a copy of the License at
xorjoep 1:24714b45cd1b 19 *
xorjoep 1:24714b45cd1b 20 * www.apache.org/licenses/LICENSE-2.0
xorjoep 1:24714b45cd1b 21 *
xorjoep 1:24714b45cd1b 22 * Unless required by applicable law or agreed to in writing, software
xorjoep 1:24714b45cd1b 23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
xorjoep 1:24714b45cd1b 24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
xorjoep 1:24714b45cd1b 25 * See the License for the specific language governing permissions and
xorjoep 1:24714b45cd1b 26 * limitations under the License.
xorjoep 1:24714b45cd1b 27 */
xorjoep 1:24714b45cd1b 28
xorjoep 1:24714b45cd1b 29 #include "arm_math.h"
xorjoep 1:24714b45cd1b 30
xorjoep 1:24714b45cd1b 31 /**
xorjoep 1:24714b45cd1b 32 * @ingroup groupMatrix
xorjoep 1:24714b45cd1b 33 */
xorjoep 1:24714b45cd1b 34
xorjoep 1:24714b45cd1b 35 /**
xorjoep 1:24714b45cd1b 36 * @defgroup MatrixScale Matrix Scale
xorjoep 1:24714b45cd1b 37 *
xorjoep 1:24714b45cd1b 38 * Multiplies a matrix by a scalar. This is accomplished by multiplying each element in the
xorjoep 1:24714b45cd1b 39 * matrix by the scalar. For example:
xorjoep 1:24714b45cd1b 40 * \image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix"
xorjoep 1:24714b45cd1b 41 *
xorjoep 1:24714b45cd1b 42 * The function checks to make sure that the input and output matrices are of the same size.
xorjoep 1:24714b45cd1b 43 *
xorjoep 1:24714b45cd1b 44 * In the fixed-point Q15 and Q31 functions, <code>scale</code> is represented by
xorjoep 1:24714b45cd1b 45 * a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
xorjoep 1:24714b45cd1b 46 * The shift allows the gain of the scaling operation to exceed 1.0.
xorjoep 1:24714b45cd1b 47 * The overall scale factor applied to the fixed-point data is
xorjoep 1:24714b45cd1b 48 * <pre>
xorjoep 1:24714b45cd1b 49 * scale = scaleFract * 2^shift.
xorjoep 1:24714b45cd1b 50 * </pre>
xorjoep 1:24714b45cd1b 51 */
xorjoep 1:24714b45cd1b 52
xorjoep 1:24714b45cd1b 53 /**
xorjoep 1:24714b45cd1b 54 * @addtogroup MatrixScale
xorjoep 1:24714b45cd1b 55 * @{
xorjoep 1:24714b45cd1b 56 */
xorjoep 1:24714b45cd1b 57
xorjoep 1:24714b45cd1b 58 /**
xorjoep 1:24714b45cd1b 59 * @brief Floating-point matrix scaling.
xorjoep 1:24714b45cd1b 60 * @param[in] *pSrc points to input matrix structure
xorjoep 1:24714b45cd1b 61 * @param[in] scale scale factor to be applied
xorjoep 1:24714b45cd1b 62 * @param[out] *pDst points to output matrix structure
xorjoep 1:24714b45cd1b 63 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
xorjoep 1:24714b45cd1b 64 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
xorjoep 1:24714b45cd1b 65 *
xorjoep 1:24714b45cd1b 66 */
xorjoep 1:24714b45cd1b 67
xorjoep 1:24714b45cd1b 68 arm_status arm_mat_scale_f32(
xorjoep 1:24714b45cd1b 69 const arm_matrix_instance_f32 * pSrc,
xorjoep 1:24714b45cd1b 70 float32_t scale,
xorjoep 1:24714b45cd1b 71 arm_matrix_instance_f32 * pDst)
xorjoep 1:24714b45cd1b 72 {
xorjoep 1:24714b45cd1b 73 float32_t *pIn = pSrc->pData; /* input data matrix pointer */
xorjoep 1:24714b45cd1b 74 float32_t *pOut = pDst->pData; /* output data matrix pointer */
xorjoep 1:24714b45cd1b 75 uint32_t numSamples; /* total number of elements in the matrix */
xorjoep 1:24714b45cd1b 76 uint32_t blkCnt; /* loop counters */
xorjoep 1:24714b45cd1b 77 arm_status status; /* status of matrix scaling */
xorjoep 1:24714b45cd1b 78
xorjoep 1:24714b45cd1b 79 #if defined (ARM_MATH_DSP)
xorjoep 1:24714b45cd1b 80
xorjoep 1:24714b45cd1b 81 float32_t in1, in2, in3, in4; /* temporary variables */
xorjoep 1:24714b45cd1b 82 float32_t out1, out2, out3, out4; /* temporary variables */
xorjoep 1:24714b45cd1b 83
xorjoep 1:24714b45cd1b 84 #endif // #if defined (ARM_MATH_DSP)
xorjoep 1:24714b45cd1b 85
xorjoep 1:24714b45cd1b 86 #ifdef ARM_MATH_MATRIX_CHECK
xorjoep 1:24714b45cd1b 87 /* Check for matrix mismatch condition */
xorjoep 1:24714b45cd1b 88 if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
xorjoep 1:24714b45cd1b 89 {
xorjoep 1:24714b45cd1b 90 /* Set status as ARM_MATH_SIZE_MISMATCH */
xorjoep 1:24714b45cd1b 91 status = ARM_MATH_SIZE_MISMATCH;
xorjoep 1:24714b45cd1b 92 }
xorjoep 1:24714b45cd1b 93 else
xorjoep 1:24714b45cd1b 94 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
xorjoep 1:24714b45cd1b 95 {
xorjoep 1:24714b45cd1b 96 /* Total number of samples in the input matrix */
xorjoep 1:24714b45cd1b 97 numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
xorjoep 1:24714b45cd1b 98
xorjoep 1:24714b45cd1b 99 #if defined (ARM_MATH_DSP)
xorjoep 1:24714b45cd1b 100
xorjoep 1:24714b45cd1b 101 /* Run the below code for Cortex-M4 and Cortex-M3 */
xorjoep 1:24714b45cd1b 102
xorjoep 1:24714b45cd1b 103 /* Loop Unrolling */
xorjoep 1:24714b45cd1b 104 blkCnt = numSamples >> 2;
xorjoep 1:24714b45cd1b 105
xorjoep 1:24714b45cd1b 106 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
xorjoep 1:24714b45cd1b 107 ** a second loop below computes the remaining 1 to 3 samples. */
xorjoep 1:24714b45cd1b 108 while (blkCnt > 0U)
xorjoep 1:24714b45cd1b 109 {
xorjoep 1:24714b45cd1b 110 /* C(m,n) = A(m,n) * scale */
xorjoep 1:24714b45cd1b 111 /* Scaling and results are stored in the destination buffer. */
xorjoep 1:24714b45cd1b 112 in1 = pIn[0];
xorjoep 1:24714b45cd1b 113 in2 = pIn[1];
xorjoep 1:24714b45cd1b 114 in3 = pIn[2];
xorjoep 1:24714b45cd1b 115 in4 = pIn[3];
xorjoep 1:24714b45cd1b 116
xorjoep 1:24714b45cd1b 117 out1 = in1 * scale;
xorjoep 1:24714b45cd1b 118 out2 = in2 * scale;
xorjoep 1:24714b45cd1b 119 out3 = in3 * scale;
xorjoep 1:24714b45cd1b 120 out4 = in4 * scale;
xorjoep 1:24714b45cd1b 121
xorjoep 1:24714b45cd1b 122
xorjoep 1:24714b45cd1b 123 pOut[0] = out1;
xorjoep 1:24714b45cd1b 124 pOut[1] = out2;
xorjoep 1:24714b45cd1b 125 pOut[2] = out3;
xorjoep 1:24714b45cd1b 126 pOut[3] = out4;
xorjoep 1:24714b45cd1b 127
xorjoep 1:24714b45cd1b 128 /* update pointers to process next sampels */
xorjoep 1:24714b45cd1b 129 pIn += 4U;
xorjoep 1:24714b45cd1b 130 pOut += 4U;
xorjoep 1:24714b45cd1b 131
xorjoep 1:24714b45cd1b 132 /* Decrement the numSamples loop counter */
xorjoep 1:24714b45cd1b 133 blkCnt--;
xorjoep 1:24714b45cd1b 134 }
xorjoep 1:24714b45cd1b 135
xorjoep 1:24714b45cd1b 136 /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
xorjoep 1:24714b45cd1b 137 ** No loop unrolling is used. */
xorjoep 1:24714b45cd1b 138 blkCnt = numSamples % 0x4U;
xorjoep 1:24714b45cd1b 139
xorjoep 1:24714b45cd1b 140 #else
xorjoep 1:24714b45cd1b 141
xorjoep 1:24714b45cd1b 142 /* Run the below code for Cortex-M0 */
xorjoep 1:24714b45cd1b 143
xorjoep 1:24714b45cd1b 144 /* Initialize blkCnt with number of samples */
xorjoep 1:24714b45cd1b 145 blkCnt = numSamples;
xorjoep 1:24714b45cd1b 146
xorjoep 1:24714b45cd1b 147 #endif /* #if defined (ARM_MATH_DSP) */
xorjoep 1:24714b45cd1b 148
xorjoep 1:24714b45cd1b 149 while (blkCnt > 0U)
xorjoep 1:24714b45cd1b 150 {
xorjoep 1:24714b45cd1b 151 /* C(m,n) = A(m,n) * scale */
xorjoep 1:24714b45cd1b 152 /* The results are stored in the destination buffer. */
xorjoep 1:24714b45cd1b 153 *pOut++ = (*pIn++) * scale;
xorjoep 1:24714b45cd1b 154
xorjoep 1:24714b45cd1b 155 /* Decrement the loop counter */
xorjoep 1:24714b45cd1b 156 blkCnt--;
xorjoep 1:24714b45cd1b 157 }
xorjoep 1:24714b45cd1b 158
xorjoep 1:24714b45cd1b 159 /* Set status as ARM_MATH_SUCCESS */
xorjoep 1:24714b45cd1b 160 status = ARM_MATH_SUCCESS;
xorjoep 1:24714b45cd1b 161 }
xorjoep 1:24714b45cd1b 162
xorjoep 1:24714b45cd1b 163 /* Return to application */
xorjoep 1:24714b45cd1b 164 return (status);
xorjoep 1:24714b45cd1b 165 }
xorjoep 1:24714b45cd1b 166
xorjoep 1:24714b45cd1b 167 /**
xorjoep 1:24714b45cd1b 168 * @} end of MatrixScale group
xorjoep 1:24714b45cd1b 169 */