TEST
Dependencies: max32630fthr Adafruit_FeatherOLED USBDevice
Drivers/BMI160/bmi160.cpp
- Committer:
- gmehmet
- Date:
- 2019-04-10
- Revision:
- 1:f60eafbf009a
File content as of revision 1:f60eafbf009a:
/********************************************************************** * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. **********************************************************************/ #include "bmi160.h" const struct BMI160::AccConfig BMI160::DEFAULT_ACC_CONFIG = {SENS_2G, ACC_US_OFF, ACC_BWP_2, ACC_ODR_8}; const struct BMI160::GyroConfig BMI160::DEFAULT_GYRO_CONFIG = {DPS_2000, GYRO_BWP_2, GYRO_ODR_8}; //***************************************************************************** int32_t BMI160::setSensorPowerMode(Sensors sensor, PowerModes pwrMode) { int32_t rtnVal = -1; switch(sensor) { case MAG: rtnVal = writeRegister(CMD, (MAG_SET_PMU_MODE | pwrMode)); break; case GYRO: rtnVal = writeRegister(CMD, (GYR_SET_PMU_MODE | pwrMode)); break; case ACC: rtnVal = writeRegister(CMD, (ACC_SET_PMU_MODE | pwrMode)); break; default: rtnVal = -1; break; } return rtnVal; } //***************************************************************************** int32_t BMI160::setSensorConfig(const AccConfig &config) { uint8_t data[2]; data[0] = ((config.us << ACC_US_POS) | (config.bwp << ACC_BWP_POS) | (config.odr << ACC_ODR_POS)); data[1] = config.range; return writeBlock(ACC_CONF, ACC_RANGE, data); } //***************************************************************************** int32_t BMI160::setSensorConfig(const GyroConfig &config) { uint8_t data[2]; data[0] = ((config.bwp << GYRO_BWP_POS) | (config.odr << GYRO_ODR_POS)); data[1] = config.range; return writeBlock(GYR_CONF, GYR_RANGE, data); } //***************************************************************************** int32_t BMI160::getSensorConfig(AccConfig &config) { uint8_t data[2]; int32_t rtnVal = readBlock(ACC_CONF, ACC_RANGE, data); if(rtnVal == RTN_NO_ERROR) { config.range = static_cast<BMI160::AccRange>( (data[1] & ACC_RANGE_MASK)); config.us = static_cast<BMI160::AccUnderSampling>( ((data[0] & ACC_US_MASK) >> ACC_US_POS)); config.bwp = static_cast<BMI160::AccBandWidthParam>( ((data[0] & ACC_BWP_MASK) >> ACC_BWP_POS)); config.odr = static_cast<BMI160::AccOutputDataRate>( ((data[0] & ACC_ODR_MASK) >> ACC_ODR_POS)); } return rtnVal; } //***************************************************************************** int32_t BMI160::getSensorConfig(GyroConfig &config) { uint8_t data[2]; int32_t rtnVal = readBlock(GYR_CONF, GYR_RANGE, data); if(rtnVal == RTN_NO_ERROR) { config.range = static_cast<BMI160::GyroRange>( (data[1] & GYRO_RANGE_MASK)); config.bwp = static_cast<BMI160::GyroBandWidthParam>( ((data[0] & GYRO_BWP_MASK) >> GYRO_BWP_POS)); config.odr = static_cast<BMI160::GyroOutputDataRate>( ((data[0] & GYRO_ODR_MASK) >> GYRO_ODR_POS)); } return rtnVal; } //***************************************************************************** int32_t BMI160::getSensorAxis(SensorAxis axis, AxisData &data, AccRange range) { uint8_t localData[2]; int32_t rtnVal; switch(axis) { case X_AXIS: rtnVal = readBlock(DATA_14, DATA_15, localData); break; case Y_AXIS: rtnVal = readBlock(DATA_16, DATA_17, localData); break; case Z_AXIS: rtnVal = readBlock(DATA_18, DATA_19, localData); break; default: rtnVal = -1; break; } if(rtnVal == RTN_NO_ERROR) { data.raw = ((localData[1] << 8) | localData[0]); switch(range) { case SENS_2G: data.scaled = (data.raw/SENS_2G_LSB_PER_G); break; case SENS_4G: data.scaled = (data.raw/SENS_4G_LSB_PER_G); break; case SENS_8G: data.scaled = (data.raw/SENS_8G_LSB_PER_G); break; case SENS_16G: data.scaled = (data.raw/SENS_16G_LSB_PER_G); break; } } return rtnVal; } //***************************************************************************** int32_t BMI160::getSensorAxis(SensorAxis axis, AxisData &data, GyroRange range) { uint8_t localData[2]; int32_t rtnVal; switch(axis) { case X_AXIS: rtnVal = readBlock(DATA_8, DATA_9, localData); break; case Y_AXIS: rtnVal = readBlock(DATA_10, DATA_11, localData); break; case Z_AXIS: rtnVal = readBlock(DATA_12, DATA_13, localData); break; default: rtnVal = -1; break; } if(rtnVal == RTN_NO_ERROR) { data.raw = ((localData[1] << 8) | localData[0]); switch(range) { case DPS_2000: data.scaled = (data.raw/SENS_2000_DPS_LSB_PER_DPS); break; case DPS_1000: data.scaled = (data.raw/SENS_1000_DPS_LSB_PER_DPS); break; case DPS_500: data.scaled = (data.raw/SENS_500_DPS_LSB_PER_DPS); break; case DPS_250: data.scaled = (data.raw/SENS_250_DPS_LSB_PER_DPS); break; case DPS_125: data.scaled = (data.raw/SENS_125_DPS_LSB_PER_DPS); break; } } return rtnVal; } //***************************************************************************** int32_t BMI160::getSensorXYZ(SensorData &data, AccRange range) { uint8_t localData[6]; int32_t rtnVal; if (m_use_irq == true && bmi160_irq_asserted == false) return -1; rtnVal = readBlock(DATA_14, DATA_19, localData); bmi160_irq_asserted = false; if(rtnVal == RTN_NO_ERROR) { data.xAxis.raw = ((localData[1] << 8) | localData[0]); data.yAxis.raw = ((localData[3] << 8) | localData[2]); data.zAxis.raw = ((localData[5] << 8) | localData[4]); switch(range) { case SENS_2G: data.xAxis.scaled = (data.xAxis.raw/SENS_2G_LSB_PER_G); data.yAxis.scaled = (data.yAxis.raw/SENS_2G_LSB_PER_G); data.zAxis.scaled = (data.zAxis.raw/SENS_2G_LSB_PER_G); break; case SENS_4G: data.xAxis.scaled = (data.xAxis.raw/SENS_4G_LSB_PER_G); data.yAxis.scaled = (data.yAxis.raw/SENS_4G_LSB_PER_G); data.zAxis.scaled = (data.zAxis.raw/SENS_4G_LSB_PER_G); break; case SENS_8G: data.xAxis.scaled = (data.xAxis.raw/SENS_8G_LSB_PER_G); data.yAxis.scaled = (data.yAxis.raw/SENS_8G_LSB_PER_G); data.zAxis.scaled = (data.zAxis.raw/SENS_8G_LSB_PER_G); break; case SENS_16G: data.xAxis.scaled = (data.xAxis.raw/SENS_16G_LSB_PER_G); data.yAxis.scaled = (data.yAxis.raw/SENS_16G_LSB_PER_G); data.zAxis.scaled = (data.zAxis.raw/SENS_16G_LSB_PER_G); break; } } return rtnVal; } //***************************************************************************** int32_t BMI160::getSensorXYZ(SensorData &data, GyroRange range) { uint8_t localData[6]; int32_t rtnVal = readBlock(DATA_8, DATA_13, localData); if(rtnVal == RTN_NO_ERROR) { data.xAxis.raw = ((localData[1] << 8) | localData[0]); data.yAxis.raw = ((localData[3] << 8) | localData[2]); data.zAxis.raw = ((localData[5] << 8) | localData[4]); switch(range) { case DPS_2000: data.xAxis.scaled = (data.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS); break; case DPS_1000: data.xAxis.scaled = (data.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS); break; case DPS_500: data.xAxis.scaled = (data.xAxis.raw/SENS_500_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_500_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_500_DPS_LSB_PER_DPS); break; case DPS_250: data.xAxis.scaled = (data.xAxis.raw/SENS_250_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_250_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_250_DPS_LSB_PER_DPS); break; case DPS_125: data.xAxis.scaled = (data.xAxis.raw/SENS_125_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_125_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_125_DPS_LSB_PER_DPS); break; } } return rtnVal; } //***************************************************************************** int32_t BMI160::getSensorXYZandSensorTime(SensorData &data, SensorTime &sensorTime, AccRange range) { uint8_t localData[9]; int32_t rtnVal = readBlock(DATA_14, SENSORTIME_2, localData); if(rtnVal == RTN_NO_ERROR) { data.xAxis.raw = ((localData[1] << 8) | localData[0]); data.yAxis.raw = ((localData[3] << 8) | localData[2]); data.zAxis.raw = ((localData[5] << 8) | localData[4]); switch(range) { case SENS_2G: data.xAxis.scaled = (data.xAxis.raw/SENS_2G_LSB_PER_G); data.yAxis.scaled = (data.yAxis.raw/SENS_2G_LSB_PER_G); data.zAxis.scaled = (data.zAxis.raw/SENS_2G_LSB_PER_G); break; case SENS_4G: data.xAxis.scaled = (data.xAxis.raw/SENS_4G_LSB_PER_G); data.yAxis.scaled = (data.yAxis.raw/SENS_4G_LSB_PER_G); data.zAxis.scaled = (data.zAxis.raw/SENS_4G_LSB_PER_G); break; case SENS_8G: data.xAxis.scaled = (data.xAxis.raw/SENS_8G_LSB_PER_G); data.yAxis.scaled = (data.yAxis.raw/SENS_8G_LSB_PER_G); data.zAxis.scaled = (data.zAxis.raw/SENS_8G_LSB_PER_G); break; case SENS_16G: data.xAxis.scaled = (data.xAxis.raw/SENS_16G_LSB_PER_G); data.yAxis.scaled = (data.yAxis.raw/SENS_16G_LSB_PER_G); data.zAxis.scaled = (data.zAxis.raw/SENS_16G_LSB_PER_G); break; } sensorTime.raw = ((localData[8] << 16) | (localData[7] << 8) | localData[6]); sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB); } return rtnVal; } //***************************************************************************** int32_t BMI160::getSensorXYZandSensorTime(SensorData &data, SensorTime &sensorTime, GyroRange range) { uint8_t localData[16]; int32_t rtnVal = readBlock(DATA_8, SENSORTIME_2, localData); if(rtnVal == RTN_NO_ERROR) { data.xAxis.raw = ((localData[1] << 8) | localData[0]); data.yAxis.raw = ((localData[3] << 8) | localData[2]); data.zAxis.raw = ((localData[5] << 8) | localData[4]); switch(range) { case DPS_2000: data.xAxis.scaled = (data.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS); break; case DPS_1000: data.xAxis.scaled = (data.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS); break; case DPS_500: data.xAxis.scaled = (data.xAxis.raw/SENS_500_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_500_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_500_DPS_LSB_PER_DPS); break; case DPS_250: data.xAxis.scaled = (data.xAxis.raw/SENS_250_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_250_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_250_DPS_LSB_PER_DPS); break; case DPS_125: data.xAxis.scaled = (data.xAxis.raw/SENS_125_DPS_LSB_PER_DPS); data.yAxis.scaled = (data.yAxis.raw/SENS_125_DPS_LSB_PER_DPS); data.zAxis.scaled = (data.zAxis.raw/SENS_125_DPS_LSB_PER_DPS); break; } sensorTime.raw = ((localData[14] << 16) | (localData[13] << 8) | localData[12]); sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB); } return rtnVal; } //***************************************************************************** int32_t BMI160::getGyroAccXYZandSensorTime(SensorData &accData, SensorData &gyroData, SensorTime &sensorTime, AccRange accRange, GyroRange gyroRange) { uint8_t localData[16]; int32_t rtnVal = readBlock(DATA_8, SENSORTIME_2, localData); if(rtnVal == RTN_NO_ERROR) { gyroData.xAxis.raw = ((localData[1] << 8) | localData[0]); gyroData.yAxis.raw = ((localData[3] << 8) | localData[2]); gyroData.zAxis.raw = ((localData[5] << 8) | localData[4]); accData.xAxis.raw = ((localData[7] << 8) | localData[6]); accData.yAxis.raw = ((localData[9] << 8) | localData[8]); accData.zAxis.raw = ((localData[11] << 8) | localData[10]); switch(gyroRange) { case DPS_2000: gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS); gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS); gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS); break; case DPS_1000: gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS); gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS); gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS); break; case DPS_500: gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_500_DPS_LSB_PER_DPS); gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_500_DPS_LSB_PER_DPS); gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_500_DPS_LSB_PER_DPS); break; case DPS_250: gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_250_DPS_LSB_PER_DPS); gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_250_DPS_LSB_PER_DPS); gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_250_DPS_LSB_PER_DPS); break; case DPS_125: gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_125_DPS_LSB_PER_DPS); gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_125_DPS_LSB_PER_DPS); gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_125_DPS_LSB_PER_DPS); break; } switch(accRange) { case SENS_2G: accData.xAxis.scaled = (accData.xAxis.raw/SENS_2G_LSB_PER_G); accData.yAxis.scaled = (accData.yAxis.raw/SENS_2G_LSB_PER_G); accData.zAxis.scaled = (accData.zAxis.raw/SENS_2G_LSB_PER_G); break; case SENS_4G: accData.xAxis.scaled = (accData.xAxis.raw/SENS_4G_LSB_PER_G); accData.yAxis.scaled = (accData.yAxis.raw/SENS_4G_LSB_PER_G); accData.zAxis.scaled = (accData.zAxis.raw/SENS_4G_LSB_PER_G); break; case SENS_8G: accData.xAxis.scaled = (accData.xAxis.raw/SENS_8G_LSB_PER_G); accData.yAxis.scaled = (accData.yAxis.raw/SENS_8G_LSB_PER_G); accData.zAxis.scaled = (accData.zAxis.raw/SENS_8G_LSB_PER_G); break; case SENS_16G: accData.xAxis.scaled = (accData.xAxis.raw/SENS_16G_LSB_PER_G); accData.yAxis.scaled = (accData.yAxis.raw/SENS_16G_LSB_PER_G); accData.zAxis.scaled = (accData.zAxis.raw/SENS_16G_LSB_PER_G); break; } sensorTime.raw = ((localData[14] << 16) | (localData[13] << 8) | localData[12]); sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB); } return rtnVal; } int32_t BMI160::setSampleRate(int sample_rate) { int sr_reg_val = -1; int i; const uint16_t odr_table[][2] = { {25, GYRO_ODR_6}, ///<25Hz {50, GYRO_ODR_7}, ///<50Hz {100, GYRO_ODR_8}, ///<100Hz {200, GYRO_ODR_9}, ///<200Hz {400, GYRO_ODR_10}, ///<400Hz {800, GYRO_ODR_11}, ///<800Hz {1600, GYRO_ODR_12}, ///<1600Hz {3200, GYRO_ODR_13}, ///<3200Hz }; int num_sr = sizeof(odr_table)/sizeof(odr_table[0]); for (i = 0; i < num_sr; i++) { if (sample_rate == odr_table[i][0]) { sr_reg_val = odr_table[i][1]; break; } } if (sr_reg_val == -1) return -2; AccConfig accConfigRead; if (getSensorConfig(accConfigRead) == BMI160::RTN_NO_ERROR) { accConfigRead.odr = (AccOutputDataRate)sr_reg_val; return setSensorConfig(accConfigRead) == BMI160::RTN_NO_ERROR ? 0 : -1; } else return -1; } //***************************************************************************** int32_t BMI160::getSensorTime(SensorTime &sensorTime) { uint8_t localData[3]; int32_t rtnVal = readBlock(SENSORTIME_0, SENSORTIME_2, localData); if(rtnVal == RTN_NO_ERROR) { sensorTime.raw = ((localData[2] << 16) | (localData[1] << 8) | localData[0]); sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB); } return rtnVal; } //***************************************************************************** int32_t BMI160::getTemperature(float *temp) { uint8_t data[2]; uint16_t rawTemp; int32_t rtnVal = readBlock(TEMPERATURE_0, TEMPERATURE_1, data); if(rtnVal == RTN_NO_ERROR) { rawTemp = ((data[1] << 8) | data[0]); if(rawTemp & 0x8000) { *temp = (23.0F - ((0x10000 - rawTemp)/512.0F)); } else { *temp = ((rawTemp/512.0F) + 23.0F); } } return rtnVal; } //*********************************************************************************** int32_t BMI160::BMI160_DefaultInitalize(){ //soft reset the accelerometer writeRegister(CMD ,SOFT_RESET); wait(0.1); //Power up sensors in normal mode if(setSensorPowerMode(BMI160::GYRO, BMI160::SUSPEND) != BMI160::RTN_NO_ERROR){ printf("Failed to set gyroscope power mode\n"); } wait(0.1); if(setSensorPowerMode(BMI160::ACC, BMI160::NORMAL) != BMI160::RTN_NO_ERROR){ printf("Failed to set accelerometer power mode\n"); } wait(0.1); BMI160::AccConfig accConfig; BMI160::AccConfig accConfigRead; accConfig.range = BMI160::SENS_2G; accConfig.us = BMI160::ACC_US_OFF; accConfig.bwp = BMI160::ACC_BWP_2; accConfig.odr = BMI160::ACC_ODR_6; if(setSensorConfig(accConfig) == BMI160::RTN_NO_ERROR) { if(getSensorConfig(accConfigRead) == BMI160::RTN_NO_ERROR) { if((accConfig.range != accConfigRead.range) || (accConfig.us != accConfigRead.us) || (accConfig.bwp != accConfigRead.bwp) || (accConfig.odr != accConfigRead.odr)) { printf("ACC read data desn't equal set data\n\n"); printf("ACC Set Range = %d\n", accConfig.range); printf("ACC Set UnderSampling = %d\n", accConfig.us); printf("ACC Set BandWidthParam = %d\n", accConfig.bwp); printf("ACC Set OutputDataRate = %d\n\n", accConfig.odr); printf("ACC Read Range = %d\n", accConfigRead.range); printf("ACC Read UnderSampling = %d\n", accConfigRead.us); printf("ACC Read BandWidthParam = %d\n", accConfigRead.bwp); printf("ACC Read OutputDataRate = %d\n\n", accConfigRead.odr); } } else { printf("Failed to read back accelerometer configuration\n"); } } else { printf("Failed to set accelerometer configuration\n"); } return 0; } //*********************************************************************************** int32_t BMI160::enable_data_ready_interrupt() { uint8_t data = 0; uint8_t temp = 0; int32_t result; result = readRegister(INT_EN_1, &data); temp = data & ~0x10; data = temp | ((1 << 4) & 0x10); /* Writing data to INT ENABLE 1 Address */ result |= writeRegister(INT_EN_1, data); // configure in_out ctrl //bmi160_get_regs(BMI160_INT_OUT_CTRL_ADDR, &data, 1, dev); result |= readRegister(INT_OUT_CTRL, &data); data = 0x09; result |= writeRegister(INT_OUT_CTRL,data); //config int latch //bmi160_get_regs(BMI160_INT_LATCH_ADDR, &data, 1, dev); result |= readRegister(INT_LATCH, &data); data = 0x0F; result |= writeRegister(INT_LATCH, data); //bmi160_get_regs(BMI160_INT_MAP_1_ADDR, &data, 1, dev); result |= readRegister(INT_MAP_1, &data); data = 0x80; result |= writeRegister(INT_MAP_1, data); if(result != 0){ printf("BMI160::%s failed.\r\n", __func__); return -1; } m_bmi160_irq->disable_irq(); m_bmi160_irq->mode(PullUp); m_bmi160_irq->fall(this, &BMI160::irq_handler); m_bmi160_irq->enable_irq(); return 0; } void BMI160::irq_handler() { bmi160_irq_asserted = true; } int32_t BMI160::reset() { if (m_use_irq) m_bmi160_irq->disable_irq(); bmi160_irq_asserted = false; writeRegister(CMD, SOFT_RESET); return 0; }