Mbed electronic "bubble level." Uses LSB9DS1 9-degrees-of-freedom IMU to determine orientation and prints bubble display to LCD screen.
Dependencies: 4DGL-uLCD-SE LSM9DS1_Library_cal mbed
main.cpp
- Committer:
- wschon
- Date:
- 2016-02-13
- Revision:
- 0:8079f51a9835
File content as of revision 0:8079f51a9835:
#include "mbed.h"
#include "LSM9DS1.h"
#include "uLCD_4DGL.h"
#define PI 3.14159
// Earth's magnetic field varies by location. Add or subtract
// a declination to get a more accurate heading. Calculate
// your's here:
// http://www.ngdc.noaa.gov/geomag-web/#declination
#define DECLINATION -4.94 // Declination (degrees) in Atlanta,GA.
DigitalOut myled(LED1);
Serial pc(USBTX, USBRX);
float accel_x, accel_y, accel_z;
int outer_radius = 9;
int radius = 3;
uLCD_4DGL uLCD(p9,p10,p11); // serial tx, serial rx, reset pin;
int x,y;
// Calculate pitch, roll, and heading.
// Pitch/roll calculations taken from this app note:
// http://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf?fpsp=1
// Heading calculations taken from this app note:
// http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf
void printAttitude(float ax, float ay, float az, float mx, float my, float mz)
{
float roll = atan2(ay, az);
float pitch = atan2(-ax, sqrt(ay * ay + az * az));
// touchy trig stuff to use arctan to get compass heading (scale is 0..360)
mx = -mx;
float heading;
if (my == 0.0)
heading = (mx < 0.0) ? 180.0 : 0.0;
else
heading = atan2(mx, my)*360.0/(2.0*PI);
//pc.printf("heading atan=%f \n\r",heading);
heading -= DECLINATION; //correct for geo location
if(heading>180.0) heading = heading - 360.0;
else if(heading<-180.0) heading = 360.0 + heading;
else if(heading<0.0) heading = 360.0 + heading;
// Convert everything from radians to degrees:
//heading *= 180.0 / PI;
pitch *= 180.0 / PI;
roll *= 180.0 / PI;
pc.printf("Pitch: %f, Roll: %f degress\n\r",pitch,roll);
pc.printf("Magnetic Heading: %f degress\n\r",heading);
}
int main()
{
// basic printf demo = 16 by 18 characters on screen
//LSM9DS1 lol(p9, p10, 0x6B, 0x1E);
LSM9DS1 IMU(p28, p27, 0xD6, 0x3C);
IMU.begin();
if (!IMU.begin()) {
pc.printf("Failed to communicate with LSM9DS1.\n");
}
IMU.calibrate(1);
IMU.calibrateMag(0);
while(1) {
while(!IMU.tempAvailable());
IMU.readTemp();
while(!IMU.magAvailable(X_AXIS));
IMU.readMag();
while(!IMU.accelAvailable());
IMU.readAccel();
while(!IMU.gyroAvailable());
IMU.readGyro();
pc.printf("\nIMU Temperature = %f C\n\r",25.0 + IMU.temperature/16.0);
pc.printf(" X axis Y axis Z axis\n\r");
pc.printf("gyro: %9f %9f %9f in deg/s\n\r", IMU.calcGyro(IMU.gx), IMU.calcGyro(IMU.gy), IMU.calcGyro(IMU.gz));
pc.printf("accel: %9f %9f %9f in Gs\n\r", IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az));
pc.printf("mag: %9f %9f %9f in gauss\n\r", IMU.calcMag(IMU.mx), IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz));
printAttitude(IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az), IMU.calcMag(IMU.mx),
IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz));
myled = 1;
wait(2.5);
myled = 0;
wait(0.5);
while(1) {
while(!IMU.accelAvailable());
IMU.readAccel();
accel_x = IMU.calcAccel(IMU.ax);
accel_y = IMU.calcAccel(IMU.ay);
accel_z = IMU.calcAccel(IMU.az);
pc.printf("accel: %9f %9f %9f in Gs\n\r", IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az));
//draw ball
x = 64 + 64*accel_x;
y = 64 + 64*accel_y;
uLCD.circle(64, 64, outer_radius, RED);
uLCD.filled_circle(x,y, radius, BLUE);
//bounce off edge walls and slow down a bit?
// if ((x<=radius+1) || (x>=126-radius)) vx = -.90*vx;
// if ((y<=radius+1) || (y>=126-radius)) vy = -.90*vy;
//erase old ball location
// uLCD.filled_circle(x, y, radius, BLACK);
//move ball
// fx=fx+vx;
// fy=fy+vy;
// x=(int)fx;
// y=(int)fy;
wait(0.1);
uLCD.filled_circle(x,y, radius, BLACK);
}
}
}
