駆動信号発生器用プログラム

Dependencies:   mbed

Revision:
0:1f4efca8f7dd
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Fri Mar 24 04:42:17 2017 +0000
@@ -0,0 +1,432 @@
+#include "mbed.h"
+
+int mode = 1;                               //0=電気信号発生器 1=駆動信号発生器
+int revision = 1;
+
+//Serial Port Setting
+Serial pc(p13, p14); // シリアルポートのインスタンス
+
+//PWM Port Setting
+PwmOut signal_1(p23);
+PwmOut signal_2(p22);
+PwmOut signal_3(p21);
+
+//Ticker
+Ticker timer;
+
+//Digital Out
+DigitalOut ledch1(LED1);
+
+//cos Wave
+float coswave[256];
+
+//status flug
+int   status1 =0;                                   //suatus1 : 0=波形出力停止中, 1=波形出力中
+
+//User set Wave Paramater 初期値
+int   sample_dt             = 100;                  //microsec 10kHz
+float hb_carr_freq          = 8.7;                  //Hz       
+float hb_mod_freq           = 1;                    //Hz
+float hb_carr_level         = 0.06;                //min=0 max=0.5 0.5以上ではMOD 50%以上で振幅が飽和する
+float hb_mod_ratio          = 60;                   //0-100 %
+float resp_freq             = 0.3;                  //Hz
+float resp_level            = 0.23;                 //min=0 max=1
+float snore_freq            = 150;                  //Hz
+float snore_level           = 0.045;                 //min=0 max=1 
+int snore_oncycle           = 10000;                //On Time = snore_oncycle * sample_dt, snore_oncycle < snore_allcycle;
+int snore_allcycle          = 33333;                //OFF Time = (allcycle - oncycle) * sample_dt
+int snore_onoff             = 1;                    //0: ALL Time ON, 1:On Time only
+
+//Set wave paramater
+//HB_carr
+float hb_carr_period        = 1000000*1/hb_carr_freq;  //microSec  
+float hb_carr_n             = 0;
+float hb_carr_n_sample      = 0;                    //The maximum number of sampling points in the signal
+float hb_carr_tend          = 0;                    //The remainder of sampling points in the signal
+float hb_carr_tstart        = 0;                    //start offset of sampling time
+float hb_carr_t_samplepoint = 0;        
+float hb_carr_table_dt      = hb_carr_period/256;
+float hb_carr_n_samplepoint = 0;
+float hb_carr_v_samplepoint = 0;
+
+//HB_mod
+float hb_mod_period        = 1000000*1/hb_mod_freq;
+float hb_mod_n             = 0;
+float hb_mod_n_sample      = 0;                    //The maximum number of sampling points in the signal
+float hb_mod_tend          = 0;                    //The remainder of sampling points in the signal
+float hb_mod_tstart        = 0;                    //start offset of sampling time
+float hb_mod_t_samplepoint = 0;        
+float hb_mod_table_dt      = hb_mod_period/256;
+float hb_mod_n_samplepoint = 0;
+float hb_mod_v_samplepoint = 0;
+
+float hb_mod_ra             = hb_mod_ratio * 0.01;
+float hb_signal             = 0;
+float mod_signal            = 0;
+
+//RESP
+float resp_period           = 1000000*1/resp_freq;  //microSec      
+float resp_n                = 0;
+float resp_n_sample         = 0;                    //The maximum number of sampling points in the signal
+float resp_tend             = 0;                    //The remainder of sampling points in the signal
+float resp_tstart           = 0;                    //start offset of sampling time
+float resp_t_samplepoint    = 0;           
+float resp_table_dt         = resp_period/256;                                            
+float resp_n_samplepoint    = 0;
+float resp_v_samplepoint    = 0;
+float resp_signal           = 0;
+
+//SNORE Paramater
+float snore_period          = 1000000*1/snore_freq;  //microSec
+float snore_n               = 0;                    
+float snore_n_sample        = 0;                    //The maximum number of sampling points in the signal
+float snore_tend            = 0;                    //The remainder of sampling points in the signal
+float snore_tstart          = 0;                    //start offset of sampling time
+float snore_t_samplepoint   = 0;        
+float snore_table_dt        = snore_period/256;     //2016/12/12 255->256
+float snore_n_samplepoint   = 0;
+float snore_v_samplepoint   = 0;
+int   snore_cycle           = 0;
+float snore_signal          = 0;
+
+int   pwidth_1 = 0;
+int   pwidth_2 = 0;
+int   pwidth_3 = 0;
+
+// Debug use only   ----
+int dbcount = 0;
+
+// End of debug use ----
+
+//Signal Culcurate
+void signal_culc(){
+       
+//HB section
+//HB_carr
+        hb_carr_n_sample = (hb_carr_period - hb_carr_tstart) / sample_dt;
+        hb_carr_tend = fmod((hb_carr_period - hb_carr_tstart) , sample_dt);  
+        if(hb_carr_tend == 0){
+            hb_carr_n_sample = hb_carr_n_sample-1;
+            }   
+        hb_carr_t_samplepoint = hb_carr_tstart + sample_dt * hb_carr_n; //time of sampling point
+        hb_carr_n_samplepoint = hb_carr_t_samplepoint / hb_carr_table_dt;
+        if(hb_carr_n_samplepoint >= 256){
+            hb_carr_n_samplepoint = 0;
+            }    
+        hb_carr_v_samplepoint = coswave[(int)hb_carr_n_samplepoint];
+        if(hb_carr_n > (int)hb_carr_n_sample) {
+            hb_carr_n =0;
+            hb_carr_tstart = sample_dt - hb_carr_tend;
+            }          
+        else {
+            hb_carr_n++;           
+            }
+//HB_mod
+//A(1+macosωmt)*cosωct     Acosωct = fcarr(t),ma = modulation ratio,
+        hb_mod_n_sample = (hb_mod_period - hb_mod_tstart) / sample_dt;
+        hb_mod_tend = fmod((hb_mod_period - hb_mod_tstart) , sample_dt); 
+        if(hb_mod_tend == 0){
+            hb_mod_n_sample = hb_mod_n_sample-1;
+            }    
+        hb_mod_t_samplepoint = hb_mod_tstart + sample_dt * hb_mod_n; //time of sampling point    
+        hb_mod_n_samplepoint = hb_mod_t_samplepoint / hb_mod_table_dt;
+        if(hb_mod_n_samplepoint >= 256){
+            hb_mod_n_samplepoint = 0;
+            }
+        hb_mod_v_samplepoint = hb_mod_ra*(coswave[(int)hb_mod_n_samplepoint]);  
+        if(hb_mod_n > (int)hb_mod_n_sample) {
+            hb_mod_n =0;
+            hb_mod_tstart = sample_dt - hb_mod_tend;
+            }
+        else {
+            hb_mod_n++;           
+            }
+        
+//HB_AM MOD 
+        
+        hb_signal = 0.5*(hb_carr_level*(1+hb_mod_v_samplepoint)*hb_carr_v_samplepoint)+0.5;//0-1 -> 0V-3.3V
+ 
+//debug part      
+/*
+        if(dbcount>=100){
+            pc.printf("%f, %f, %f\n",hb_signal,mod_signal,hb_mod_v_samplepoint);
+            dbcount = 0;
+            }
+        dbcount++;
+*/     
+//end debug part
+        
+//RESP section
+        resp_n_sample = (resp_period - resp_tstart) / sample_dt;
+        resp_tend = fmod((resp_period - resp_tstart) , sample_dt);
+        if(resp_tend == 0){
+            resp_n_sample = resp_n_sample-1;
+            }
+        resp_t_samplepoint = resp_tstart + sample_dt * resp_n; //time of sampling point
+        resp_n_samplepoint = resp_t_samplepoint / resp_table_dt;
+        if(resp_n_samplepoint >= 256){
+            resp_n_samplepoint = 0;
+            }
+        resp_v_samplepoint = resp_level*(coswave[(int)resp_n_samplepoint]);
+        resp_signal = 0.5*resp_v_samplepoint+0.5;     //0-1 -> 0V-3.3V
+        if(resp_n > (int)resp_n_sample) {
+            resp_n =0;
+            resp_tstart = sample_dt - resp_tend;
+            }      
+        else {
+            resp_n++;         
+            }
+            
+//SNORE section
+        snore_n_sample = (snore_period - snore_tstart) / sample_dt;       //
+        snore_tend = fmod((snore_period - snore_tstart) , sample_dt);
+        if(snore_tend == 0){
+            snore_n_sample = snore_n_sample-1;
+            }
+        else {
+            }
+        snore_t_samplepoint = snore_tstart + sample_dt * snore_n; //time of sampling point
+        snore_n_samplepoint = snore_t_samplepoint / snore_table_dt;
+        if(snore_n_samplepoint >= 256){
+            snore_n_samplepoint = 0;
+            }
+        snore_v_samplepoint = snore_level*(coswave[(int)snore_n_samplepoint]);
+        if(snore_n > (int)snore_n_sample) {
+            snore_n =0;             //2016/12/12 1->0
+            snore_tstart = sample_dt - snore_tend;
+            }
+        else {
+            snore_n++;          
+            } 
+        if(snore_onoff==0){
+            }
+        else if(snore_onoff==1){
+            if (snore_cycle <= snore_oncycle) {
+                snore_cycle++;
+                }
+            else if (snore_cycle>snore_oncycle && snore_cycle <= snore_allcycle){
+                snore_v_samplepoint = 0;
+                snore_cycle++;
+                }
+            else {
+                snore_cycle = 0;
+                }
+            }    
+        snore_signal = 0.5*snore_v_samplepoint+0.5;   //0-1 -> 0V-3.3V
+            
+//PWM Output Pulse width
+        pwidth_1 = hb_signal * sample_dt;
+        pwidth_2 = resp_signal * sample_dt;
+        pwidth_3 = snore_signal * sample_dt;
+        
+        signal_1.pulsewidth_us(pwidth_1);
+        signal_2.pulsewidth_us(pwidth_2);
+        signal_3.pulsewidth_us(pwidth_3); 
+}
+
+//チッカー割り込みハンドラ
+void attime(){
+    if(status1==1){
+        ledch1=0;
+        signal_culc();
+        }
+    else{
+        ledch1=!ledch1;
+        }
+    }
+
+//Serial 受信割り込みハンドラ
+void isrRx() {
+        
+    /*  UART受信コマンド
+    start:      波形出力スタート
+    stop:       波形出力ストップ
+    St:         割り込み周期[μsec]
+    carrf:      脈波AM変調波搬送波周波数[Hz]
+    modf:       脈波AM変調波変調周波数[Hz]
+    carrl:      脈波振幅
+    modr:       脈波変調波変調率[%]
+    respf:      呼吸周波数[Hz]
+    respl:      呼吸振幅
+    snorf:      体動・イビキ周波数[Hz]
+    snorl:      体動・イビキ振幅
+    snon:       体動・イビキONサイクル      
+    snall:      体動・イビキALLサイクル 
+    sncn:       体動・イビキ断続制御       
+    */
+    
+    char scan[10];
+    float para;
+
+    pc.scanf("%s",scan);                            // 文字列受信バッファより取り出し
+//    pc.printf("read = %s\n",scan);
+  
+    if(strcmp(scan,"start")==0){
+        pc.printf("go\n");
+        status1=1;                                  //波形出力状態へ遷移
+        }
+    else if(strcmp(scan,"stop")==0){
+        pc.printf("end\n");
+        status1=0;                                  //波形出力停止へ遷移
+        }
+    else if(strcmp(scan,"dt")==0){    
+        pc.scanf("%f",&para); 
+        sample_dt       =   para;
+        pc.printf("dt = %f\n",sample_dt);
+        } 
+    else if(strcmp(scan,"carrf")==0){    
+        pc.scanf("%f",&para);
+        hb_carr_freq          = para;
+        hb_carr_period        = 1000000*1/hb_carr_freq;  //microSec
+        hb_carr_n             = 0;
+        hb_carr_n_sample      = 0;                  //The maximum number of sampling points in the signal
+        hb_carr_tend          = 0;                  //The remainder of sampling points in the signal
+        hb_carr_tstart        = 0;                  //start offset of sampling time
+        hb_carr_t_samplepoint = 0;        
+        hb_carr_table_dt      = hb_carr_period/256;
+        hb_carr_n_samplepoint = 0;
+        hb_carr_v_samplepoint = 0;
+        pc.printf("carrf = %f\n",hb_carr_freq);
+        hb_mod_period        = 1000000*1/hb_mod_freq;
+        hb_mod_n             = 0;
+        hb_mod_n_sample      = 0;                  //The maximum number of sampling points in the signal
+        hb_mod_tend          = 0;                  //The remainder of sampling points in the signal
+        hb_mod_tstart        = 0;                  //start offset of sampling time
+        hb_mod_t_samplepoint = 0;        
+        hb_mod_table_dt      = hb_mod_period/256;
+        hb_mod_n_samplepoint = 0;
+        hb_mod_v_samplepoint = 0;
+        }
+    else if(strcmp(scan,"modf")==0){    
+        pc.scanf("%f",&para);  
+        hb_mod_freq           = para;
+        hb_mod_period        = 1000000*1/hb_mod_freq;
+        hb_mod_n             = 0;
+        hb_mod_n_sample      = 0;                  //The maximum number of sampling points in the signal
+        hb_mod_tend          = 0;                  //The remainder of sampling points in the signal
+        hb_mod_tstart        = 0;                  //start offset of sampling time
+        hb_mod_t_samplepoint = 0;        
+        hb_mod_table_dt      = hb_mod_period/256;
+        hb_mod_n_samplepoint = 0;
+        hb_mod_v_samplepoint = 0;
+        pc.printf("modf = %f\n",hb_mod_freq);
+        hb_carr_n             = 0;
+        hb_carr_n_sample      = 0;                  //The maximum number of sampling points in the signal
+        hb_carr_tend          = 0;                  //The remainder of sampling points in the signal
+        hb_carr_tstart        = 0;                  //start offset of sampling time
+        hb_carr_t_samplepoint = 0;        
+        hb_carr_table_dt      = hb_carr_period/256;
+        hb_carr_n_samplepoint = 0;
+        hb_carr_v_samplepoint = 0;
+        }
+    else if(strcmp(scan,"carrl")==0){    
+        pc.scanf("%f",&para);  
+        hb_carr_level         = para;
+        pc.printf("carrl = %f\n",hb_carr_level);
+        }    
+    else if(strcmp(scan,"modr")==0){    
+        pc.scanf("%f",&para); 
+        hb_mod_ratio          = para;
+        hb_mod_ra             = hb_mod_ratio *0.01;
+        pc.printf("modr = %f\n",hb_mod_ra);
+        } 
+    else if(strcmp(scan,"respf")==0){    
+        pc.scanf("%f",&para); 
+        resp_freq             = para; 
+        resp_period           = 1000000*1/resp_freq;//microSec      
+        resp_n                = 0;
+        resp_n_sample         = 0;                  //The maximum number of sampling points in the signal
+        resp_tend             = 0;                  //The remainder of sampling points in the signal
+        resp_tstart           = 0;                  //start offset of sampling time
+        resp_t_samplepoint    = 0;           
+        resp_table_dt         = resp_period/256;                                            
+        resp_n_samplepoint    = 0;
+        resp_v_samplepoint    = 0;
+        pc.printf("respf = %f\n",resp_freq);  
+        } 
+    else if(strcmp(scan,"respl")==0){    
+        pc.scanf("%f",&para); 
+        resp_level            = para;
+        pc.printf("respl = %f\n",resp_level); 
+        } 
+    else if(strcmp(scan,"snorf")==0){    
+        pc.scanf("%f",&para);   
+        snore_freq            = para; 
+        snore_period          = 1000000*1/snore_freq;  //microSec
+        snore_n               = 0;                  //2016/12/12 1->0
+        snore_n_sample        = 0;                  //The maximum number of sampling points in the signal
+        snore_tend            = 0;                  //The remainder of sampling points in the signal
+        snore_tstart          = 0;                  //start offset of sampling time
+        snore_t_samplepoint   = 0;        
+        snore_table_dt        = snore_period/256;
+        snore_n_samplepoint   = 0;
+        snore_v_samplepoint   = 0;  
+        snore_cycle           = 0;
+        pc.printf("snorf = %f\n",snore_freq);     
+    } 
+    else if(strcmp(scan,"snorl")==0){    
+        pc.scanf("%f",&para); 
+        snore_level           = para;
+        pc.printf("snorl = %f\n",snore_level); 
+    } 
+    else if(strcmp(scan,"snon")==0){    
+        pc.scanf("%f",&para); 
+        snore_oncycle         = (int)para; 
+        pc.printf("snon = %d\n",snore_oncycle);     
+    } 
+    else if(strcmp(scan,"snall")==0){    
+        pc.scanf("%f",&para); 
+        snore_allcycle        = (int)para; 
+        pc.printf("snall = %d\n",snore_allcycle);   
+    } 
+    else if(strcmp(scan,"sncn")==0){    
+        pc.scanf("%f",&para); 
+        snore_onoff           = (int)para;
+        pc.printf("sncn = %d\n",snore_onoff);  
+    } 
+    else if(strcmp(scan,"ack")==0){
+        pc.printf("carrf = %f\n",hb_carr_freq);
+        pc.printf("carrl = %f\n",hb_carr_level);
+        pc.printf("modf = %f\n",hb_mod_freq);
+        pc.printf("modr = %f\n",hb_mod_ra);
+        pc.printf("respf = %f\n",resp_freq);  
+        pc.printf("respl = %f\n",resp_level); 
+        pc.printf("snorf = %f\n",snore_freq);     
+        pc.printf("snorl = %f\n",snore_level); 
+        pc.printf("snon = %d\n",snore_oncycle);     
+        pc.printf("snall = %d\n",snore_allcycle);   
+        pc.printf("sncn = %d\n",snore_onoff); 
+    }
+    else if(strcmp(scan,"mr")==0){
+        pc.printf("mode = %d\n",mode);
+        pc.printf("revision = %d\n",revision);
+    }
+    else {
+        pc.printf("Command Error\n");
+    }   
+}
+
+int main() {
+    pc.printf("Start Up\n");
+    
+//Make cos wave
+    int i;
+    for(i=0;i<=255;i++){                         
+        coswave[i]=cos(2.0*3.1415*i/256);           //2017/1/5  0.5*(cos(2.0*3.1415*i/256));                         
+    }
+    i = 0;
+
+    signal_1.period_us(sample_dt);                  //Pulse_cycle = 100usec = 10kHz
+    signal_2.period_us(sample_dt);
+    signal_3.period_us(sample_dt);
+    
+    int j;
+    j = sample_dt;
+    timer.attach_us(&attime,j);                     //⇒UART割り込み”START”に移動     
+    
+    pc.attach(isrRx, Serial::RxIrq);                // 割込みハンドラ登録
+    NVIC_SetPriority(UART1_IRQn,1);
+
+    while(1) {                  
+        }
+}