This program is designed to run on a set of Xadow M0 modules to create a Hotshoe IMU which outputs GPS and Orientation data to Nikon cameras, as well as triggering the camera at set intervals.

Dependencies:   MBed_Adafruit-GPS-Library SC16IS750 SDFileSystem SSD1308_128x64_I2C USBDevice mbed BMP085

Fork of MPU9150AHRS by Kris Winer

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers MPU9150.h Source File

MPU9150.h

00001 #ifndef MPU9150_H
00002 #define MPU9150_H
00003  
00004 #include "mbed.h"
00005 
00006 //#define DEBUG
00007 
00008 #ifdef DEBUG
00009 #include "USBSerial.h"                       // To use USB virtual serial, a driver is needed, check http://mbed.org/handbook/USBSerial
00010 #define LOG(args...)    pc.printf(args)
00011 USBSerial pc;
00012 #else
00013 #define LOG(args...)
00014 #endif
00015  
00016 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
00017 // Invensense Inc., www.invensense.com
00018 // See also MPU-9150 Register Map and Descriptions, Revision 4.0, RM-MPU-9150A-00, 9/12/2012 for registers not listed in 
00019 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
00020 //
00021 //Magnetometer Registers
00022 #define WHO_AM_I_AK8975A 0x00 // should return 0x48
00023 #define INFO             0x01
00024 #define AK8975A_ST1      0x02  // data ready status bit 0
00025 #define AK8975A_ADDRESS  0x0C<<1
00026 #define AK8975A_XOUT_L   0x03  // data
00027 #define AK8975A_XOUT_H   0x04
00028 #define AK8975A_YOUT_L   0x05
00029 #define AK8975A_YOUT_H   0x06
00030 #define AK8975A_ZOUT_L   0x07
00031 #define AK8975A_ZOUT_H   0x08
00032 #define AK8975A_ST2      0x09  // Data overflow bit 3 and data read error status bit 2
00033 #define AK8975A_CNTL     0x0A  // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
00034 #define AK8975A_ASTC     0x0C  // Self test control
00035 #define AK8975A_ASAX     0x10  // Fuse ROM x-axis sensitivity adjustment value
00036 #define AK8975A_ASAY     0x11  // Fuse ROM y-axis sensitivity adjustment value
00037 #define AK8975A_ASAZ     0x12  // Fuse ROM z-axis sensitivity adjustment value
00038 
00039 #define XGOFFS_TC        0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD                 
00040 #define YGOFFS_TC        0x01                                                                          
00041 #define ZGOFFS_TC        0x02
00042 #define X_FINE_GAIN      0x03 // [7:0] fine gain
00043 #define Y_FINE_GAIN      0x04
00044 #define Z_FINE_GAIN      0x05
00045 #define XA_OFFSET_H      0x06 // User-defined trim values for accelerometer
00046 #define XA_OFFSET_L_TC   0x07
00047 #define YA_OFFSET_H      0x08
00048 #define YA_OFFSET_L_TC   0x09
00049 #define ZA_OFFSET_H      0x0A
00050 #define ZA_OFFSET_L_TC   0x0B
00051 #define SELF_TEST_X      0x0D
00052 #define SELF_TEST_Y      0x0E    
00053 #define SELF_TEST_Z      0x0F
00054 #define SELF_TEST_A      0x10
00055 #define XG_OFFS_USRH     0x13  // User-defined trim values for gyroscope, populate with calibration routine
00056 #define XG_OFFS_USRL     0x14
00057 #define YG_OFFS_USRH     0x15
00058 #define YG_OFFS_USRL     0x16
00059 #define ZG_OFFS_USRH     0x17
00060 #define ZG_OFFS_USRL     0x18
00061 #define SMPLRT_DIV       0x19
00062 #define CONFIG           0x1A
00063 #define GYRO_CONFIG      0x1B
00064 #define ACCEL_CONFIG     0x1C
00065 #define FF_THR           0x1D  // Free-fall
00066 #define FF_DUR           0x1E  // Free-fall
00067 #define MOT_THR          0x1F  // Motion detection threshold bits [7:0]
00068 #define MOT_DUR          0x20  // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
00069 #define ZMOT_THR         0x21  // Zero-motion detection threshold bits [7:0]
00070 #define ZRMOT_DUR        0x22  // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
00071 #define FIFO_EN          0x23
00072 #define I2C_MST_CTRL     0x24   
00073 #define I2C_SLV0_ADDR    0x25
00074 #define I2C_SLV0_REG     0x26
00075 #define I2C_SLV0_CTRL    0x27
00076 #define I2C_SLV1_ADDR    0x28
00077 #define I2C_SLV1_REG     0x29
00078 #define I2C_SLV1_CTRL    0x2A
00079 #define I2C_SLV2_ADDR    0x2B
00080 #define I2C_SLV2_REG     0x2C
00081 #define I2C_SLV2_CTRL    0x2D
00082 #define I2C_SLV3_ADDR    0x2E
00083 #define I2C_SLV3_REG     0x2F
00084 #define I2C_SLV3_CTRL    0x30
00085 #define I2C_SLV4_ADDR    0x31
00086 #define I2C_SLV4_REG     0x32
00087 #define I2C_SLV4_DO      0x33
00088 #define I2C_SLV4_CTRL    0x34
00089 #define I2C_SLV4_DI      0x35
00090 #define I2C_MST_STATUS   0x36
00091 #define INT_PIN_CFG      0x37
00092 #define INT_ENABLE       0x38
00093 #define DMP_INT_STATUS   0x39  // Check DMP interrupt
00094 #define INT_STATUS       0x3A
00095 #define ACCEL_XOUT_H     0x3B
00096 #define ACCEL_XOUT_L     0x3C
00097 #define ACCEL_YOUT_H     0x3D
00098 #define ACCEL_YOUT_L     0x3E
00099 #define ACCEL_ZOUT_H     0x3F
00100 #define ACCEL_ZOUT_L     0x40
00101 #define TEMP_OUT_H       0x41
00102 #define TEMP_OUT_L       0x42
00103 #define GYRO_XOUT_H      0x43
00104 #define GYRO_XOUT_L      0x44
00105 #define GYRO_YOUT_H      0x45
00106 #define GYRO_YOUT_L      0x46
00107 #define GYRO_ZOUT_H      0x47
00108 #define GYRO_ZOUT_L      0x48
00109 #define EXT_SENS_DATA_00 0x49
00110 #define EXT_SENS_DATA_01 0x4A
00111 #define EXT_SENS_DATA_02 0x4B
00112 #define EXT_SENS_DATA_03 0x4C
00113 #define EXT_SENS_DATA_04 0x4D
00114 #define EXT_SENS_DATA_05 0x4E
00115 #define EXT_SENS_DATA_06 0x4F
00116 #define EXT_SENS_DATA_07 0x50
00117 #define EXT_SENS_DATA_08 0x51
00118 #define EXT_SENS_DATA_09 0x52
00119 #define EXT_SENS_DATA_10 0x53
00120 #define EXT_SENS_DATA_11 0x54
00121 #define EXT_SENS_DATA_12 0x55
00122 #define EXT_SENS_DATA_13 0x56
00123 #define EXT_SENS_DATA_14 0x57
00124 #define EXT_SENS_DATA_15 0x58
00125 #define EXT_SENS_DATA_16 0x59
00126 #define EXT_SENS_DATA_17 0x5A
00127 #define EXT_SENS_DATA_18 0x5B
00128 #define EXT_SENS_DATA_19 0x5C
00129 #define EXT_SENS_DATA_20 0x5D
00130 #define EXT_SENS_DATA_21 0x5E
00131 #define EXT_SENS_DATA_22 0x5F
00132 #define EXT_SENS_DATA_23 0x60
00133 #define MOT_DETECT_STATUS 0x61
00134 #define I2C_SLV0_DO      0x63
00135 #define I2C_SLV1_DO      0x64
00136 #define I2C_SLV2_DO      0x65
00137 #define I2C_SLV3_DO      0x66
00138 #define I2C_MST_DELAY_CTRL 0x67
00139 #define SIGNAL_PATH_RESET  0x68
00140 #define MOT_DETECT_CTRL   0x69
00141 #define USER_CTRL        0x6A  // Bit 7 enable DMP, bit 3 reset DMP
00142 #define PWR_MGMT_1       0x6B // Device defaults to the SLEEP mode
00143 #define PWR_MGMT_2       0x6C
00144 #define DMP_BANK         0x6D  // Activates a specific bank in the DMP
00145 #define DMP_RW_PNT       0x6E  // Set read/write pointer to a specific start address in specified DMP bank
00146 #define DMP_REG          0x6F  // Register in DMP from which to read or to which to write
00147 #define DMP_REG_1        0x70
00148 #define DMP_REG_2        0x71
00149 #define FIFO_COUNTH      0x72
00150 #define FIFO_COUNTL      0x73
00151 #define FIFO_R_W         0x74
00152 #define WHO_AM_I_MPU9150 0x75 // Should return 0x68
00153 
00154 
00155 // Using the GY-9150 breakout board, ADO is set to 0 
00156 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
00157 // mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
00158 #define ADO 0
00159 #if ADO
00160 #define MPU9150_ADDRESS 0x69<<1  // Device address when ADO = 1
00161 #else
00162 #define MPU9150_ADDRESS 0x68<<1  // Device address when ADO = 0
00163 #endif  
00164 
00165 // Set initial input parameters
00166 enum Ascale {
00167   AFS_2G = 0,
00168   AFS_4G,
00169   AFS_8G,
00170   AFS_16G
00171 };
00172 
00173 enum Gscale {
00174   GFS_250DPS = 0,
00175   GFS_500DPS,
00176   GFS_1000DPS,
00177   GFS_2000DPS
00178 };
00179 
00180 uint8_t Ascale = AFS_2G;     // AFS_2G, AFS_4G, AFS_8G, AFS_16G
00181 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
00182 float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors
00183 
00184 //Set up I2C, (SDA,SCL)
00185 I2C i2c(I2C_SDA, I2C_SCL);
00186 
00187 DigitalOut myled(LED1);
00188     
00189 // Pin definitions
00190 int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
00191 
00192 int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
00193 int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
00194 int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
00195 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0};  // Factory mag calibration and mag bias
00196 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; ; // Bias corrections for gyro, accelerometer and mag
00197 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 
00198 int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
00199 float temperature;
00200 float SelfTest[6];
00201 
00202 int delt_t = 0; // used to control display output rate
00203 int count = 0;  // used to control display output rate
00204 
00205 // parameters for 6 DoF sensor fusion calculations
00206 float PI = 3.14159265358979323846f;
00207 float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
00208 float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
00209 float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
00210 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
00211 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
00212 #define Ki 0.0f
00213 
00214 float pitch, yaw, roll;
00215 float deltat = 0.0f;                             // integration interval for both filter schemes
00216 int lastUpdate = 0, firstUpdate = 0, Now = 0;    // used to calculate integration interval                               // used to calculate integration interval
00217 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};           // vector to hold quaternion
00218 float eInt[3] = {0.0f, 0.0f, 0.0f};              // vector to hold integral error for Mahony method
00219 
00220 class MPU9150 {
00221  
00222     protected:
00223  
00224     public:
00225   //===================================================================================================================
00226 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
00227 //===================================================================================================================
00228 
00229     void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
00230 {
00231    char data_write[2];
00232    data_write[0] = subAddress;
00233    data_write[1] = data;
00234    i2c.write(address, data_write, 2, 0);
00235 }
00236 
00237     char readByte(uint8_t address, uint8_t subAddress)
00238 {
00239     char data[1]; // `data` will store the register data     
00240     char data_write[1];
00241     data_write[0] = subAddress;
00242     i2c.write(address, data_write, 1, 1); // no stop
00243     i2c.read(address, data, 1, 0); 
00244     return data[0]; 
00245 }
00246 
00247     void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
00248 {     
00249     char data[14];
00250     char data_write[1];
00251     data_write[0] = subAddress;
00252     i2c.write(address, data_write, 1, 1); // no stop
00253     i2c.read(address, data, count, 0); 
00254     for(int ii = 0; ii < count; ii++) {
00255      dest[ii] = data[ii];
00256     }
00257 } 
00258  
00259 
00260 void getGres() {
00261   switch (Gscale)
00262   {
00263     // Possible gyro scales (and their register bit settings) are:
00264     // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
00265         // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
00266     case GFS_250DPS:
00267           gRes = 250.0/32768.0;
00268           break;
00269     case GFS_500DPS:
00270           gRes = 500.0/32768.0;
00271           break;
00272     case GFS_1000DPS:
00273           gRes = 1000.0/32768.0;
00274           break;
00275     case GFS_2000DPS:
00276           gRes = 2000.0/32768.0;
00277           break;
00278   }
00279 }
00280 
00281 
00282 void getAres() {
00283   switch (Ascale)
00284   {
00285     // Possible accelerometer scales (and their register bit settings) are:
00286     // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
00287         // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
00288     case AFS_2G:
00289           aRes = 2.0/32768.0;
00290           break;
00291     case AFS_4G:
00292           aRes = 4.0/32768.0;
00293           break;
00294     case AFS_8G:
00295           aRes = 8.0/32768.0;
00296           break;
00297     case AFS_16G:
00298           aRes = 16.0/32768.0;
00299           break;
00300   }
00301 }
00302 
00303 
00304 void readAccelData(int16_t * destination)
00305 {
00306   uint8_t rawData[6];  // x/y/z accel register data stored here
00307   readBytes(MPU9150_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
00308   destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
00309   destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
00310   destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
00311 }
00312 
00313 void readGyroData(int16_t * destination)
00314 {
00315   uint8_t rawData[6];  // x/y/z gyro register data stored here
00316   readBytes(MPU9150_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
00317   destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
00318   destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
00319   destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
00320 }
00321 
00322 void readMagData(int16_t * destination)
00323 {
00324   uint8_t rawData[6];  // x/y/z gyro register data stored here
00325   writeByte(AK8975A_ADDRESS, AK8975A_CNTL, 0x01); // toggle enable data read from magnetometer, no continuous read mode!
00326   wait(0.01);
00327   // Only accept a new magnetometer data read if the data ready bit is set and 
00328   // if there are no sensor overflow or data read errors
00329   if(readByte(AK8975A_ADDRESS, AK8975A_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
00330   readBytes(AK8975A_ADDRESS, AK8975A_XOUT_L, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
00331   destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ;  // Turn the MSB and LSB into a signed 16-bit value
00332   destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;  
00333   destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; 
00334   }
00335 }
00336 
00337 void initAK8975A(float * destination)
00338 {
00339   uint8_t rawData[3];  // x/y/z gyro register data stored here
00340   writeByte(AK8975A_ADDRESS, AK8975A_CNTL, 0x00); // Power down
00341   wait(0.01);
00342   writeByte(AK8975A_ADDRESS, AK8975A_CNTL, 0x0F); // Enter Fuse ROM access mode
00343   wait(0.01);
00344   readBytes(AK8975A_ADDRESS, AK8975A_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
00345   destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values
00346   destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;  
00347   destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f; 
00348 }
00349 
00350 void magcalMPU9150(float * dest1) 
00351 {
00352   uint16_t ii = 0, sample_count = 0;
00353   int32_t mag_bias[3] = {0, 0, 0};
00354   int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0}, mag_temp[3] = {0, 0, 0};
00355  
00356   LOG("Mag Calibration: Wave device in a figure eight until done!");
00357   wait(4);
00358   
00359    sample_count = 64;
00360    for(ii = 0; ii < sample_count; ii++) {
00361     readMagData(mag_temp);  // Read the mag data   
00362     for (int jj = 0; jj < 3; jj++) {
00363       if (ii == 0) {
00364         mag_max[jj] = mag_temp[jj]; // Offsets may be large enough that mag_temp[i] may not be bipolar! 
00365         mag_min[jj] = mag_temp[jj]; // This prevents max or min being pinned to 0 if the values are unipolar...
00366       } else {
00367         if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
00368         if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
00369       }
00370     }
00371     wait_ms(135);  // at 8 Hz ODR, new mag data is available every 125 ms
00372    }
00373 
00374 //    Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
00375 //    Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
00376 //    Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
00377 
00378     mag_bias[0]  = (mag_max[0] + mag_min[0])/2;  // get average x mag bias in counts
00379     mag_bias[1]  = (mag_max[1] + mag_min[1])/2;  // get average y mag bias in counts
00380     mag_bias[2]  = (mag_max[2] + mag_min[2])/2;  // get average z mag bias in counts
00381     
00382     dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0];  // save mag biases in G for main program
00383     dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1];   
00384     dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2];          
00385 
00386    LOG("Mag Calibration done!");
00387 }
00388 
00389 int16_t readTempData()
00390 {
00391   uint8_t rawData[2];  // x/y/z gyro register data stored here
00392   readBytes(MPU9150_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
00393   return ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a 16-bit value
00394 }
00395 
00396 void resetMPU9150() {
00397   // reset device
00398   writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
00399   wait(0.1);
00400   }
00401   
00402 
00403 
00404 void initMPU9150()
00405 {  
00406  // Initialize MPU9150 device
00407  // wake up device
00408   writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
00409   wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
00410 
00411  // get stable time source
00412   writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
00413 
00414  // Configure Gyro and Accelerometer
00415  // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
00416  // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
00417  // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
00418   writeByte(MPU9150_ADDRESS, CONFIG, 0x03);  
00419  
00420  // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
00421   writeByte(MPU9150_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
00422  
00423  // Set gyroscope full scale range
00424  // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
00425   uint8_t c =  readByte(MPU9150_ADDRESS, GYRO_CONFIG);
00426   writeByte(MPU9150_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
00427   writeByte(MPU9150_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
00428   writeByte(MPU9150_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
00429    
00430  // Set accelerometer configuration
00431   c =  readByte(MPU9150_ADDRESS, ACCEL_CONFIG);
00432   writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
00433   writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
00434   writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
00435 
00436  // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
00437  // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
00438 
00439   // Configure Interrupts and Bypass Enable
00440   // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
00441   // can join the I2C bus and all can be controlled by the Arduino as master
00442    writeByte(MPU9150_ADDRESS, INT_PIN_CFG, 0x22);    
00443    writeByte(MPU9150_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
00444 }
00445 
00446 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
00447 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
00448 void calibrateMPU9150(float * dest1, float * dest2)
00449 {  
00450   uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
00451   uint16_t ii, packet_count, fifo_count;
00452   int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
00453   
00454 // reset device, reset all registers, clear gyro and accelerometer bias registers
00455   writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
00456   wait(0.1);  
00457    
00458 // get stable time source
00459 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
00460   writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x01);  
00461   writeByte(MPU9150_ADDRESS, PWR_MGMT_2, 0x00); 
00462   wait(0.2);
00463   
00464 // Configure device for bias calculation
00465   writeByte(MPU9150_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
00466   writeByte(MPU9150_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
00467   writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
00468   writeByte(MPU9150_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
00469   writeByte(MPU9150_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
00470   writeByte(MPU9150_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
00471   wait(0.015);
00472   
00473 // Configure MPU9150 gyro and accelerometer for bias calculation
00474   writeByte(MPU9150_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
00475   writeByte(MPU9150_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
00476   writeByte(MPU9150_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
00477   writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
00478  
00479   uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
00480   uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
00481 
00482 // Configure FIFO to capture accelerometer and gyro data for bias calculation
00483   writeByte(MPU9150_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
00484   writeByte(MPU9150_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU9150)
00485   wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
00486 
00487 // At end of sample accumulation, turn off FIFO sensor read
00488   writeByte(MPU9150_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
00489   readBytes(MPU9150_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
00490   fifo_count = ((uint16_t)data[0] << 8) | data[1];
00491   packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
00492 
00493   for (ii = 0; ii < packet_count; ii++) {
00494     int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
00495     readBytes(MPU9150_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
00496     accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
00497     accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
00498     accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
00499     gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
00500     gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
00501     gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
00502     
00503     accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
00504     accel_bias[1] += (int32_t) accel_temp[1];
00505     accel_bias[2] += (int32_t) accel_temp[2];
00506     gyro_bias[0]  += (int32_t) gyro_temp[0];
00507     gyro_bias[1]  += (int32_t) gyro_temp[1];
00508     gyro_bias[2]  += (int32_t) gyro_temp[2];
00509             
00510 }
00511     accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
00512     accel_bias[1] /= (int32_t) packet_count;
00513     accel_bias[2] /= (int32_t) packet_count;
00514     gyro_bias[0]  /= (int32_t) packet_count;
00515     gyro_bias[1]  /= (int32_t) packet_count;
00516     gyro_bias[2]  /= (int32_t) packet_count;
00517     
00518   if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
00519   else {accel_bias[2] += (int32_t) accelsensitivity;}
00520  
00521 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
00522   data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
00523   data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
00524   data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
00525   data[3] = (-gyro_bias[1]/4)       & 0xFF;
00526   data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
00527   data[5] = (-gyro_bias[2]/4)       & 0xFF;
00528 
00529 /// Push gyro biases to hardware registers
00530   writeByte(MPU9150_ADDRESS, XG_OFFS_USRH, data[0]); 
00531   writeByte(MPU9150_ADDRESS, XG_OFFS_USRL, data[1]);
00532   writeByte(MPU9150_ADDRESS, YG_OFFS_USRH, data[2]);
00533   writeByte(MPU9150_ADDRESS, YG_OFFS_USRL, data[3]);
00534   writeByte(MPU9150_ADDRESS, ZG_OFFS_USRH, data[4]);
00535   writeByte(MPU9150_ADDRESS, ZG_OFFS_USRL, data[5]);
00536 
00537   dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
00538   dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
00539   dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
00540 
00541 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
00542 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
00543 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
00544 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
00545 // the accelerometer biases calculated above must be divided by 8.
00546 
00547   int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
00548   readBytes(MPU9150_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
00549   accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00550   readBytes(MPU9150_ADDRESS, YA_OFFSET_H, 2, &data[0]);
00551   accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00552   readBytes(MPU9150_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
00553   accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00554   
00555   uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
00556   uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
00557   
00558   for(ii = 0; ii < 3; ii++) {
00559     if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
00560   }
00561 
00562   // Construct total accelerometer bias, including calculated average accelerometer bias from above
00563   accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
00564   accel_bias_reg[1] -= (accel_bias[1]/8);
00565   accel_bias_reg[2] -= (accel_bias[2]/8);
00566  
00567   data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
00568   data[1] = (accel_bias_reg[0])      & 0xFF;
00569   data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00570   data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
00571   data[3] = (accel_bias_reg[1])      & 0xFF;
00572   data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00573   data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
00574   data[5] = (accel_bias_reg[2])      & 0xFF;
00575   data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00576 
00577 // Apparently this is not working for the acceleration biases in the MPU-9250
00578 // Are we handling the temperature correction bit properly?
00579 // Push accelerometer biases to hardware registers
00580   writeByte(MPU9150_ADDRESS, XA_OFFSET_H, data[0]);  
00581   writeByte(MPU9150_ADDRESS, XA_OFFSET_L_TC, data[1]);
00582   writeByte(MPU9150_ADDRESS, YA_OFFSET_H, data[2]);
00583   writeByte(MPU9150_ADDRESS, YA_OFFSET_L_TC, data[3]);
00584   writeByte(MPU9150_ADDRESS, ZA_OFFSET_H, data[4]);
00585   writeByte(MPU9150_ADDRESS, ZA_OFFSET_L_TC, data[5]);
00586 
00587 // Output scaled accelerometer biases for manual subtraction in the main program
00588    dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
00589    dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
00590    dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
00591 }
00592 
00593 
00594 // Accelerometer and gyroscope self test; check calibration wrt factory settings
00595 void MPU9150SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
00596 {
00597    uint8_t rawData[4] = {0, 0, 0, 0};
00598    uint8_t selfTest[6];
00599    float factoryTrim[6];
00600    
00601    // Configure the accelerometer for self-test
00602    writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
00603    writeByte(MPU9150_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
00604    wait(0.25);  // Delay a while to let the device execute the self-test
00605    rawData[0] = readByte(MPU9150_ADDRESS, SELF_TEST_X); // X-axis self-test results
00606    rawData[1] = readByte(MPU9150_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
00607    rawData[2] = readByte(MPU9150_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
00608    rawData[3] = readByte(MPU9150_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
00609    // Extract the acceleration test results first
00610    selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
00611    selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
00612    selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
00613    // Extract the gyration test results first
00614    selfTest[3] = rawData[0]  & 0x1F ; // XG_TEST result is a five-bit unsigned integer
00615    selfTest[4] = rawData[1]  & 0x1F ; // YG_TEST result is a five-bit unsigned integer
00616    selfTest[5] = rawData[2]  & 0x1F ; // ZG_TEST result is a five-bit unsigned integer   
00617    // Process results to allow final comparison with factory set values
00618    factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
00619    factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
00620    factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
00621    factoryTrim[3] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) ));             // FT[Xg] factory trim calculation
00622    factoryTrim[4] =  (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) ));             // FT[Yg] factory trim calculation
00623    factoryTrim[5] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) ));             // FT[Zg] factory trim calculation
00624    
00625  //  Output self-test results and factory trim calculation if desired
00626  //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
00627  //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
00628  //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
00629  //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
00630 
00631  // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
00632  // To get to percent, must multiply by 100 and subtract result from 100
00633    for (int i = 0; i < 6; i++) {
00634      destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
00635    }
00636    
00637 }
00638 
00639 
00640 
00641 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
00642 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
00643 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
00644 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
00645 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
00646 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
00647         void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
00648         {
00649             float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
00650             float norm;
00651             float hx, hy, _2bx, _2bz;
00652             float s1, s2, s3, s4;
00653             float qDot1, qDot2, qDot3, qDot4;
00654 
00655             // Auxiliary variables to avoid repeated arithmetic
00656             float _2q1mx;
00657             float _2q1my;
00658             float _2q1mz;
00659             float _2q2mx;
00660             float _4bx;
00661             float _4bz;
00662             float _2q1 = 2.0f * q1;
00663             float _2q2 = 2.0f * q2;
00664             float _2q3 = 2.0f * q3;
00665             float _2q4 = 2.0f * q4;
00666             float _2q1q3 = 2.0f * q1 * q3;
00667             float _2q3q4 = 2.0f * q3 * q4;
00668             float q1q1 = q1 * q1;
00669             float q1q2 = q1 * q2;
00670             float q1q3 = q1 * q3;
00671             float q1q4 = q1 * q4;
00672             float q2q2 = q2 * q2;
00673             float q2q3 = q2 * q3;
00674             float q2q4 = q2 * q4;
00675             float q3q3 = q3 * q3;
00676             float q3q4 = q3 * q4;
00677             float q4q4 = q4 * q4;
00678 
00679             // Normalise accelerometer measurement
00680             norm = sqrt(ax * ax + ay * ay + az * az);
00681             if (norm == 0.0f) return; // handle NaN
00682             norm = 1.0f/norm;
00683             ax *= norm;
00684             ay *= norm;
00685             az *= norm;
00686 
00687             // Normalise magnetometer measurement
00688             norm = sqrt(mx * mx + my * my + mz * mz);
00689             if (norm == 0.0f) return; // handle NaN
00690             norm = 1.0f/norm;
00691             mx *= norm;
00692             my *= norm;
00693             mz *= norm;
00694 
00695             // Reference direction of Earth's magnetic field
00696             _2q1mx = 2.0f * q1 * mx;
00697             _2q1my = 2.0f * q1 * my;
00698             _2q1mz = 2.0f * q1 * mz;
00699             _2q2mx = 2.0f * q2 * mx;
00700             hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
00701             hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
00702             _2bx = sqrt(hx * hx + hy * hy);
00703             _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
00704             _4bx = 2.0f * _2bx;
00705             _4bz = 2.0f * _2bz;
00706 
00707             // Gradient decent algorithm corrective step
00708             s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00709             s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00710             s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00711             s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00712             norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
00713             norm = 1.0f/norm;
00714             s1 *= norm;
00715             s2 *= norm;
00716             s3 *= norm;
00717             s4 *= norm;
00718 
00719             // Compute rate of change of quaternion
00720             qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
00721             qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
00722             qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
00723             qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
00724 
00725             // Integrate to yield quaternion
00726             q1 += qDot1 * deltat;
00727             q2 += qDot2 * deltat;
00728             q3 += qDot3 * deltat;
00729             q4 += qDot4 * deltat;
00730             norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
00731             norm = 1.0f/norm;
00732             q[0] = q1 * norm;
00733             q[1] = q2 * norm;
00734             q[2] = q3 * norm;
00735             q[3] = q4 * norm;
00736 
00737         }
00738   
00739   
00740   
00741  // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
00742  // measured ones. 
00743             void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
00744         {
00745             float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
00746             float norm;
00747             float hx, hy, bx, bz;
00748             float vx, vy, vz, wx, wy, wz;
00749             float ex, ey, ez;
00750             float pa, pb, pc;
00751 
00752             // Auxiliary variables to avoid repeated arithmetic
00753             float q1q1 = q1 * q1;
00754             float q1q2 = q1 * q2;
00755             float q1q3 = q1 * q3;
00756             float q1q4 = q1 * q4;
00757             float q2q2 = q2 * q2;
00758             float q2q3 = q2 * q3;
00759             float q2q4 = q2 * q4;
00760             float q3q3 = q3 * q3;
00761             float q3q4 = q3 * q4;
00762             float q4q4 = q4 * q4;   
00763 
00764             // Normalise accelerometer measurement
00765             norm = sqrt(ax * ax + ay * ay + az * az);
00766             if (norm == 0.0f) return; // handle NaN
00767             norm = 1.0f / norm;        // use reciprocal for division
00768             ax *= norm;
00769             ay *= norm;
00770             az *= norm;
00771 
00772             // Normalise magnetometer measurement
00773             norm = sqrt(mx * mx + my * my + mz * mz);
00774             if (norm == 0.0f) return; // handle NaN
00775             norm = 1.0f / norm;        // use reciprocal for division
00776             mx *= norm;
00777             my *= norm;
00778             mz *= norm;
00779 
00780             // Reference direction of Earth's magnetic field
00781             hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
00782             hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
00783             bx = sqrt((hx * hx) + (hy * hy));
00784             bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
00785 
00786             // Estimated direction of gravity and magnetic field
00787             vx = 2.0f * (q2q4 - q1q3);
00788             vy = 2.0f * (q1q2 + q3q4);
00789             vz = q1q1 - q2q2 - q3q3 + q4q4;
00790             wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
00791             wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
00792             wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);  
00793 
00794             // Error is cross product between estimated direction and measured direction of gravity
00795             ex = (ay * vz - az * vy) + (my * wz - mz * wy);
00796             ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
00797             ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
00798             if (Ki > 0.0f)
00799             {
00800                 eInt[0] += ex;      // accumulate integral error
00801                 eInt[1] += ey;
00802                 eInt[2] += ez;
00803             }
00804             else
00805             {
00806                 eInt[0] = 0.0f;     // prevent integral wind up
00807                 eInt[1] = 0.0f;
00808                 eInt[2] = 0.0f;
00809             }
00810 
00811             // Apply feedback terms
00812             gx = gx + Kp * ex + Ki * eInt[0];
00813             gy = gy + Kp * ey + Ki * eInt[1];
00814             gz = gz + Kp * ez + Ki * eInt[2];
00815 
00816             // Integrate rate of change of quaternion
00817             pa = q2;
00818             pb = q3;
00819             pc = q4;
00820             q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
00821             q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
00822             q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
00823             q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
00824 
00825             // Normalise quaternion
00826             norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
00827             norm = 1.0f / norm;
00828             q[0] = q1 * norm;
00829             q[1] = q2 * norm;
00830             q[2] = q3 * norm;
00831             q[3] = q4 * norm;
00832  
00833         }
00834   };
00835 #endif