This is code is part of a Technion course project in advanced IoT, implementing a device to receive and present sensors data from a Formula racing car built by students at Technion - Israel Institute of Technology.
Fork of DISCO-L072CZ-LRWAN1_LoRa_PingPong by
This is code is part of a Technion course project in advanced IoT, implementing a device to receive sensors data from another L072CZ-LRWAN1 installed on a Formula racing car (built by students at Technion - Israel Institute of Technology), and sends it to a GUI presenting the data (GUI project: github.com/ward-mattar/TechnionFormulaGUI).
How to install
- Create an account on Mbed: https://os.mbed.com/account/signup/
- Import project into Compiler
- In the Program Workspace select "Formula_Nucleo_Receiver"
- Select a Platform like so:
- Click button at top-left
- Add Board
- Search "NUCLEO F103RB" and then "Add to your Mbed Compiler"
- Finally click "Compile", if the build was successful, the binary would download automatically
- To install it on device simply plug it in to a PC, open device drive and drag then drop binary file in it
main.cpp
- Committer:
- wardm
- Date:
- 2018-05-19
- Revision:
- 12:046346a16ff4
- Parent:
- 10:f84959c2e044
File content as of revision 12:046346a16ff4:
/*
* Copyright (c) 2017 Helmut Tschemernjak
* 30826 Garbsen (Hannover) Germany
* Licensed under the Apache License, Version 2.0);
*/
#include "main.h"
DigitalOut myled(LED1);
BufferedSerial *ser;
int main() {
SystemClock_Config();
ser = new BufferedSerial(USBTX, USBRX);
ser->baud(115200*2);
ser->format(8);
myled = 1;
Receiver();
}
void SystemClock_Config(void)
{
#ifdef B_L072Z_LRWAN1_LORA
/*
* The L072Z_LRWAN1_LORA clock setup is somewhat differnt from the Nucleo board.
* It has no LSE.
*/
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
/* Enable HSE Oscillator and Activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSEState = RCC_HSE_OFF;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_6;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
// Error_Handler();
}
/* Set Voltage scale1 as MCU will run at 32MHz */
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0 */
while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOS) != RESET) {};
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
// Error_Handler();
}
#endif
}
void dump(const char *title, const void *data, int len, bool dwords)
{
dprintf("dump(\"%s\", 0x%x, %d bytes)", title, data, len);
int i, j, cnt;
unsigned char *u;
const int width = 16;
const int seppos = 7;
cnt = 0;
u = (unsigned char *)data;
while (len > 0) {
ser->printf("%08x: ", (unsigned int)data + cnt);
if (dwords) {
unsigned int *ip = ( unsigned int *)u;
ser->printf(" 0x%08x\r\n", *ip);
u+= 4;
len -= 4;
cnt += 4;
continue;
}
cnt += width;
j = len < width ? len : width;
for (i = 0; i < j; i++) {
ser->printf("%2.2x ", *(u + i));
if (i == seppos)
ser->putc(' ');
}
ser->putc(' ');
if (j < width) {
i = width - j;
if (i > seppos + 1)
ser->putc(' ');
while (i--) {
printf("%s", " ");
}
}
for (i = 0; i < j; i++) {
int c = *(u + i);
if (c >= ' ' && c <= '~')
ser->putc(c);
else
ser->putc('.');
if (i == seppos)
ser->putc(' ');
}
len -= width;
u += width;
ser->printf("\r\n");
}
ser->printf("--\r\n");
}
