Added mutex for multiple SPI devices on the same SPI bus
Fork of cc3000_hostdriver_mbedsocket by
cc3000_event.cpp
- Committer:
- SolderSplashLabs
- Date:
- 2013-10-04
- Revision:
- 26:456f73ed2a75
- Parent:
- 23:fed7f64dd520
- Parent:
- 22:d23c59fec0dc
- Child:
- 38:1d374a7f0c0d
File content as of revision 26:456f73ed2a75:
/*****************************************************************************
*
* C++ interface/implementation created by Martin Kojtal (0xc0170). Thanks to
* Jim Carver and Frank Vannieuwkerke for their inital cc3000 mbed port and
* provided help.
*
* This version of "host driver" uses CC3000 Host Driver Implementation. Thus
* read the following copyright:
*
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include "cc3000.h"
#include "cc3000_event.h"
#include "cc3000_netapp.h"
namespace mbed_cc3000 {
#ifdef CC3000_DEBUG_HCI_RX
const char *HCI_EVENT_STR[] =
{
"Socket",
"Bind",
"Send",
"Recv",
"Accept",
"Listen",
"Connect",
"BSD Select",
"Set Socket Options",
"Get Socket Options",
"Close Socket",
"Unknown",
"Recv From",
"Write",
"Send To",
"Get Hostname",
"mDNS Advertise"
};
const char *HCI_NETAPP_STR[] =
{
"DHCP",
"Ping Sent",
"Ping Report",
"Ping Stop",
"IP Config",
"ARP Flush",
"Unknown",
"Set Debug level",
"Set Timers"
};
// from 0-7
const char *HCI_MISC_STR[] =
{
"BASE - Error?",
"Connecting",
"Disconnect",
"Scan Param",
"Connect Policy",
"Add Profile",
"Del Profile",
"Get Scan Res",
"Event Mask",
"Status Req",
"Config Start",
"Config Stop",
"Config Set Prefix",
"Config Patch",
};
#endif
cc3000_event::cc3000_event(cc3000_simple_link &simplelink, cc3000_hci &hci, cc3000_spi &spi, cc3000 &cc3000)
: socket_active_status(SOCKET_STATUS_INIT_VAL), _simple_link(simplelink), _hci(hci), _spi(spi), _cc3000(cc3000) {
}
cc3000_event::~cc3000_event() {
}
/* TODO removed buffer, set it in init */
void cc3000_event::received_handler(uint8_t *buffer) {
_simple_link.set_data_received_flag(1);
_simple_link.set_received_data(buffer);
hci_unsolicited_event_handler();
}
void cc3000_event::hci_unsol_handle_patch_request(uint8_t *event_hdr) {
uint8_t *params = (uint8_t *)(event_hdr) + HCI_EVENT_HEADER_SIZE;
uint32_t length = 0;
uint8_t *patch;
switch (*params)
{
case HCI_EVENT_PATCHES_DRV_REQ:
{
tDriverPatches func_pointer = (tDriverPatches)_simple_link.get_func_pointer(DRIVER_PATCHES);
if (func_pointer)
{
patch = func_pointer(&length);
if (patch)
{
_hci.patch_send(HCI_EVENT_PATCHES_DRV_REQ, _simple_link.get_transmit_buffer(), patch, length);
return;
}
}
// Send 0 length Patches response event
_hci.patch_send(HCI_EVENT_PATCHES_DRV_REQ, _simple_link.get_transmit_buffer(), 0, 0);
break;
}
case HCI_EVENT_PATCHES_FW_REQ:
{
tFWPatches func_pointer = (tFWPatches)_simple_link.get_func_pointer(FW_PATCHES);
if (func_pointer)
{
patch = func_pointer(&length);
// Build and send a patch
if (patch)
{
_hci.patch_send(HCI_EVENT_PATCHES_FW_REQ, _simple_link.get_transmit_buffer(), patch, length);
return;
}
}
// Send 0 length Patches response event
_hci.patch_send(HCI_EVENT_PATCHES_FW_REQ, _simple_link.get_transmit_buffer(), 0, 0);
break;
}
case HCI_EVENT_PATCHES_BOOTLOAD_REQ:
{
tBootLoaderPatches func_pointer = (tBootLoaderPatches)_simple_link.get_func_pointer(BOOTLOADER_PATCHES);
if (func_pointer)
{
patch = func_pointer(&length);
if (patch)
{
_hci.patch_send(HCI_EVENT_PATCHES_BOOTLOAD_REQ, _simple_link.get_transmit_buffer(), patch, length);
return;
}
}
// Send 0 length Patches response event
_hci.patch_send(HCI_EVENT_PATCHES_BOOTLOAD_REQ, _simple_link.get_transmit_buffer(), 0, 0);
break;
}
}
}
static void hci_event_debug_print(uint16_t hciEventNo)
{
#ifdef CC3000_DEBUG_HCI_RX
if ((hciEventNo > HCI_CMND_SOCKET_BASE) && ( hciEventNo <= HCI_CMND_MDNS_ADVERTISE))
{
DBG_HCI("Event Received : 0x%04X - %s", hciEventNo, HCI_EVENT_STR[hciEventNo-HCI_CMND_SOCKET]);
}
else if ((hciEventNo > HCI_CMND_NETAPP_BASE) && ( hciEventNo <= HCI_NETAPP_SET_TIMERS))
{
DBG_HCI("Event Received : 0x%04X - %s", hciEventNo, HCI_NETAPP_STR[hciEventNo-HCI_NETAPP_DHCP]);
}
else if (hciEventNo < HCI_CMND_WLAN_CONFIGURE_PATCH+1)
{
DBG_HCI("Event Received : 0x%04X - %s", hciEventNo, HCI_MISC_STR[hciEventNo]);
}
else
{
DBG_HCI("Event Received : 0x%04X", hciEventNo);
}
#endif
}
uint8_t *cc3000_event::hci_event_handler(void *ret_param, uint8_t *from, uint8_t *fromlen) {
uint8_t *received_data, argument_size;
uint16_t length;
uint8_t *pucReceivedParams;
uint16_t received_op_code = 0;
uint32_t return_value;
uint8_t * RecvParams;
uint8_t *RetParams;
while (1)
{
if (_simple_link.get_data_received_flag() != 0)
{
received_data = _simple_link.get_received_data();
if (*received_data == HCI_TYPE_EVNT)
{
// Event Received
STREAM_TO_UINT16((uint8_t *)received_data, HCI_EVENT_OPCODE_OFFSET,received_op_code);
pucReceivedParams = received_data + HCI_EVENT_HEADER_SIZE;
RecvParams = pucReceivedParams;
RetParams = (uint8_t *)ret_param;
// unsolicited event received - finish handling
if (hci_unsol_event_handler((uint8_t *)received_data) == 0)
{
STREAM_TO_UINT8(received_data, HCI_DATA_LENGTH_OFFSET, length);
hci_event_debug_print( received_op_code );
switch(received_op_code)
{
case HCI_CMND_READ_BUFFER_SIZE:
{
uint16_t temp = _simple_link.get_number_free_buffers();
STREAM_TO_UINT8((uint8_t *)pucReceivedParams, 0, temp);
_simple_link.set_number_free_buffers(temp);
temp = _simple_link.get_buffer_length();
STREAM_TO_UINT16((uint8_t *)pucReceivedParams, 1, temp);
_simple_link.set_buffer_length(temp);
}
break;
case HCI_CMND_WLAN_CONFIGURE_PATCH:
case HCI_NETAPP_DHCP:
case HCI_NETAPP_PING_SEND:
case HCI_NETAPP_PING_STOP:
case HCI_NETAPP_ARP_FLUSH:
case HCI_NETAPP_SET_DEBUG_LEVEL:
case HCI_NETAPP_SET_TIMERS:
case HCI_EVNT_NVMEM_READ:
case HCI_EVNT_NVMEM_CREATE_ENTRY:
case HCI_CMND_NVMEM_WRITE_PATCH:
case HCI_NETAPP_PING_REPORT:
case HCI_EVNT_MDNS_ADVERTISE:
STREAM_TO_UINT8(received_data, HCI_EVENT_STATUS_OFFSET, *(uint8_t *)ret_param);
break;
case HCI_CMND_SETSOCKOPT:
case HCI_CMND_WLAN_CONNECT:
case HCI_CMND_WLAN_IOCTL_STATUSGET:
case HCI_EVNT_WLAN_IOCTL_ADD_PROFILE:
case HCI_CMND_WLAN_IOCTL_DEL_PROFILE:
case HCI_CMND_WLAN_IOCTL_SET_CONNECTION_POLICY:
case HCI_CMND_WLAN_IOCTL_SET_SCANPARAM:
case HCI_CMND_WLAN_IOCTL_SIMPLE_CONFIG_START:
case HCI_CMND_WLAN_IOCTL_SIMPLE_CONFIG_STOP:
case HCI_CMND_WLAN_IOCTL_SIMPLE_CONFIG_SET_PREFIX:
case HCI_CMND_EVENT_MASK:
case HCI_EVNT_WLAN_DISCONNECT:
case HCI_EVNT_SOCKET:
case HCI_EVNT_BIND:
case HCI_CMND_LISTEN:
case HCI_EVNT_CLOSE_SOCKET:
case HCI_EVNT_CONNECT:
case HCI_EVNT_NVMEM_WRITE:
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,0, *(uint32_t *)ret_param);
break;
case HCI_EVNT_READ_SP_VERSION:
STREAM_TO_UINT8(received_data, HCI_EVENT_STATUS_OFFSET, *(uint8_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 1;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams, 0, return_value);
UINT32_TO_STREAM((uint8_t *)ret_param, return_value);
break;
case HCI_EVNT_BSD_GETHOSTBYNAME:
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,GET_HOST_BY_NAME_RETVAL_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,GET_HOST_BY_NAME_ADDR_OFFSET,*(uint32_t *)ret_param);
break;
case HCI_EVNT_ACCEPT:
{
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,ACCEPT_SD_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,ACCEPT_RETURN_STATUS_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
//This argument returns in network order
memcpy((uint8_t *)ret_param, pucReceivedParams + ACCEPT_ADDRESS__OFFSET, sizeof(sockaddr));
break;
}
case HCI_EVNT_RECV:
case HCI_EVNT_RECVFROM:
{
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SL_RECEIVE_SD_OFFSET ,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SL_RECEIVE_NUM_BYTES_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SL_RECEIVE__FLAGS__OFFSET,*(uint32_t *)ret_param);
if(((tBsdReadReturnParams *)ret_param)->iNumberOfBytes == ERROR_SOCKET_INACTIVE)
{
set_socket_active_status(((tBsdReadReturnParams *)ret_param)->iSocketDescriptor,SOCKET_STATUS_INACTIVE);
}
break;
}
case HCI_EVNT_SEND:
case HCI_EVNT_SENDTO:
{
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SL_RECEIVE_SD_OFFSET ,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SL_RECEIVE_NUM_BYTES_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
break;
}
case HCI_EVNT_SELECT:
{
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SELECT_STATUS_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SELECT_READFD_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SELECT_WRITEFD_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,SELECT_EXFD_OFFSET,*(uint32_t *)ret_param);
break;
}
case HCI_CMND_GETSOCKOPT:
STREAM_TO_UINT8(received_data, HCI_EVENT_STATUS_OFFSET,((tBsdGetSockOptReturnParams *)ret_param)->iStatus);
//This argument returns in network order
memcpy((uint8_t *)ret_param, pucReceivedParams, 4);
break;
case HCI_CMND_WLAN_IOCTL_GET_SCAN_RESULTS:
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,GET_SCAN_RESULTS_TABlE_COUNT_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT32((uint8_t *)pucReceivedParams,GET_SCAN_RESULTS_SCANRESULT_STATUS_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 4;
STREAM_TO_UINT16((uint8_t *)pucReceivedParams,GET_SCAN_RESULTS_ISVALID_TO_SSIDLEN_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 2;
STREAM_TO_UINT16((uint8_t *)pucReceivedParams,GET_SCAN_RESULTS_FRAME_TIME_OFFSET,*(uint32_t *)ret_param);
ret_param = ((uint8_t *)ret_param) + 2;
memcpy((uint8_t *)ret_param, (uint8_t *)(pucReceivedParams + GET_SCAN_RESULTS_FRAME_TIME_OFFSET + 2), GET_SCAN_RESULTS_SSID_MAC_LENGTH);
break;
case HCI_CMND_SIMPLE_LINK_START:
break;
case HCI_NETAPP_IPCONFIG:
//Read IP address
STREAM_TO_STREAM(RecvParams,RetParams,NETAPP_IPCONFIG_IP_LENGTH);
RecvParams += 4;
//Read subnet
STREAM_TO_STREAM(RecvParams,RetParams,NETAPP_IPCONFIG_IP_LENGTH);
RecvParams += 4;
//Read default GW
STREAM_TO_STREAM(RecvParams,RetParams,NETAPP_IPCONFIG_IP_LENGTH);
RecvParams += 4;
//Read DHCP server
STREAM_TO_STREAM(RecvParams,RetParams,NETAPP_IPCONFIG_IP_LENGTH);
RecvParams += 4;
//Read DNS server
STREAM_TO_STREAM(RecvParams,RetParams,NETAPP_IPCONFIG_IP_LENGTH);
RecvParams += 4;
//Read Mac address
STREAM_TO_STREAM(RecvParams,RetParams,NETAPP_IPCONFIG_MAC_LENGTH);
RecvParams += 6;
//Read SSID
STREAM_TO_STREAM(RecvParams,RetParams,NETAPP_IPCONFIG_SSID_LENGTH);
}
}
if (received_op_code == _simple_link.get_op_code())
{
_simple_link.set_op_code(0);
}
}
else
{
pucReceivedParams = received_data;
STREAM_TO_UINT8((uint8_t *)received_data, HCI_PACKET_ARGSIZE_OFFSET, argument_size);
STREAM_TO_UINT16((uint8_t *)received_data, HCI_PACKET_LENGTH_OFFSET, length);
// Data received: note that the only case where from and from length
// are not null is in recv from, so fill the args accordingly
if (from)
{
STREAM_TO_UINT32((uint8_t *)(received_data + HCI_DATA_HEADER_SIZE), BSD_RECV_FROM_FROMLEN_OFFSET, *(uint32_t *)fromlen);
memcpy(from, (received_data + HCI_DATA_HEADER_SIZE + BSD_RECV_FROM_FROM_OFFSET) ,*fromlen);
}
memcpy(ret_param, pucReceivedParams + HCI_DATA_HEADER_SIZE + argument_size, length - argument_size);
_simple_link.set_pending_data(0);
}
_simple_link.set_data_received_flag(0);
//tWlanInterruptEnable func_pointer = (tWlanInterruptEnable)_simple_link.get_func_pointer(WLAN_INTERRUPT_ENABLE);
//func_pointer();
_spi.wlan_irq_enable();
// Since we are going to TX - we need to handle this event after the ResumeSPi since we need interrupts
if ((*received_data == HCI_TYPE_EVNT) && (received_op_code == HCI_EVNT_PATCHES_REQ))
{
hci_unsol_handle_patch_request((uint8_t *)received_data);
}
if ((_simple_link.get_op_code() == 0) && (_simple_link.get_pending_data() == 0))
{
return NULL;
}
}
}
}
int32_t cc3000_event::hci_unsol_event_handler(uint8_t *event_hdr) {
uint8_t *data = NULL;
int32_t event_type;
uint32_t number_of_released_packets;
uint32_t number_of_sent_packets;
STREAM_TO_UINT16(event_hdr, HCI_EVENT_OPCODE_OFFSET,event_type);
if (event_type & HCI_EVNT_UNSOL_BASE) {
switch(event_type) {
case HCI_EVNT_DATA_UNSOL_FREE_BUFF:
{
hci_event_unsol_flowcontrol_handler(event_hdr);
number_of_released_packets = _simple_link.get_released_packets();
number_of_sent_packets = _simple_link.get_sent_packets();
if (number_of_released_packets == number_of_sent_packets)
{
if (_simple_link.get_tx_complete_signal())
{
//tWlanCB func_pointer = (tWlanCB)_simple_link.get_func_pointer(WLAN_CB);
_cc3000.usync_callback(HCI_EVENT_CC3000_CAN_SHUT_DOWN, NULL, 0);
}
}
return 1;
}
}
}
if (event_type & HCI_EVNT_WLAN_UNSOL_BASE) {
switch(event_type) {
case HCI_EVNT_WLAN_KEEPALIVE:
case HCI_EVNT_WLAN_UNSOL_CONNECT:
case HCI_EVNT_WLAN_UNSOL_DISCONNECT:
case HCI_EVNT_WLAN_UNSOL_INIT:
case HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE:
// {
// tWlanCB func_pointer = (tWlanCB)_simple_link.get_func_pointer(WLAN_CB);
// if( func_pointer )
// {
// func_pointer(event_type, 0, 0);
// }
_cc3000.usync_callback(event_type, 0, 0);
break;
// }
case HCI_EVNT_WLAN_UNSOL_DHCP:
{
uint8_t params[NETAPP_IPCONFIG_MAC_OFFSET + 1]; // extra byte is for the status
uint8_t *recParams = params;
data = (uint8_t *)(event_hdr) + HCI_EVENT_HEADER_SIZE;
//Read IP address
STREAM_TO_STREAM(data,recParams,NETAPP_IPCONFIG_IP_LENGTH);
data += 4;
//Read subnet
STREAM_TO_STREAM(data,recParams,NETAPP_IPCONFIG_IP_LENGTH);
data += 4;
//Read default GW
STREAM_TO_STREAM(data,recParams,NETAPP_IPCONFIG_IP_LENGTH);
data += 4;
//Read DHCP server
STREAM_TO_STREAM(data,recParams,NETAPP_IPCONFIG_IP_LENGTH);
data += 4;
//Read DNS server
STREAM_TO_STREAM(data,recParams,NETAPP_IPCONFIG_IP_LENGTH);
// read the status
STREAM_TO_UINT8(event_hdr, HCI_EVENT_STATUS_OFFSET, *recParams);
// tWlanCB func_pointer = (tWlanCB)_simple_link.get_func_pointer(WLAN_CB);
// if( func_pointer )
// {
_cc3000.usync_callback(event_type, (uint8_t *)params, sizeof(params));
// }
break;
}
case HCI_EVNT_WLAN_ASYNC_PING_REPORT:
{
netapp_pingreport_args_t params;
data = (uint8_t *)(event_hdr) + HCI_EVENT_HEADER_SIZE;
STREAM_TO_UINT32(data, NETAPP_PING_PACKETS_SENT_OFFSET, params.packets_sent);
STREAM_TO_UINT32(data, NETAPP_PING_PACKETS_RCVD_OFFSET, params.packets_received);
STREAM_TO_UINT32(data, NETAPP_PING_MIN_RTT_OFFSET, params.min_round_time);
STREAM_TO_UINT32(data, NETAPP_PING_MAX_RTT_OFFSET, params.max_round_time);
STREAM_TO_UINT32(data, NETAPP_PING_AVG_RTT_OFFSET, params.avg_round_time);
// tWlanCB func_pointer = (tWlanCB)_simple_link.get_func_pointer(WLAN_CB);
// if (func_pointer)
// {
_cc3000.usync_callback(event_type, (uint8_t *)¶ms, sizeof(params));
// }
break;
}
case HCI_EVNT_BSD_TCP_CLOSE_WAIT:
{
// tWlanCB func_pointer = (tWlanCB)_simple_link.get_func_pointer(WLAN_CB);
// if (func_pointer)
// {
_cc3000.usync_callback(event_type, NULL, 0);
// }
break;
}
//'default' case which means "event not supported"
default:
return (0);
}
return(1);
}
if ((event_type == HCI_EVNT_SEND) || (event_type == HCI_EVNT_SENDTO) || (event_type == HCI_EVNT_WRITE)) {
uint8_t *pArg;
int32_t status;
pArg = M_BSD_RESP_PARAMS_OFFSET(event_hdr);
STREAM_TO_UINT32(pArg, BSD_RSP_PARAMS_STATUS_OFFSET,status);
if (ERROR_SOCKET_INACTIVE == status) {
// The only synchronous event that can come from SL device in form of
// command complete is "Command Complete" on data sent, in case SL device
// was unable to transmit
int32_t transmit_error = _simple_link.get_transmit_error();
STREAM_TO_UINT8(event_hdr, HCI_EVENT_STATUS_OFFSET, transmit_error);
_simple_link.set_transmit_error(transmit_error);
update_socket_active_status(M_BSD_RESP_PARAMS_OFFSET(event_hdr));
return (1);
}
else {
return (0);
}
}
return(0);
}
int32_t cc3000_event::hci_unsolicited_event_handler(void) {
uint32_t res = 0;
uint8_t *received_data;
if (_simple_link.get_data_received_flag() != 0) {
received_data = (_simple_link.get_received_data());
if (*received_data == HCI_TYPE_EVNT) {
// unsolicited event received - finish handling
if (hci_unsol_event_handler((uint8_t *)received_data) == 1) {
// An unsolicited event was received:
// release the buffer and clean the event received
_simple_link.set_data_received_flag(0);
res = 1;
_spi.wlan_irq_enable();
}
}
}
return res;
}
void cc3000_event::set_socket_active_status(int32_t sd, int32_t status) {
if (M_IS_VALID_SD(sd) && M_IS_VALID_STATUS(status))
{
socket_active_status &= ~(1 << sd); /* clean socket's mask */
socket_active_status |= (status << sd); /* set new socket's mask */
}
}
int32_t cc3000_event::hci_event_unsol_flowcontrol_handler(uint8_t *event) {
int32_t temp, value;
uint16_t i;
uint16_t pusNumberOfHandles=0;
uint8_t *pReadPayload;
STREAM_TO_UINT16((uint8_t *)event,HCI_EVENT_HEADER_SIZE,pusNumberOfHandles);
pReadPayload = ((uint8_t *)event + HCI_EVENT_HEADER_SIZE + sizeof(pusNumberOfHandles));
temp = 0;
for(i = 0; i < pusNumberOfHandles; i++) {
STREAM_TO_UINT16(pReadPayload, FLOW_CONTROL_EVENT_FREE_BUFFS_OFFSET, value);
temp += value;
pReadPayload += FLOW_CONTROL_EVENT_SIZE;
}
_simple_link.set_number_free_buffers(_simple_link.get_number_free_buffers() + temp);
_simple_link.set_number_of_released_packets(_simple_link.get_released_packets() + temp);
return(ESUCCESS);
}
int32_t cc3000_event::get_socket_active_status(int32_t sd) {
if(M_IS_VALID_SD(sd)) {
return (socket_active_status & (1 << sd)) ? SOCKET_STATUS_INACTIVE : SOCKET_STATUS_ACTIVE;
} else {
return SOCKET_STATUS_INACTIVE;
}
}
void cc3000_event::update_socket_active_status(uint8_t *resp_params) {
int32_t status, sd;
STREAM_TO_UINT32(resp_params, BSD_RSP_PARAMS_SOCKET_OFFSET,sd);
STREAM_TO_UINT32(resp_params, BSD_RSP_PARAMS_STATUS_OFFSET,status);
if(ERROR_SOCKET_INACTIVE == status) {
set_socket_active_status(sd, SOCKET_STATUS_INACTIVE);
}
}
void cc3000_event::simplelink_wait_event(uint16_t op_code, void *ret_param) {
// In the blocking implementation the control to caller will be returned only
// after the end of current transaction
_simple_link.set_op_code(op_code);
hci_event_handler(ret_param, 0, 0);
}
void cc3000_event::simplelink_wait_data(uint8_t *pBuf, uint8_t *from, uint8_t *fromlen) {
// In the blocking implementation the control to caller will be returned only
// after the end of current transaction, i.e. only after data will be received
_simple_link.set_pending_data(1);
hci_event_handler(pBuf, from, fromlen);
}
} /* end of cc3000 namespace */
