A mbed Port of 'Sparkfun Si4703 Arduino Library'.
Fork of Si4703 by
SparkFun-Si4703.cpp
- Committer:
- mzcs
- Date:
- 2015-08-08
- Revision:
- 2:558ef02f39d0
- Parent:
- 1:3d2b66e5d09e
- Child:
- 3:9ac35cc4a0b0
File content as of revision 2:558ef02f39d0:
#include "mbed.h" #include "SparkFun-Si4703.h" Si4703_Breakout::Si4703_Breakout(PinName sdioPin, PinName sclkPin, PinName resetPin, Serial *pc) { _resetPin = resetPin; _sdioPin = sdioPin; _sclkPin = sclkPin; this->pc = pc; } void Si4703_Breakout::powerOn() { si4703_init(); } void Si4703_Breakout::powerOff() { // a Minimal Power-Down Sequence - According To SI AN230 (rev. 0.9), p.13 - Table 4 readRegisters(); si4703_registers[POWERCFG] &= ~(1<<DMUTE); // 'Enable Mute' si4703_registers[POWERCFG] |= (1<<ENABLE); // 'Enable IC' si4703_registers[POWERCFG] |= (1<<DISABLE); // & 'Disable IC' // To Init. Power-Down Sequence updateRegisters(); // Notice : This Does NOT Perform a Reset of The IC. } void Si4703_Breakout::setChannel(int channel) { uint8_t ack; //Freq(MHz) = 0.1 (in Europe) * Channel + 87.5MHz //97.3 = 0.1 * Chan + 87.5 //9.8 / 0.1 = 98 int newChannel = channel * 10; //973 * 10 = 9730 newChannel -= 8750; //9730 - 8750 = 980 newChannel /= 10; //980 / 10 = 98 //These steps come from AN230 page 20 rev 0.5 readRegisters(); si4703_registers[CHANNEL] &= 0xFE00; //Clear out the channel bits si4703_registers[CHANNEL] |= newChannel; //Mask in the new channel si4703_registers[CHANNEL] |= (1<<TUNE); //Set the TUNE bit to start updateRegisters(); wait_ms(60); //Wait 60ms - you can use or skip this delay //Poll to see if STC is set while(1) { ack = readRegisters(); wait_ms(1); // Just In Case... if (( (si4703_registers[STATUSRSSI] & (1<<STC)) != 0) || (ack != SUCCESS)) break; //Tuning complete! (or FAILED) } readRegisters(); si4703_registers[CHANNEL] &= ~(1<<TUNE); //Clear the tune after a tune has completed updateRegisters(); //Wait for the si4703 to clear the STC as well while(1) { ack = readRegisters(); wait_ms(1); // Just In Case... if (( (si4703_registers[STATUSRSSI] & (1<<STC)) == 0) || (ack != SUCCESS)) break; //Tuning complete! (or FAILED) } } int Si4703_Breakout::seekUp() { return seek(SEEK_UP); } int Si4703_Breakout::seekDown() { return seek(SEEK_DOWN); } void Si4703_Breakout::setVolume(int volume) { readRegisters(); //Read the current register set if(volume < 0) volume = 0; if (volume > 15) volume = 15; si4703_registers[SYSCONFIG2] &= 0xFFF0; //Clear volume bits si4703_registers[SYSCONFIG2] |= volume; //Set new volume updateRegisters(); //Update } uint8_t Si4703_Breakout::getVolume() { readRegisters(); //Read the current register set return (si4703_registers[SYSCONFIG2] & 0x000F); } /* void Si4703_Breakout::readRDS(char* buffer, long timeout) { long endTime = millis() + timeout; boolean completed[] = {false, false, false, false}; int completedCount = 0; while(completedCount < 4 && millis() < endTime) { readRegisters(); if(si4703_registers[STATUSRSSI] & (1<<RDSR)){ // ls 2 bits of B determine the 4 letter pairs // once we have a full set return // if you get nothing after 20 readings return with empty string uint16_t b = si4703_registers[RDSB]; int index = b & 0x03; if (! completed[index] && b < 500) { completed[index] = true; completedCount ++; char Dh = (si4703_registers[RDSD] & 0xFF00) >> 8; char Dl = (si4703_registers[RDSD] & 0x00FF); buffer[index * 2] = Dh; buffer[index * 2 +1] = Dl; // Serial.print(si4703_registers[RDSD]); Serial.print(" "); // Serial.print(index);Serial.print(" "); // Serial.write(Dh); // Serial.write(Dl); // Serial.println(); } delay(40); //Wait for the RDS bit to clear } else { delay(30); //From AN230, using the polling method 40ms should be sufficient amount of time between checks } } if (millis() >= endTime) { buffer[0] ='\0'; return; } buffer[8] = '\0'; } */ //To get the Si4703 inito 2-wire mode, SEN needs to be high and SDIO needs to be low after a reset //The breakout board has SEN pulled high, but also has SDIO pulled high. Therefore, after a normal power up //The Si4703 will be in an unknown state. RST must be controlled void Si4703_Breakout::si4703_init() { _reset_ = new DigitalOut(_resetPin); _sdio_ = new DigitalOut(_sdioPin); _sdio_->write(0); //A low SDIO indicates a 2-wire interface _reset_->write(0); //Put Si4703 into reset wait_ms(1); //Some delays while we allow pins to settle _reset_->write(1); //Bring Si4703 out of reset with SDIO set to low and SEN pulled high with on-board resistor wait_ms(1); //Allow Si4703 to come out of reset //Now that the unit is reset and I2C inteface mode, we need to begin I2C i2c_ = new I2C(_sdioPin, _sclkPin); i2c_->frequency(100000); /// readRegisters(); //Read the current register set si4703_registers[0x07] = 0x8100; //Enable the oscillator, from AN230 page 9, rev 0.61 (works) updateRegisters(); //Update wait_ms(500); //Wait for clock to settle - from AN230 page 9 readRegisters(); //Read the current register set si4703_registers[POWERCFG] = 0x4001; //Enable the IC // si4703_registers[POWERCFG] |= (1<<SMUTE) | (1<<DMUTE); //Disable Mute, disable softmute si4703_registers[SYSCONFIG1] |= (1<<RDS); //Enable RDS si4703_registers[SYSCONFIG1] |= (1<<DE); //50μS Europe setup si4703_registers[SYSCONFIG2] |= (1<<SPACE0); //100kHz channel spacing for Europe si4703_registers[SYSCONFIG2] &= 0xFFF0; //Clear volume bits si4703_registers[SYSCONFIG2] |= 0x0001; //Set volume to lowest // SI AN230 page 40 - Table 23 ('Good Quality Stations Only' Settings) si4703_registers[SYSCONFIG2] |= (0xC<<SEEKTH); si4703_registers[SYSCONFIG3] |= (0x7<<SKSNR); si4703_registers[SYSCONFIG3] |= (0xF<<SKCNT); /// updateRegisters(); //Update wait_ms(110); //Max powerup time, from datasheet page 13 } //Read the entire register control set from 0x00 to 0x0F uint8_t Si4703_Breakout::readRegisters(){ //Si4703 begins reading from register upper register of 0x0A and reads to 0x0F, then loops to 0x00. // Wire.requestFrom(SI4703, 32); //We want to read the entire register set from 0x0A to 0x09 = 32 uint8_ts. char data[32]; uint8_t ack = i2c_->read(SI4703, data, 32); //Read in these 32 uint8_ts if (ack != 0) { //We have a problem! return(FAIL); } //Remember, register 0x0A comes in first so we have to shuffle the array around a bit for (int y=0; y<6; y++) { si4703_registers[0x0A+y] = 0; si4703_registers[0x0A+y] = data[(y*2)+1]; si4703_registers[0x0A+y] |= (data[(y*2)] << 8); } for (int y=0; y<10; y++) { si4703_registers[y] = 0; si4703_registers[y] = data[(12)+(y*2)+1]; si4703_registers[y] |= (data[(12)+(y*2)] << 8); } //We're done! /// return(SUCCESS); } //Write the current 9 control registers (0x02 to 0x07) to the Si4703 //It's a little weird, you don't write an I2C address //The Si4703 assumes you are writing to 0x02 first, then increments uint8_t Si4703_Breakout::updateRegisters() { char data[12]; //First we send the 0x02 to 0x07 control registers //In general, we should not write to registers 0x08 and 0x09 for(int regSpot = 0x02 ; regSpot < 0x08 ; regSpot++) { data[(regSpot-2)*2] = si4703_registers[regSpot] >> 8; data[((regSpot-2)*2)+1] = si4703_registers[regSpot] & 0x00FF; } uint8_t ack = i2c_->write(SI4703, data, 12); // a write command automatically begins with register 0x02 so no need to send a write-to address if(ack != 0) { //We have a problem! return(FAIL); } return(SUCCESS); } //Returns The Value of a Register uint16_t Si4703_Breakout::getRegister(uint8_t regNum) { readRegisters(); return si4703_registers[regNum]; // No Error Status Checking } //Seeks out the next available station //Returns the freq if it made it //Returns zero if failed int Si4703_Breakout::seek(bool seekDirection){ uint8_t ack; readRegisters(); //Set seek mode wrap bit si4703_registers[POWERCFG] |= (1<<SKMODE); //Disallow wrap - if you disallow wrap, you may want to tune to 87.5 first //si4703_registers[POWERCFG] &= ~(1<<SKMODE); //Allow wrap if(seekDirection == SEEK_DOWN) si4703_registers[POWERCFG] &= ~(1<<SEEKUP); //Seek down is the default upon reset else si4703_registers[POWERCFG] |= 1<<SEEKUP; //Set the bit to seek up si4703_registers[POWERCFG] |= (1<<SEEK); //Start seek updateRegisters(); //Seeking will now start //Poll to see if STC is set while(1) { ack = readRegisters(); wait_ms(1); // Just In Case... if (((si4703_registers[STATUSRSSI] & (1<<STC)) != 0) || (ack != SUCCESS)) break; //Tuning complete! (or FAILED) } readRegisters(); int valueSFBL = si4703_registers[STATUSRSSI] & (1<<SFBL); //Store the value of SFBL si4703_registers[POWERCFG] &= ~(1<<SEEK); //Clear the seek bit after seek has completed updateRegisters(); //Wait for the si4703 to clear the STC as well while(1) { ack = readRegisters(); wait_ms(1); // Just In Case... if (((si4703_registers[STATUSRSSI] & (1<<STC)) == 0) || (ack != SUCCESS)) break; //Tuning complete! (or FAILED) } if(valueSFBL) { //The bit was set indicating we hit a band limit or failed to find a station return(0); } return getChannel(); } //Reads the current channel from READCHAN //Returns a number like 973 for 97.3MHz int Si4703_Breakout::getChannel() { readRegisters(); int channel = (si4703_registers[READCHAN] & 0x03FF); //Mask out everything but the lower 10 bits //Freq(MHz) = 0.100(in Europe) * Channel + 87.5MHz //X = 0.1 * Chan + 87.5 channel += 875; //98 + 875 = 973 ( for 97.3 MHz ) return(channel); } void Si4703_Breakout::printRegs() { readRegisters(); for (int x=0; x<16; x++) { pc->printf("Reg# 0x%X = 0x%X\r\n",x,si4703_registers[x]); wait_ms(1); } }