Shadow Robot Distance Measurement with Bluetooth Code

Dependencies:   4DGL-uLCD-SE HALLFX_ENCODER Motor mbed-rtos mbed

Fork of rtos_mutex by mbed official

LSM9DS1.h

Committer:
vikram3
Date:
2017-03-14
Revision:
9:8e1702463051
Parent:
8:0a2509a0b871

File content as of revision 9:8e1702463051:

/******************************************************************************
SFE_LSM9DS1.h
SFE_LSM9DS1 Library Header File
Jim Lindblom @ SparkFun Electronics
Original Creation Date: February 27, 2015
https://github.com/sparkfun/LSM9DS1_Breakout

This file prototypes the LSM9DS1 class, implemented in SFE_LSM9DS1.cpp. In
addition, it defines every register in the LSM9DS1 (both the Gyro and Accel/
Magnetometer registers).

Development environment specifics:
    IDE: Arduino 1.6.0
    Hardware Platform: Arduino Uno
    LSM9DS1 Breakout Version: 1.0

This code is beerware; if you see me (or any other SparkFun employee) at the
local, and you've found our code helpful, please buy us a round!

Distributed as-is; no warranty is given.
******************************************************************************/
#ifndef __SparkFunLSM9DS1_H__
#define __SparkFunLSM9DS1_H__

//#if defined(ARDUINO) && ARDUINO >= 100
//  #include "Arduino.h"
//#else
//  #include "WProgram.h"
//  #include "pins_arduino.h"
//#endif

#include "mbed.h"
#include <stdint.h>
#include "LSM9DS1_Registers.h"
#include "LSM9DS1_Types.h"

#define LSM9DS1_AG_ADDR(sa0)    ((sa0) == 0 ? 0x6A : 0x6B)
#define LSM9DS1_M_ADDR(sa1)     ((sa1) == 0 ? 0x1C : 0x1E)

enum lsm9ds1_axis {
    X_AXIS,
    Y_AXIS,
    Z_AXIS,
    ALL_AXIS
};

class LSM9DS1
{
public:
    IMUSettings settings;
    
    // We'll store the gyro, accel, and magnetometer readings in a series of
    // public class variables. Each sensor gets three variables -- one for each
    // axis. Call readGyro(), readAccel(), and readMag() first, before using
    // these variables!
    // These values are the RAW signed 16-bit readings from the sensors.
    int16_t gx, gy, gz; // x, y, and z axis readings of the gyroscope
    int16_t ax, ay, az; // x, y, and z axis readings of the accelerometer
    int16_t mx, my, mz; // x, y, and z axis readings of the magnetometer
    int16_t temperature; // Chip temperature
    float gBias[3], aBias[3], mBias[3];
    int16_t gBiasRaw[3], aBiasRaw[3], mBiasRaw[3];
    
    // LSM9DS1 -- LSM9DS1 class constructor
    // The constructor will set up a handful of private variables, and set the
    // communication mode as well.
    /**Input:
    *  - interface = Either IMU_MODE_SPI or IMU_MODE_I2C, whichever you're using
    *              to talk to the IC.
    *  - xgAddr = If IMU_MODE_I2C, this is the I2C address of the accel/gyroscope.
    *              If IMU_MODE_SPI, this is the chip select pin of the gyro (CS_AG)
    *  - mAddr = If IMU_MODE_I2C, this is the I2C address of the magnetometer.
    *              If IMU_MODE_SPI, this is the cs pin of the magnetometer (CS_M)
    
    */
    LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr);
    //LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr);
    //LSM9DS1();
       
    
    /** begin() -- Initialize the gyro, accelerometer, and magnetometer.
    *This will set up the scale and output rate of each sensor. The values set
    * in the IMUSettings struct will take effect after calling this function.
    */
    uint16_t begin();
    
    void calibrate(bool autoCalc = true);
    void calibrateMag(bool loadIn = true);
    void magOffset(uint8_t axis, int16_t offset);
    
    /** accelAvailable() -- Polls the accelerometer status register to check
    * if new data is available.
    * Output:  1 - New data available
    *          0 - No new data available
    */
    uint8_t accelAvailable();
    
    /** gyroAvailable() -- Polls the gyroscope status register to check
    * if new data is available.
    * Output:  1 - New data available
    *          0 - No new data available
    */
    uint8_t gyroAvailable();
    
    /** gyroAvailable() -- Polls the temperature status register to check
    * if new data is available.
    * Output:  1 - New data available
    *          0 - No new data available
    */
    uint8_t tempAvailable();
    
    /** magAvailable() -- Polls the accelerometer status register to check
    * if new data is available.
    * Input:
    *  - axis can be either X_AXIS, Y_AXIS, Z_AXIS, to check for new data
    *    on one specific axis. Or ALL_AXIS (default) to check for new data
    *    on all axes.
    * Output:  1 - New data available
    *          0 - No new data available
    */
    uint8_t magAvailable(lsm9ds1_axis axis = ALL_AXIS);
    
    /** readGyro() -- Read the gyroscope output registers.
    * This function will read all six gyroscope output registers.
    * The readings are stored in the class' gx, gy, and gz variables. Read
    * those _after_ calling readGyro().
    */
    void readGyro();
    
    /** int16_t readGyro(axis) -- Read a specific axis of the gyroscope.
    * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS.
    * Input:
    *  - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS.
    * Output:
    *  A 16-bit signed integer with sensor data on requested axis.
    */
    int16_t readGyro(lsm9ds1_axis axis);
    
    /** readAccel() -- Read the accelerometer output registers.
    * This function will read all six accelerometer output registers.
    * The readings are stored in the class' ax, ay, and az variables. Read
    * those _after_ calling readAccel().
    */
    void readAccel();
    
    /** int16_t readAccel(axis) -- Read a specific axis of the accelerometer.
    * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS.
    * Input:
    *  - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS.
    * Output:
    *  A 16-bit signed integer with sensor data on requested axis.
    */
    int16_t readAccel(lsm9ds1_axis axis);
    
    /** readMag() -- Read the magnetometer output registers.
    * This function will read all six magnetometer output registers.
    * The readings are stored in the class' mx, my, and mz variables. Read
    * those _after_ calling readMag().
    */
    void readMag();
    
    /** int16_t readMag(axis) -- Read a specific axis of the magnetometer.
    * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS.
    * Input:
    *  - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS.
    * Output:
    *  A 16-bit signed integer with sensor data on requested axis.
    */
    int16_t readMag(lsm9ds1_axis axis);

    /** readTemp() -- Read the temperature output register.
    * This function will read two temperature output registers.
    * The combined readings are stored in the class' temperature variables. Read
    * those _after_ calling readTemp().
    */
    void readTemp();
    
    /** calcGyro() -- Convert from RAW signed 16-bit value to degrees per second
    * This function reads in a signed 16-bit value and returns the scaled
    * DPS. This function relies on gScale and gRes being correct.
    * Input:
    *  - gyro = A signed 16-bit raw reading from the gyroscope.
    */
    float calcGyro(int16_t gyro);
    
    /** calcAccel() -- Convert from RAW signed 16-bit value to gravity (g's).
    * This function reads in a signed 16-bit value and returns the scaled
    * g's. This function relies on aScale and aRes being correct.
    * Input:
    *  - accel = A signed 16-bit raw reading from the accelerometer.
    */
    float calcAccel(int16_t accel);
    
    /** calcMag() -- Convert from RAW signed 16-bit value to Gauss (Gs)
    * This function reads in a signed 16-bit value and returns the scaled
    * Gs. This function relies on mScale and mRes being correct.
    * Input:
    *  - mag = A signed 16-bit raw reading from the magnetometer.
    */
    float calcMag(int16_t mag);
    
    /** setGyroScale() -- Set the full-scale range of the gyroscope.
    * This function can be called to set the scale of the gyroscope to 
    * 245, 500, or 200 degrees per second.
    * Input:
    *  - gScl = The desired gyroscope scale. Must be one of three possible
    *      values from the gyro_scale.
    */
    void setGyroScale(uint16_t gScl);
    
    /** setAccelScale() -- Set the full-scale range of the accelerometer.
    * This function can be called to set the scale of the accelerometer to
    * 2, 4, 6, 8, or 16 g's.
    * Input:
    *  - aScl = The desired accelerometer scale. Must be one of five possible
    *      values from the accel_scale.
    */
    void setAccelScale(uint8_t aScl);
    
    /** setMagScale() -- Set the full-scale range of the magnetometer.
    * This function can be called to set the scale of the magnetometer to
    * 2, 4, 8, or 12 Gs.
    * Input:
    *  - mScl = The desired magnetometer scale. Must be one of four possible
    *      values from the mag_scale.
    */
    void setMagScale(uint8_t mScl);
    
    /** setGyroODR() -- Set the output data rate and bandwidth of the gyroscope
    * Input:
    *  - gRate = The desired output rate and cutoff frequency of the gyro.
    */
    void setGyroODR(uint8_t gRate);
    
    // setAccelODR() -- Set the output data rate of the accelerometer
    // Input:
    //  - aRate = The desired output rate of the accel.
    void setAccelODR(uint8_t aRate);    
    
    // setMagODR() -- Set the output data rate of the magnetometer
    // Input:
    //  - mRate = The desired output rate of the mag.
    void setMagODR(uint8_t mRate);
    
    // configInactivity() -- Configure inactivity interrupt parameters
    // Input:
    //  - duration = Inactivity duration - actual value depends on gyro ODR
    //  - threshold = Activity Threshold
    //  - sleepOn = Gyroscope operating mode during inactivity.
    //    true: gyroscope in sleep mode
    //    false: gyroscope in power-down
    void configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn);
    
    // configAccelInt() -- Configure Accelerometer Interrupt Generator
    // Input:
    //  - generator = Interrupt axis/high-low events
    //    Any OR'd combination of ZHIE_XL, ZLIE_XL, YHIE_XL, YLIE_XL, XHIE_XL, XLIE_XL
    //  - andInterrupts = AND/OR combination of interrupt events
    //    true: AND combination
    //    false: OR combination
    void configAccelInt(uint8_t generator, bool andInterrupts = false);
    
    // configAccelThs() -- Configure the threshold of an accelereomter axis
    // Input:
    //  - threshold = Interrupt threshold. Possible values: 0-255.
    //    Multiply by 128 to get the actual raw accel value.
    //  - axis = Axis to be configured. Either X_AXIS, Y_AXIS, or Z_AXIS
    //  - duration = Duration value must be above or below threshold to trigger interrupt
    //  - wait = Wait function on duration counter
    //    true: Wait for duration samples before exiting interrupt
    //    false: Wait function off
    void configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration = 0, bool wait = 0);
    
    // configGyroInt() -- Configure Gyroscope Interrupt Generator
    // Input:
    //  - generator = Interrupt axis/high-low events
    //    Any OR'd combination of ZHIE_G, ZLIE_G, YHIE_G, YLIE_G, XHIE_G, XLIE_G
    //  - aoi = AND/OR combination of interrupt events
    //    true: AND combination
    //    false: OR combination
    //  - latch: latch gyroscope interrupt request.
    void configGyroInt(uint8_t generator, bool aoi, bool latch);
    
    // configGyroThs() -- Configure the threshold of a gyroscope axis
    // Input:
    //  - threshold = Interrupt threshold. Possible values: 0-0x7FF.
    //    Value is equivalent to raw gyroscope value.
    //  - axis = Axis to be configured. Either X_AXIS, Y_AXIS, or Z_AXIS
    //  - duration = Duration value must be above or below threshold to trigger interrupt
    //  - wait = Wait function on duration counter
    //    true: Wait for duration samples before exiting interrupt
    //    false: Wait function off
    void configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait);
    
    // configInt() -- Configure INT1 or INT2 (Gyro and Accel Interrupts only)
    // Input:
    //  - interrupt = Select INT1 or INT2
    //    Possible values: XG_INT1 or XG_INT2
    //  - generator = Or'd combination of interrupt generators.
    //    Possible values: INT_DRDY_XL, INT_DRDY_G, INT1_BOOT (INT1 only), INT2_DRDY_TEMP (INT2 only)
    //    INT_FTH, INT_OVR, INT_FSS5, INT_IG_XL (INT1 only), INT1_IG_G (INT1 only), INT2_INACT (INT2 only)
    //  - activeLow = Interrupt active configuration
    //    Can be either INT_ACTIVE_HIGH or INT_ACTIVE_LOW
    //  - pushPull =  Push-pull or open drain interrupt configuration
    //    Can be either INT_PUSH_PULL or INT_OPEN_DRAIN
    void configInt(interrupt_select interupt, uint8_t generator,
                   h_lactive activeLow = INT_ACTIVE_LOW, pp_od pushPull = INT_PUSH_PULL);
                   
    /** configMagInt() -- Configure Magnetometer Interrupt Generator
    * Input:
    *  - generator = Interrupt axis/high-low events
    *    Any OR'd combination of ZIEN, YIEN, XIEN
    *  - activeLow = Interrupt active configuration
    *    Can be either INT_ACTIVE_HIGH or INT_ACTIVE_LOW
    *  - latch: latch gyroscope interrupt request.
    */
    void configMagInt(uint8_t generator, h_lactive activeLow, bool latch = true);
    
    /** configMagThs() -- Configure the threshold of a gyroscope axis
    * Input:
    *  - threshold = Interrupt threshold. Possible values: 0-0x7FF.
    *    Value is equivalent to raw magnetometer value.
    */
    void configMagThs(uint16_t threshold);
    
    //! getGyroIntSrc() -- Get contents of Gyroscope interrupt source register
    uint8_t getGyroIntSrc();
    
    //! getGyroIntSrc() -- Get contents of accelerometer interrupt source register
    uint8_t getAccelIntSrc();
    
    //! getGyroIntSrc() -- Get contents of magnetometer interrupt source register
    uint8_t getMagIntSrc();
    
    //! getGyroIntSrc() -- Get status of inactivity interrupt
    uint8_t getInactivity();
    
    /** sleepGyro() -- Sleep or wake the gyroscope
    * Input:
    *  - enable: True = sleep gyro. False = wake gyro.
    */
    void sleepGyro(bool enable = true);
    
    /** enableFIFO() - Enable or disable the FIFO
    * Input:
    *  - enable: true = enable, false = disable.
    */
    void enableFIFO(bool enable = true);
    
    /** setFIFO() - Configure FIFO mode and Threshold
    * Input:
    *  - fifoMode: Set FIFO mode to off, FIFO (stop when full), continuous, bypass
    *    Possible inputs: FIFO_OFF, FIFO_THS, FIFO_CONT_TRIGGER, FIFO_OFF_TRIGGER, FIFO_CONT
    *  - fifoThs: FIFO threshold level setting
    *    Any value from 0-0x1F is acceptable.
    */
    void setFIFO(fifoMode_type fifoMode, uint8_t fifoThs);
    
    //! getFIFOSamples() - Get number of FIFO samples
    uint8_t getFIFOSamples();
        

protected:  
    // x_mAddress and gAddress store the I2C address or SPI chip select pin
    // for each sensor.
    uint8_t _mAddress, _xgAddress;
    
    // gRes, aRes, and mRes store the current resolution for each sensor. 
    // Units of these values would be DPS (or g's or Gs's) per ADC tick.
    // This value is calculated as (sensor scale) / (2^15).
    float gRes, aRes, mRes;
    
    // _autoCalc keeps track of whether we're automatically subtracting off
    // accelerometer and gyroscope bias calculated in calibrate().
    bool _autoCalc;
    
    // init() -- Sets up gyro, accel, and mag settings to default.
    // - interface - Sets the interface mode (IMU_MODE_I2C or IMU_MODE_SPI)
    // - xgAddr - Sets either the I2C address of the accel/gyro or SPI chip 
    //   select pin connected to the CS_XG pin.
    // - mAddr - Sets either the I2C address of the magnetometer or SPI chip 
    //   select pin connected to the CS_M pin.
    void init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr);
    
    // initGyro() -- Sets up the gyroscope to begin reading.
    // This function steps through all five gyroscope control registers.
    // Upon exit, the following parameters will be set:
    //  - CTRL_REG1_G = 0x0F: Normal operation mode, all axes enabled. 
    //      95 Hz ODR, 12.5 Hz cutoff frequency.
    //  - CTRL_REG2_G = 0x00: HPF set to normal mode, cutoff frequency
    //      set to 7.2 Hz (depends on ODR).
    //  - CTRL_REG3_G = 0x88: Interrupt enabled on INT_G (set to push-pull and
    //      active high). Data-ready output enabled on DRDY_G.
    //  - CTRL_REG4_G = 0x00: Continuous update mode. Data LSB stored in lower
    //      address. Scale set to 245 DPS. SPI mode set to 4-wire.
    //  - CTRL_REG5_G = 0x00: FIFO disabled. HPF disabled.
    void initGyro();
    
    // initAccel() -- Sets up the accelerometer to begin reading.
    // This function steps through all accelerometer related control registers.
    // Upon exit these registers will be set as:
    //  - CTRL_REG0_XM = 0x00: FIFO disabled. HPF bypassed. Normal mode.
    //  - CTRL_REG1_XM = 0x57: 100 Hz data rate. Continuous update.
    //      all axes enabled.
    //  - CTRL_REG2_XM = 0x00:  2g scale. 773 Hz anti-alias filter BW.
    //  - CTRL_REG3_XM = 0x04: Accel data ready signal on INT1_XM pin.
    void initAccel();
    
    // initMag() -- Sets up the magnetometer to begin reading.
    // This function steps through all magnetometer-related control registers.
    // Upon exit these registers will be set as:
    //  - CTRL_REG4_XM = 0x04: Mag data ready signal on INT2_XM pin.
    //  - CTRL_REG5_XM = 0x14: 100 Hz update rate. Low resolution. Interrupt
    //      requests don't latch. Temperature sensor disabled.
    //  - CTRL_REG6_XM = 0x00:  2 Gs scale.
    //  - CTRL_REG7_XM = 0x00: Continuous conversion mode. Normal HPF mode.
    //  - INT_CTRL_REG_M = 0x09: Interrupt active-high. Enable interrupts.
    void initMag();
    
    // gReadByte() -- Reads a byte from a specified gyroscope register.
    // Input:
    //  - subAddress = Register to be read from.
    // Output:
    //  - An 8-bit value read from the requested address.
    uint8_t mReadByte(uint8_t subAddress);
    
    // gReadBytes() -- Reads a number of bytes -- beginning at an address
    // and incrementing from there -- from the gyroscope.
    // Input:
    //  - subAddress = Register to be read from.
    //  - * dest = A pointer to an array of uint8_t's. Values read will be
    //      stored in here on return.
    //  - count = The number of bytes to be read.
    // Output: No value is returned, but the `dest` array will store
    //  the data read upon exit.
    void mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count);
    
    // gWriteByte() -- Write a byte to a register in the gyroscope.
    // Input:
    //  - subAddress = Register to be written to.
    //  - data = data to be written to the register.
    void mWriteByte(uint8_t subAddress, uint8_t data);
    
    // xmReadByte() -- Read a byte from a register in the accel/mag sensor
    // Input:
    //  - subAddress = Register to be read from.
    // Output:
    //  - An 8-bit value read from the requested register.
    uint8_t xgReadByte(uint8_t subAddress);
    
    // xmReadBytes() -- Reads a number of bytes -- beginning at an address
    // and incrementing from there -- from the accelerometer/magnetometer.
    // Input:
    //  - subAddress = Register to be read from.
    //  - * dest = A pointer to an array of uint8_t's. Values read will be
    //      stored in here on return.
    //  - count = The number of bytes to be read.
    // Output: No value is returned, but the `dest` array will store
    //  the data read upon exit.
    void xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count);
    
    // xmWriteByte() -- Write a byte to a register in the accel/mag sensor.
    // Input:
    //  - subAddress = Register to be written to.
    //  - data = data to be written to the register.
    void xgWriteByte(uint8_t subAddress, uint8_t data);
    
    // calcgRes() -- Calculate the resolution of the gyroscope.
    // This function will set the value of the gRes variable. gScale must
    // be set prior to calling this function.
    void calcgRes();
    
    // calcmRes() -- Calculate the resolution of the magnetometer.
    // This function will set the value of the mRes variable. mScale must
    // be set prior to calling this function.
    void calcmRes();
    
    // calcaRes() -- Calculate the resolution of the accelerometer.
    // This function will set the value of the aRes variable. aScale must
    // be set prior to calling this function.
    void calcaRes();
    
    //////////////////////
    // Helper Functions //
    //////////////////////
    void constrainScales();
    
    ///////////////////
    // SPI Functions //
    ///////////////////
    // initSPI() -- Initialize the SPI hardware.
    // This function will setup all SPI pins and related hardware.
    void initSPI();
    
    // SPIwriteByte() -- Write a byte out of SPI to a register in the device
    // Input:
    //  - csPin = The chip select pin of the slave device.
    //  - subAddress = The register to be written to.
    //  - data = Byte to be written to the register.
    void SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data);
    
    // SPIreadByte() -- Read a single byte from a register over SPI.
    // Input:
    //  - csPin = The chip select pin of the slave device.
    //  - subAddress = The register to be read from.
    // Output:
    //  - The byte read from the requested address.
    uint8_t SPIreadByte(uint8_t csPin, uint8_t subAddress);
    
    // SPIreadBytes() -- Read a series of bytes, starting at a register via SPI
    // Input:
    //  - csPin = The chip select pin of a slave device.
    //  - subAddress = The register to begin reading.
    //  - * dest = Pointer to an array where we'll store the readings.
    //  - count = Number of registers to be read.
    // Output: No value is returned by the function, but the registers read are
    //      all stored in the *dest array given.
    void SPIreadBytes(uint8_t csPin, uint8_t subAddress, 
                            uint8_t * dest, uint8_t count);
    
    ///////////////////
    // I2C Functions //
    ///////////////////
    // initI2C() -- Initialize the I2C hardware.
    // This function will setup all I2C pins and related hardware.
    void initI2C();
    
    // I2CwriteByte() -- Write a byte out of I2C to a register in the device
    // Input:
    //  - address = The 7-bit I2C address of the slave device.
    //  - subAddress = The register to be written to.
    //  - data = Byte to be written to the register.
    void I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data);
    
    // I2CreadByte() -- Read a single byte from a register over I2C.
    // Input:
    //  - address = The 7-bit I2C address of the slave device.
    //  - subAddress = The register to be read from.
    // Output:
    //  - The byte read from the requested address.
    uint8_t I2CreadByte(uint8_t address, uint8_t subAddress);
    
    // I2CreadBytes() -- Read a series of bytes, starting at a register via SPI
    // Input:
    //  - address = The 7-bit I2C address of the slave device.
    //  - subAddress = The register to begin reading.
    //  - * dest = Pointer to an array where we'll store the readings.
    //  - count = Number of registers to be read.
    // Output: No value is returned by the function, but the registers read are
    //      all stored in the *dest array given.
    uint8_t I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count);
    
private:
    I2C i2c;
};

#endif // SFE_LSM9DS1_H //