Simple USBHost library for Nucleo F446RE/F411RE/F401RE FRDM-KL46Z/KL25Z/F64F LPC4088/LPC1768

Dependencies:   FATFileSystem

Dependents:   F401RE-BTstack_example F401RE-USBHostMSD_HelloWorld

Fork of KL46Z-USBHost by Norimasa Okamoto

簡易USBホストライブラリです。
official-USBHostの下位互換で対応プログラムを僅かな修正で動かすことが出来ます。

Platforms

  • Nucleo F446RE
  • Nucleo F411RE
  • Nucleo F401RE
  • FRDM-K64F
  • FRDM-KL46Z
  • FRDM-KL25Z
  • LPC4088
  • LPC1768

Nucleo F446RE/F411RE/F401REのUSB接続方法

ST morphoUSB
U5V (CN10-8)VBUS (1 RED)
PA11 (CN10-14)DM  (2 WHITE)
PA12 (CN10-12)DP  (3 GREEN)
GND (CN10-20)GND (4 BLACK)

Examples

Import programF446RE-USBHostMouse_HelloWorld

USBHostMouse Hello World for ST-Nucleo-F446RE

Import programF401RE-USBHostMSD_HelloWorld

Simple USBHost MSD(USB flash drive) for Nucleo F401RE/FRDM-KL46Z test program

Import programF401RE-USBHostC270_example

Simple USBHost WebCam test program

Import programK64F_USBHostC270_example

Simple USBHost C270 example

Import programF401RE-BTstack_example

BTstack for Nucleo F401RE/FRDM-KL46Z example program

Import programUSBHostRSSI_example

Bluetooth device discovery example program.

Import programKL46Z-USBHostGPS_HelloWorld

Simple USBHost GPS Dongle Receiver for FRDM-KL46Z test program

USBHost/USBHost.cpp

Committer:
va009039
Date:
2016-05-01
Revision:
23:4ab8bc835303
Parent:
18:61554f238584

File content as of revision 23:4ab8bc835303:

/* mbed USBHost Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "USBHost.h"

#define USB_TRACE1(A) while(0)
#undef USB_TEST_ASSERT
void usb_test_assert_internal(const char *expr, const char *file, int line);
#define USB_TEST_ASSERT(EXPR) while(!(EXPR)){usb_test_assert_internal(#EXPR,__FILE__,__LINE__);}

USBHost* USBHost::inst = NULL;

USBHost* USBHost::getHostInst() {
    if (inst == NULL) {
        inst = new USBHost();
        inst->init();
    }
    return inst;
}

void USBHost::poll()
{
    if (inst) {
        inst->task();
    }
}

USBHost::USBHost() {
}

/* virtual */ bool USBHost::addDevice(USBDeviceConnected* parent, int port, bool lowSpeed) {
    USBDeviceConnected* dev = new USBDeviceConnected;
    USBEndpoint* ep = new USBEndpoint(dev);
    dev->init(0, port, lowSpeed);
    dev->setAddress(0);
    dev->setEpCtl(ep);
    uint8_t desc[18];
    wait_ms(100);

    int rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, 8);
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    if (rc != USB_TYPE_OK) {
        USB_ERR("ADD DEVICE FAILD");
    }
    USB_DBG_HEX(desc, 8);
    DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc);
    ep->setSize(dev_desc->bMaxPacketSize);

    int new_addr = USBDeviceConnected::getNewAddress();
    rc = controlWrite(dev, 0x00, SET_ADDRESS, new_addr, 0, NULL, 0);
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    dev->setAddress(new_addr);
    wait_ms(100);

    rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc));
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    USB_DBG_HEX(desc, sizeof(desc));

    dev->setVid(dev_desc->idVendor);
    dev->setPid(dev_desc->idProduct);
    dev->setClass(dev_desc->bDeviceClass);
    USB_INFO("parent:%p port:%d speed:%s VID:%04x PID:%04x class:%02x addr:%d",
        parent, port, (lowSpeed ? "low " : "full"), dev->getVid(), dev->getPid(), dev->getClass(),
        dev->getAddress());

    DeviceLists.push_back(dev);

    if (dev->getClass() == HUB_CLASS) {
        const int config = 1;
        int rc = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0);
        USB_TEST_ASSERT(rc == USB_TYPE_OK);
        wait_ms(100);
        Hub(dev);
    }
    return true;
}

// enumerate a device with the control USBEndpoint
USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator)
{
    if (dev->getClass() == HUB_CLASS) { // skip hub class
        return USB_TYPE_OK;
    }
    uint8_t desc[18];
    USB_TYPE rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc));
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    USB_DBG_HEX(desc, sizeof(desc));
    if (rc != USB_TYPE_OK) {
        return rc;
    }
    DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc);
    dev->setClass(dev_desc->bDeviceClass);
    pEnumerator->setVidPid(dev->getVid(), dev->getPid());

    rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, desc, 4);
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    USB_DBG_HEX(desc, 4);

    int TotalLength = desc[2]|desc[3]<<8;
    uint8_t* buf = new uint8_t[TotalLength];
    rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, buf, TotalLength);
    USB_TEST_ASSERT(rc == USB_TYPE_OK);
    //USB_DBG_HEX(buf, TotalLength);

    // Parse the configuration descriptor
    parseConfDescr(dev, buf, TotalLength, pEnumerator);
    delete[] buf;
    // only set configuration if not enumerated before
    if (!dev->isEnumerated()) {
        USB_DBG("Set configuration 1 on dev: %p", dev);
        // sixth step: set configuration (only 1 supported)
        int config = 1;
        USB_TYPE res = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0);
        if (res != USB_TYPE_OK) {
            USB_ERR("SET CONF FAILED");
            return res;
        }
        // Some devices may require this delay
        wait_ms(100);
        dev->setEnumerated();
        // Now the device is enumerated!
        USB_DBG("dev %p is enumerated", dev);
    }
    return USB_TYPE_OK;
}

// this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor.
void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator)
{
    uint32_t index = 0;
    uint32_t len_desc = 0;
    uint8_t id = 0;
    USBEndpoint * ep = NULL;
    uint8_t intf_nb = 0;
    bool parsing_intf = false;
    uint8_t current_intf = 0;
    EndpointDescriptor* ep_desc;

    while (index < len) {
        len_desc = conf_descr[index];
        id = conf_descr[index+1];
        USB_DBG_HEX(conf_descr+index, len_desc);
        switch (id) {
            case CONFIGURATION_DESCRIPTOR:
                USB_DBG("dev: %p has %d intf", dev, conf_descr[4]);
                dev->setNbIntf(conf_descr[4]);
                break;
            case INTERFACE_DESCRIPTOR:
                if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) {
                    intf_nb++;
                    current_intf = conf_descr[index + 2];
                    dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]);
                    USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]);
                    parsing_intf = true;
                } else {
                    parsing_intf = false;
                }
                break;
            case ENDPOINT_DESCRIPTOR:
                ep_desc = reinterpret_cast<EndpointDescriptor*>(conf_descr+index);
                if (parsing_intf && (intf_nb <= MAX_INTF) ) {
                    ENDPOINT_TYPE type = (ENDPOINT_TYPE)(ep_desc->bmAttributes & 0x03);
                    ENDPOINT_DIRECTION dir = (ep_desc->bEndpointAddress & 0x80) ? IN : OUT;
                    if(pEnumerator->useEndpoint(current_intf, type, dir)) {
                        ep = new USBEndpoint(dev);
                        ep->init(type, dir, ep_desc->wMaxPacketSize, ep_desc->bEndpointAddress);
                        USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev);
                        dev->addEndpoint(current_intf, ep);
                    }
                }
                break;
            case HID_DESCRIPTOR:
                //lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8);
                break;
            default:
                break;
        }
        index += len_desc;
    }
}

USB_TYPE USBHost::controlRead(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) {
    USBEndpoint* ep = dev->getEpCtl();
    SETUP_PACKET setup(requestType, request, value, index, len);

    int result = token_setup(ep, &setup, len); // setup stage
    USB_TRACE1(result);
    if (result < 0) {
        return USB_TYPE_ERROR;
    }

    int read_len = multi_token_in(ep, buf, len); // data stage
    USB_TRACE1(read_len);
    if (read_len < 0) {
        return USB_TYPE_ERROR;
    }

    setToggle(ep, 1); // DATA1
    result = multi_token_out(ep); // status stage
    USB_TRACE1(result);
    if (result < 0) {
        return USB_TYPE_ERROR;
    }
    ep->setLengthTransferred(read_len);
    return USB_TYPE_OK;
}

USB_TYPE USBHost::controlWrite(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) {
    USBEndpoint* ep = dev->getEpCtl();
    SETUP_PACKET setup(requestType, request, value, index, len);

    int result = token_setup(ep, &setup, len); // setup stage
    USB_TRACE1(result);
    if (result < 0) {
        return USB_TYPE_ERROR;
    }
    int write_len = 0;
    if (buf != NULL) {
        write_len = multi_token_out(ep, buf, len); // data stage
        USB_TRACE1(write_len);
        if (write_len < 0) {
            return USB_TYPE_ERROR;
        }
    }

    setToggle(ep, 1); // DATA1
    result = multi_token_in(ep); // status stage
    USB_TRACE1(result);
    if (result < 0) {
        return USB_TYPE_ERROR;
    }
    ep->setLengthTransferred(write_len);
    return USB_TYPE_OK;
}

USB_TYPE USBHost::bulkRead(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) {
    if (blocking == false) {
        ep->setBuffer(buf, len);
        ep_queue.push(ep);
        multi_token_inNB(ep, buf, len);
        return USB_TYPE_PROCESSING;
    }
    int result = multi_token_in(ep, buf, len);
    USB_TRACE1(result);
    if (result < 0) {
        return USB_TYPE_ERROR;
    }
    ep->setLengthTransferred(result);
    return USB_TYPE_OK;
}

USB_TYPE USBHost::bulkWrite(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) {
    USB_TEST_ASSERT(blocking);
    int result = multi_token_out(ep, buf, len);
    USB_TRACE1(result);
    if (result < 0) {
        return USB_TYPE_ERROR;
    }
    ep->setLengthTransferred(result);
    return USB_TYPE_OK;
}

USB_TYPE USBHost::interruptRead(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) {
    if (blocking == false) {
        ep->setBuffer(buf, len);
        ep_queue.push(ep);
        multi_token_inNB(ep, buf, len);
        return USB_TYPE_PROCESSING;
    }
    int result = multi_token_in(ep, buf, len);
    USB_TRACE1(result);
    if (result < 0) {
        return USB_TYPE_ERROR;
    }
    ep->setLengthTransferred(result);
    return USB_TYPE_OK;
}

USB_TYPE USBHost::interruptWrite(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) {
    USB_TEST_ASSERT(blocking);
    int result = multi_token_out(ep, buf, len);
    USB_TRACE1(result);
    if (result < 0) {
        return USB_TYPE_ERROR;
    }
    ep->setLengthTransferred(result);
    return USB_TYPE_OK;
}

USB_TYPE USBHost::isochronousRead(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) {
    USB_TEST_ASSERT(blocking);
    isochronousReadNB(ep, buf, len);
    return USB_TYPE_OK;
}

int USBHost::interruptReadNB(USBEndpoint* ep, uint8_t* data, int size) {
    USB_TRACE1(size);
    if (ep->getState() != USB_TYPE_PROCESSING) {
        ep->setState(USB_TYPE_PROCESSING);
        ep->setBuffer(data, size);
        multi_token_inNB(ep, data, size);
    }
    if (multi_token_inNB_result(ep) != USB_TYPE_PROCESSING) {
        return ep->getLengthTransferred();
    }
    return -1;
}

int USBHost::bulkReadNB(USBEndpoint* ep, uint8_t* data, int size) {
    USB_TRACE1(size);
    return interruptReadNB(ep, data, size);
}

int USBHost::isochronousReadNB(USBEndpoint* ep, uint8_t* data, int size) {
    USB_TRACE1(size);
    int result = token_iso_in(ep, data, size);
    if (result >= 0) {
         ep->setLengthTransferred(result);
    }
    return result;
}

void USBHost::task() {
    USBEndpoint* ep = ep_queue.pop();
    if (ep) {
        USB_TEST_ASSERT(ep->getDir() == IN);
        if (multi_token_inNB_result(ep) != USB_TYPE_PROCESSING) {
            ep->call();
        } else {
            ep_queue.push(ep);
        }
    }
}

void usb_test_assert_internal(const char *expr, const char *file, int line){
    error("\n\n%s@%d %s ASSERT!\n\n", file, line, expr);
}