Simple USBHost library for Nucleo F446RE/F411RE/F401RE FRDM-KL46Z/KL25Z/F64F LPC4088/LPC1768

Dependencies:   FATFileSystem

Dependents:   F401RE-BTstack_example F401RE-USBHostMSD_HelloWorld

Fork of KL46Z-USBHost by Norimasa Okamoto

簡易USBホストライブラリです。
official-USBHostの下位互換で対応プログラムを僅かな修正で動かすことが出来ます。

Platforms

  • Nucleo F446RE
  • Nucleo F411RE
  • Nucleo F401RE
  • FRDM-K64F
  • FRDM-KL46Z
  • FRDM-KL25Z
  • LPC4088
  • LPC1768

Nucleo F446RE/F411RE/F401REのUSB接続方法

ST morphoUSB
U5V (CN10-8)VBUS (1 RED)
PA11 (CN10-14)DM  (2 WHITE)
PA12 (CN10-12)DP  (3 GREEN)
GND (CN10-20)GND (4 BLACK)

Examples

Import programF446RE-USBHostMouse_HelloWorld

USBHostMouse Hello World for ST-Nucleo-F446RE

Import programF401RE-USBHostMSD_HelloWorld

Simple USBHost MSD(USB flash drive) for Nucleo F401RE/FRDM-KL46Z test program

Import programF401RE-USBHostC270_example

Simple USBHost WebCam test program

Import programK64F_USBHostC270_example

Simple USBHost C270 example

Import programF401RE-BTstack_example

BTstack for Nucleo F401RE/FRDM-KL46Z example program

Import programUSBHostRSSI_example

Bluetooth device discovery example program.

Import programKL46Z-USBHostGPS_HelloWorld

Simple USBHost GPS Dongle Receiver for FRDM-KL46Z test program

USBHost/USBHALHost_LPC4088.cpp

Committer:
va009039
Date:
2016-05-01
Revision:
23:4ab8bc835303
Parent:
18:61554f238584

File content as of revision 23:4ab8bc835303:

/* mbed USBHost Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#if defined(TARGET_LPC4088)||defined(TARGET_LPC1768)
#include "USBHALHost.h"

#ifndef CTASSERT
template <bool>struct CtAssert;
template <>struct CtAssert<true> {};
#define CTASSERT(A) CtAssert<A>();
#endif

#ifdef _USB_DBG
#define USB_DBG(...) do{fprintf(stderr,"[%s@%d] ",__PRETTY_FUNCTION__,__LINE__);fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");} while(0);
#define USB_DBG_HEX(A,B) debug_hex(A,B)
#define USB_DBG_ED(A) while(0)
#define USB_DBG_TD(A) while(0)
#define USB_DBG_ED_IF(A,B) while(0)
void debug_hex(uint8_t* buf, int size);
#else
#define USB_DBG(...) while(0)
#define USB_DBG_ED(A) while(0)
#define USB_DBG_TD(A) while(0)
#define USB_DBG_ED_IF(A,B) while(0)
#define USB_DBG_HEX(A,B) while(0)
#endif

#define USB_TRACE1(A) while(0)

#ifdef _USB_TEST
#undef USB_TEST_ASSERT
void usb_test_assert_internal(const char *expr, const char *file, int line);
#define USB_TEST_ASSERT(EXPR) while(!(EXPR)){usb_test_assert_internal(#EXPR,__FILE__,__LINE__);}
#else
#define USB_TEST_ASSERT(EXPR) while(0)
#endif

#define USB_INFO(...) do{fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");}while(0);

// bits of the USB/OTG clock control register
#define HOST_CLK_EN     (1<<0)
#define DEV_CLK_EN      (1<<1)
#define PORTSEL_CLK_EN  (1<<3)
#define AHB_CLK_EN      (1<<4)

// bits of the USB/OTG clock status register
#define HOST_CLK_ON     (1<<0)
#define DEV_CLK_ON      (1<<1)
#define PORTSEL_CLK_ON  (1<<3)
#define AHB_CLK_ON      (1<<4)

// we need host clock, OTG/portsel clock and AHB clock
#define CLOCK_MASK (HOST_CLK_EN | PORTSEL_CLK_EN | AHB_CLK_EN)
#define  FI                     0x2EDF           /* 12000 bits per frame (-1) */
#define  DEFAULT_FMINTERVAL     ((((6 * (FI - 210)) / 7) << 16) | FI)

USBHALHost* USBHALHost::instHost;

USBHALHost::USBHALHost() {
    instHost = this;
}

void USBHALHost::init() {
    NVIC_DisableIRQ(USB_IRQn);
    m_pHcca = new HCCA();
    init_hw_ohci(m_pHcca);
    ResetRootHub();
    NVIC_SetVector(USB_IRQn, (uint32_t)_usbisr);
    NVIC_SetPriority(USB_IRQn, 0);
    NVIC_EnableIRQ(USB_IRQn);

    USB_INFO("Simple USBHost Library for LPC4088/LPC1768");
    bool lowSpeed = wait_attach();
    addDevice(NULL, 0, lowSpeed);
}

void USBHALHost::init_hw_ohci(HCCA* pHcca) {
    LPC_SC->PCONP &= ~(1UL<<31);    //Cut power
    wait_ms(1000);
    LPC_SC->PCONP |= (1UL<<31);     // turn on power for USB
    LPC_USB->USBClkCtrl |= CLOCK_MASK; // Enable USB host clock, port selection and AHB clock
    // Wait for clocks to become available
    while ((LPC_USB->USBClkSt & CLOCK_MASK) != CLOCK_MASK)
        ;
    LPC_USB->OTGStCtrl |= 1;
    LPC_USB->USBClkCtrl &= ~PORTSEL_CLK_EN;
    
#if defined(TARGET_LPC1768)
    LPC_PINCON->PINSEL1 &= ~((3<<26) | (3<<28));  
    LPC_PINCON->PINSEL1 |=  ((1<<26)|(1<<28));     // 0x14000000
#elif defined(TARGET_LPC4088)
    LPC_IOCON->P0_29 = 0x01; // USB_D+1
    LPC_IOCON->P0_30 = 0x01; // USB_D-1
    // DO NOT CHANGE P1_19.
#else
#error "target error"
#endif
    USB_DBG("initialize OHCI\n");
    wait_ms(100);                                   /* Wait 50 ms before apply reset              */
    USB_TEST_ASSERT((LPC_USB->HcRevision&0xff) == 0x10); // check revision
    LPC_USB->HcControl       = 0;                       /* HARDWARE RESET                             */
    LPC_USB->HcControlHeadED = 0;                       /* Initialize Control list head to Zero       */
    LPC_USB->HcBulkHeadED    = 0;                       /* Initialize Bulk list head to Zero          */
                                                        /* SOFTWARE RESET                             */
    LPC_USB->HcCommandStatus = OR_CMD_STATUS_HCR;
    LPC_USB->HcFmInterval    = DEFAULT_FMINTERVAL;      /* Write Fm Interval and Largest Data Packet Counter */
    LPC_USB->HcPeriodicStart = FI*90/100;
                                                      /* Put HC in operational state                */
    LPC_USB->HcControl  = (LPC_USB->HcControl & (~OR_CONTROL_HCFS)) | OR_CONTROL_HC_OPER;
    LPC_USB->HcRhStatus = OR_RH_STATUS_LPSC;            /* Set Global Power */
    USB_TEST_ASSERT(pHcca);
    for (int i = 0; i < 32; i++) {
        pHcca->InterruptTable[i] = NULL;
    }
    LPC_USB->HcHCCA = reinterpret_cast<uint32_t>(pHcca);
    LPC_USB->HcInterruptStatus |= LPC_USB->HcInterruptStatus; /* Clear Interrrupt Status */
    LPC_USB->HcInterruptEnable  = OR_INTR_ENABLE_MIE|OR_INTR_ENABLE_WDH|OR_INTR_ENABLE_FNO;

    LPC_USB->HcRhPortStatus1 = OR_RH_PORT_CSC;
    LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC;
}

void USBHALHost::ResetRootHub() {
    wait_ms(100); /* USB 2.0 spec says at least 50ms delay before port reset */
    LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRS; // Initiate port reset
    USB_DBG("Before loop\n");
    while (LPC_USB->HcRhPortStatus1 & OR_RH_PORT_PRS)
      ;
    LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC; // ...and clear port reset signal
    USB_DBG("After loop\n");
    wait_ms(200); /* Wait for 100 MS after port reset  */
}

bool USBHALHost::wait_attach() {
    bool lowSpeed = false;
    uint32_t status = LPC_USB->HcRhPortStatus1;
    if (status & OR_RH_PORT_LSDA) { // lowSpeedDeviceAttached
        lowSpeed = true;
    }
    return lowSpeed;
}

void enable(ENDPOINT_TYPE type) {
    switch(type) {
        case CONTROL_ENDPOINT:
            LPC_USB->HcCommandStatus |= OR_CMD_STATUS_CLF;
            LPC_USB->HcControl |= OR_CONTROL_CLE;
            break;
        case ISOCHRONOUS_ENDPOINT:
            LPC_USB->HcControl |= OR_CONTROL_PLE;
            break;
        case BULK_ENDPOINT:
            LPC_USB->HcCommandStatus |= OR_CMD_STATUS_BLF;
            LPC_USB->HcControl |= OR_CONTROL_BLE;
            break;
        case INTERRUPT_ENDPOINT:
            LPC_USB->HcControl |= OR_CONTROL_PLE;
            break;
    }
}

void USBHALHost::token_init(USBEndpoint* ep) {
    HCED* ed = ep->getHALData<HCED*>();
    if (ed == NULL) {
        ed = new HCED(ep);
        ep->setHALData<HCED*>(ed);
    }
    USBDeviceConnected* dev = ep->getDevice();
    USB_TEST_ASSERT(dev);
    if (dev) {
        uint8_t devAddr = dev->getAddress();
        USB_DBG("devAddr=%02x", devAddr);
        ed->setFunctionAddress(devAddr);
    }
    uint16_t size = ep->getSize();
    USB_DBG("MaxPacketSize=%d", size);
    ed->setMaxPacketSize(size);
    if (ed->HeadTd == NULL) {
        HCTD* td = new HCTD(ed);
        ed->TailTd = td;
        ed->HeadTd = td;
        switch(ep->getType()) {
            case CONTROL_ENDPOINT:
                ed->Next = reinterpret_cast<HCED*>(LPC_USB->HcControlHeadED);
                LPC_USB->HcControlHeadED = reinterpret_cast<uint32_t>(ed);
                break;
            case BULK_ENDPOINT:
                ed->Next = reinterpret_cast<HCED*>(LPC_USB->HcBulkHeadED);
                LPC_USB->HcBulkHeadED = reinterpret_cast<uint32_t>(ed);
                break;
            case INTERRUPT_ENDPOINT:
                HCCA* pHcca = reinterpret_cast<HCCA*>(LPC_USB->HcHCCA);
                ed->Next = pHcca->InterruptTable[0];
                pHcca->InterruptTable[0] = ed;
                break;
        }
    }
}

int USBHALHost::token_setup(USBEndpoint* ep, SETUP_PACKET* setup, uint16_t wLength) {
    token_init(ep);
    HCED* ed = ep->getHALData<HCED*>();
    HCTD* td = ed->TailTd;
    setup->wLength = wLength;
    TBUF* tbuf = new(sizeof(SETUP_PACKET))TBUF(setup, sizeof(SETUP_PACKET));
    td->transfer(tbuf, sizeof(SETUP_PACKET));
    td->Control |= TD_TOGGLE_0|TD_SETUP; // DATA0
    HCTD* blank = new HCTD(ed);
    ed->enqueue(blank);
    //DBG_ED(ed);
    enable(ep->getType());

    td = ed->get_queue_HCTD();
    USB_TEST_ASSERT(td);
    int result = td->getLengthTransferred();
    USB_DBG_TD(td);
    delete tbuf;
    delete td;
    return result;
}

static HCED* getHCED_iso(USBEndpoint* ep) {
    HCED* ed = ep->getHALData<HCED*>();
    if (ed != NULL) {
        return ed;
    }
    ed = new HCED(ep);
    ep->setHALData<HCED*>(ed);
    ed->setFormat(); // F Format ITD
    ed->iso.FrameCount = ep->ohci.frameCount;
    ed->iso.queue_limit = ep->ohci.queueLimit;
    ed->iso.queue_count = 0;
    ed->iso.Current_FrameCount = 0;
    ed->iso.Current_itd = NULL;
    ed->iso.FrameNumber = LPC_USB->HcFmNumber + 10; // after 10msec
    HCITD* itd = ed->new_HCITD();
    ed->init_queue(reinterpret_cast<HCTD*>(itd)); 
    HCCA* hcca = reinterpret_cast<HCCA*>(LPC_USB->HcHCCA);
    hcca->enqueue(ed);
    LPC_USB->HcControl |= OR_CONTROL_PLE; // PeriodicListEnable
    LPC_USB->HcControl |= OR_CONTROL_IE;  // IsochronousEnable
    return ed;
}

static void enablePeriodic() {
    LPC_USB->HcControl |= OR_CONTROL_PLE;
}

HCITD* isochronousReceive(USBEndpoint* ep) {
    HCED* ed = getHCED_iso(ep);
    USB_TEST_ASSERT(ed);
    while(ed->iso.queue_count < ed->iso.queue_limit) {
        HCITD* blank_itd = ed->new_HCITD();
        if (ed->enqueue(reinterpret_cast<HCTD*>(blank_itd))) {
            ed->iso.queue_count++;
        }
        enablePeriodic();
    }
    
    HCITD* itd = ed->get_queue_HCITD();
    if (itd) {
        ed->iso.queue_count--;
    }
    return itd;
}

int USBHALHost::token_iso_in(USBEndpoint* ep, uint8_t* data, int size) {
    HCED* ed = getHCED_iso(ep);
    if (ed->iso.Current_FrameCount == 0) {
        HCITD* itd = isochronousReceive(ep);
        if (itd == NULL) {
            return -1;
        }
        if (itd->ConditionCode() != 0) {
            delete itd;
            return -1;
        }
        ed->iso.Current_itd = itd;
    }

    HCITD* itd = ed->iso.Current_itd;
    int fc = ed->iso.Current_FrameCount;
    int result = -1;
    uint8_t cc = itd->ConditionCode(fc);
    if (cc == 0 || cc == 9) {
        result = itd->Length(fc);
        memcpy(data, itd->Buffer(fc), result);
    }

    if (++ed->iso.Current_FrameCount >= itd->FrameCount()) {
        ed->iso.Current_FrameCount = 0;
        delete ed->iso.Current_itd;
    }
    return result;
}

int USBHALHost::multi_token_in(USBEndpoint* ep, uint8_t* data, int size) {
    token_init(ep);
    HCED* ed = ep->getHALData<HCED*>();
    HCTD* td = ed->TailTd;
    TBUF* tbuf = NULL;
    if (data != NULL) {
        tbuf = new(size)TBUF();
        td->transfer(tbuf, size);
    }
    td->Control |= TD_IN;
    HCTD* blank = new HCTD(ed);
    ed->enqueue(blank);
    USB_DBG_ED_IF(ed->EndpointNumber()==0, ed); // control transfer
    enable(ep->getType());

    td = ed->get_queue_HCTD();
    USB_TEST_ASSERT(td);
    if (data != NULL) {
        memcpy(data, tbuf->buf, size);
        delete tbuf;
    }
    int result = td->getLengthTransferred();
    delete td;
    return result;
}

int USBHALHost::multi_token_out(USBEndpoint* ep, const uint8_t* data, int size) {
    token_init(ep);
    HCED* ed = ep->getHALData<HCED*>();
    HCTD* td = ed->TailTd;
    TBUF* tbuf = NULL;
    if (data != NULL) {
        tbuf = new(size)TBUF(data, size);
        td->transfer(tbuf, size);
    }
    td->Control |= TD_OUT;
    HCTD* blank = new HCTD(ed);
    ed->enqueue(blank);
    USB_DBG_ED(ed);
    enable(ep->getType());

    td = ed->get_queue_HCTD();
    USB_TEST_ASSERT(td);
    if (data != NULL) {
        delete tbuf;
    }
    int result = td->getLengthTransferred();
    delete td;
    return result;
}

void USBHALHost::multi_token_inNB(USBEndpoint* ep, uint8_t* data, int size) {
    token_init(ep);
    HCED* ed = ep->getHALData<HCED*>();
    HCTD* td = ed->TailTd;
    TBUF* tbuf = new(size)TBUF();
    td->transfer(tbuf, size);
    td->Control |= TD_IN;
    HCTD* blank = new HCTD(ed);
    ed->enqueue(blank);
    enable(ep->getType());
}

USB_TYPE USBHALHost::multi_token_inNB_result(USBEndpoint* ep) {
    HCED* ed = ep->getHALData<HCED*>();
    if (ed == NULL) {
        return USB_TYPE_ERROR;
    }
    HCTD* td = ed->get_queue_HCTD(0);
    if (td) {
        int len = td->getLengthTransferred();
        TBUF* tbuf = (TBUF*)td->buf_top;
        memcpy(ep->getBufStart(), tbuf->buf, len);
        ep->setLengthTransferred(len);
        ep->setState((USB_TYPE)td->ConditionCode());
        delete td;
        delete tbuf;
        return USB_TYPE_OK;
    }
    return USB_TYPE_PROCESSING;
}

void USBHALHost::setToggle(USBEndpoint* ep, uint8_t toggle) {
    USB_TEST_ASSERT(toggle == 1);
    HCED* ed = ep->getHALData<HCED*>();
    ed->setToggle(toggle);
}

void USBHALHost::_usbisr(void) {
    if (instHost) {
        instHost->UsbIrqhandler();
    }
}

HCTD* td_reverse(HCTD* td)
{
    HCTD* result = NULL;
    HCTD* next;
    while(td) {
        next = const_cast<HCTD*>(td->Next);
        td->Next = result;
        result = td;
        td = next;
    }
    return result;
}

void USBHALHost::UsbIrqhandler() {
    if (!(LPC_USB->HcInterruptStatus & LPC_USB->HcInterruptEnable)) {
        return;
    }
    m_report_irq++;
    uint32_t status = LPC_USB->HcInterruptStatus;
    if (status & OR_INTR_STATUS_FNO) {
        m_report_FNO++;
    }
    if (status & OR_INTR_STATUS_WDH) {
        union {
            HCTD* done_td;
            uint32_t lsb;
        };
        done_td = const_cast<HCTD*>(m_pHcca->DoneHead);
        USB_TEST_ASSERT(done_td);
        m_pHcca->DoneHead = NULL; // reset
        if (lsb & 1) { // error ?
            lsb &= ~1;
        }
        HCTD* td = td_reverse(done_td);
        while(td) {
            HCED* ed = td->parent;
            USB_TEST_ASSERT(ed);
            if (ed) {
                ed->irqWdhHandler(td);
            }
            td = td->Next;
        }
        m_report_WDH++;
    }
    LPC_USB->HcInterruptStatus = status; // Clear Interrrupt Status
}

TBUF::TBUF(const void* data, int size) {
    if (size > 0) {
        memcpy(buf, data, size);
    }
}

HCTD::HCTD(HCED* obj) {
    CTASSERT(sizeof(HCTD) == 36);
    USB_TEST_ASSERT(obj);
    Control = TD_CC|TD_ROUNDING;
    CurrBufPtr = NULL;
    Next = NULL;
    BufEnd = NULL;
    buf_top = NULL;
    buf_size = 0;
    parent = obj;
}

HCITD::HCITD(HCED* obj, uint16_t FrameNumber, int FrameCount, uint16_t PacketSize) {
    Control = 0xe0000000           | // CC ConditionCode NOT ACCESSED
             ((FrameCount-1) << 24)| // FC FrameCount
                  TD_DELAY_INT(0)  | // DI DelayInterrupt
                 FrameNumber;        // SF StartingFrame
    BufferPage0 = const_cast<uint8_t*>(buf);
    BufferEnd = const_cast<uint8_t*>(buf) + PacketSize * FrameCount - 1;
    Next = NULL; 
    parent = obj;
    uint32_t addr = reinterpret_cast<uint32_t>(buf);
    for(int i = 0; i < FrameCount; i++) {
        uint16_t offset = addr & 0x0fff;
        if ((addr&0xfffff000) == (reinterpret_cast<uint32_t>(BufferEnd)&0xfffff000)) {
            offset |= 0x1000;
        }
        OffsetPSW[i] = 0xe000|offset;
        addr += PacketSize;
    }
}

uint8_t* HCITD::Buffer(int fc) {
    int offset = fc * parent->getMaxPacketSize();
    return const_cast<uint8_t*>(buf) + offset;
}

HCED::HCED(USBEndpoint* ep) {
    CTASSERT(sizeof(HCED) <= (64*2));
    USBDeviceConnected* dev = ep->getDevice();
    int devAddr = 0;
    bool lowSpeed = false;
    if (dev) {
        devAddr = dev->getAddress();
        lowSpeed = dev->getSpeed();
    }
    int ep_number = ep->getAddress();
    int MaxPacketSize = ep->getSize();
        Control =  devAddr        | /* USB address */
        ((ep_number & 0x7F) << 7) | /* Endpoint address */
        (ep_number!=0?(((ep_number&0x80)?2:1) << 11):0)| /* direction : Out = 1, 2 = In */
        ((lowSpeed?1:0) << 13)    | /* speed full=0 low=1 */
        (MaxPacketSize << 16);      /* MaxPkt Size */
        TailTd = NULL;
        HeadTd = NULL;
        Next = NULL;
}

bool HCED::enqueue(HCTD* td) {
    if (td) {
        HCTD* tail = reinterpret_cast<HCTD*>(TailTd);
        if (tail) {
            tail->Next = td;
            TailTd = reinterpret_cast<HCTD*>(td);
            return true;
        }
    }
    return false;
}

void HCED::init_queue(HCTD* td) {
    TailTd = reinterpret_cast<HCTD*>(td);
    HeadTd = reinterpret_cast<HCTD*>(td); 
}

void HCED::setToggle(uint8_t toggle) {
    uint32_t c = reinterpret_cast<uint32_t>(HeadTd);
    if (toggle == 0) { // DATA0
        c &= ~0x02;
    } else { // DATA1
        c |= 0x02;
    }
    HeadTd = reinterpret_cast<HCTD*>(c);
}

uint8_t HCED::getToggle() {
    uint32_t c = reinterpret_cast<uint32_t>(HeadTd);
    return (c&0x02) ? 1 : 0;
}

HCTD* HCED::get_queue_HCTD(uint32_t millisec)
{
    for(int i = 0; i < 16; i++) {
        osEvent evt = done_queue_get(millisec);
        if (evt.status == osEventMessage) {
            HCTD* td = reinterpret_cast<HCTD*>(evt.value.p);
            USB_TEST_ASSERT(td);
            uint8_t cc = td->ConditionCode();
            if (cc != 0) {
                m_ConditionCode = cc;
                USB_DBG_TD(td);
            }
            return td;
        } else if (evt.status == osOK) {
            continue;
        } else if (evt.status == osEventTimeout) {
            return NULL;
        } else {
            USB_DBG("evt.status: %02x\n", evt.status);
            USB_TEST_ASSERT(evt.status == osEventMessage);
        }
    }
    return NULL;
}

HCITD* HCED::get_queue_HCITD() {
    osEvent evt = done_queue_get(0);
    if (evt.status == osEventMessage) {
        HCITD* itd = reinterpret_cast<HCITD*>(evt.value.p);
        USB_TEST_ASSERT(itd);
        return itd;
    }
    return NULL;
}
HCITD* HCED::new_HCITD() {
    uint16_t mps = getMaxPacketSize();
    int total_size = mps * iso.FrameCount;
    HCITD* itd = new(total_size)HCITD(this, iso.FrameNumber, iso.FrameCount, mps);
    iso.FrameNumber += iso.FrameCount;
    return itd;
}

void HCCA::enqueue(HCED* ed) {
    for(int i = 0; i < 32; i++) {
        if (InterruptTable[i] == NULL) {
            InterruptTable[i] = ed;
        } else {
            HCED* nextEd = InterruptTable[i];
            while(nextEd->Next && nextEd->Next != ed) {
                nextEd = nextEd->Next;
            }
            nextEd->Next = ed;
        }
    }
}

#endif // defined(TARGET_LPC4088)||defined(TARGET_LPC1768)