MPU6050 FreeIMU library

Dependents:   FreeIMU FreeIMU_external_magnetometer

Fork of MPU6050_tmp by Aloïs Wolff

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers MPU6050.cpp Source File

MPU6050.cpp

00001 //ported from arduino library: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
00002 //written by szymon gaertig (email: szymon@gaertig.com.pl)
00003 //
00004 //Changelog:
00005 //2013-01-08 - first beta release
00006 
00007 // I2Cdev library collection - MPU6050 I2C device class
00008 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
00009 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
00010 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
00011 //
00012 // Changelog:
00013 //     ... - ongoing debug release
00014 
00015 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
00016 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
00017 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
00018 
00019 /* ============================================
00020 I2Cdev device library code is placed under the MIT license
00021 Copyright (c) 2012 Jeff Rowberg
00022 
00023 Permission is hereby granted, free of charge, to any person obtaining a copy
00024 of this software and associated documentation files (the "Software"), to deal
00025 in the Software without restriction, including without limitation the rights
00026 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
00027 copies of the Software, and to permit persons to whom the Software is
00028 furnished to do so, subject to the following conditions:
00029 
00030 The above copyright notice and this permission notice shall be included in
00031 all copies or substantial portions of the Software.
00032 
00033 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00034 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00035 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
00036 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
00037 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00038 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
00039 THE SOFTWARE.
00040 ===============================================
00041 */
00042 
00043 #include "MODI2C.h"
00044 #include "MPU6050.h"
00045 #include "rtos.h"
00046 
00047 //#define useDebugSerial
00048 
00049 //instead of using pgmspace.h
00050 typedef const unsigned char prog_uchar;
00051 #define pgm_read_byte_near(x) (*(prog_uchar*)x)
00052 #define pgm_read_byte(x) (*(prog_uchar*)x)
00053 
00054 /** Default constructor, uses default I2C address.
00055  * @see MPU6050_DEFAULT_ADDRESS
00056  */
00057 MPU6050::MPU6050() : debugSerial(USBTX, USBRX), sampling(false)
00058 {
00059     devAddr = MPU6050_DEFAULT_ADDRESS << 1;
00060     debugSerial.baud(115200);
00061 }
00062 
00063 /** Specific address constructor.
00064  * @param address I2C address
00065  * @see MPU6050_DEFAULT_ADDRESS
00066  * @see MPU6050_ADDRESS_AD0_LOW
00067  * @see MPU6050_ADDRESS_AD0_HIGH
00068  */
00069 MPU6050::MPU6050(uint8_t address) : debugSerial(USBTX, USBRX), sampling(false)
00070 {
00071     devAddr = address << 1;
00072     debugSerial.baud(115200);
00073 }
00074 
00075 /** Power on and prepare for general usage.
00076  * This will activate the device and take it out of sleep mode (which must be done
00077  * after start-up). This function also sets both the accelerometer and the gyroscope
00078  * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
00079  * the clock source to use the X Gyro for reference, which is slightly better than
00080  * the default internal clock source.
00081  */
00082 void MPU6050::initialize()
00083 {
00084 #ifdef useDebugSerial
00085     debugSerial.printf("MPU6050::initialize start\n");
00086 #endif
00087     setClockSource(MPU6050_CLOCK_PLL_XGYRO);
00088     setFullScaleGyroRange(MPU6050_GYRO_FS_250);
00089     setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
00090     setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
00091 
00092 #ifdef useDebugSerial
00093     debugSerial.printf("MPU6050::initialize end\n");
00094 #endif
00095 }
00096 
00097 /** Verify the I2C connection.
00098  * Make sure the device is connected and responds as expected.
00099  * @return True if connection is valid, false otherwise
00100  */
00101 bool MPU6050::testConnection()
00102 {
00103 #ifdef useDebugSerial
00104     debugSerial.printf("MPU6050::testConnection start\n");
00105 #endif
00106     uint8_t deviceId = getDeviceID();
00107 #ifdef useDebugSerial
00108     debugSerial.printf("DeviceId = %d\n",deviceId);
00109 #endif
00110     return deviceId == 0x34;
00111 }
00112 
00113 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
00114 
00115 /** Get the auxiliary I2C supply voltage level.
00116  * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
00117  * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
00118  * the MPU-6000, which does not have a VLOGIC pin.
00119  * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
00120  */
00121 uint8_t MPU6050::getAuxVDDIOLevel()
00122 {
00123     i2Cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
00124     return buffer[0];
00125 }
00126 /** Set the auxiliary I2C supply voltage level.
00127  * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
00128  * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
00129  * the MPU-6000, which does not have a VLOGIC pin.
00130  * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
00131  */
00132 void MPU6050::setAuxVDDIOLevel(uint8_t level)
00133 {
00134     i2Cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
00135 }
00136 
00137 // SMPLRT_DIV register
00138 
00139 /** Get gyroscope output rate divider.
00140  * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
00141  * Motion detection, and Free Fall detection are all based on the Sample Rate.
00142  * The Sample Rate is generated by dividing the gyroscope output rate by
00143  * SMPLRT_DIV:
00144  *
00145  * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
00146  *
00147  * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
00148  * 7), and 1kHz when the DLPF is enabled (see Register 26).
00149  *
00150  * Note: The accelerometer output rate is 1kHz. This means that for a Sample
00151  * Rate greater than 1kHz, the same accelerometer sample may be output to the
00152  * FIFO, DMP, and sensor registers more than once.
00153  *
00154  * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
00155  * of the MPU-6000/MPU-6050 Product Specification document.
00156  *
00157  * @return Current sample rate
00158  * @see MPU6050_RA_SMPLRT_DIV
00159  */
00160 uint8_t MPU6050::getRate()
00161 {
00162     i2Cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
00163     return buffer[0];
00164 }
00165 /** Set gyroscope sample rate divider.
00166  * @param rate New sample rate divider
00167  * @see getRate()
00168  * @see MPU6050_RA_SMPLRT_DIV
00169  */
00170 void MPU6050::setRate(uint8_t rate)
00171 {
00172     i2Cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
00173 }
00174 
00175 
00176 // CONFIG register
00177 
00178 /** Get external FSYNC configuration.
00179  * Configures the external Frame Synchronization (FSYNC) pin sampling. An
00180  * external signal connected to the FSYNC pin can be sampled by configuring
00181  * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
00182  * strobes may be captured. The latched FSYNC signal will be sampled at the
00183  * Sampling Rate, as defined in register 25. After sampling, the latch will
00184  * reset to the current FSYNC signal state.
00185  *
00186  * The sampled value will be reported in place of the least significant bit in
00187  * a sensor data register determined by the value of EXT_SYNC_SET according to
00188  * the following table.
00189  *
00190  * <pre>
00191  * EXT_SYNC_SET | FSYNC Bit Location
00192  * -------------+-------------------
00193  * 0            | Input disabled
00194  * 1            | TEMP_OUT_L[0]
00195  * 2            | GYRO_XOUT_L[0]
00196  * 3            | GYRO_YOUT_L[0]
00197  * 4            | GYRO_ZOUT_L[0]
00198  * 5            | ACCEL_XOUT_L[0]
00199  * 6            | ACCEL_YOUT_L[0]
00200  * 7            | ACCEL_ZOUT_L[0]
00201  * </pre>
00202  *
00203  * @return FSYNC configuration value
00204  */
00205 uint8_t MPU6050::getExternalFrameSync()
00206 {
00207     i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
00208     return buffer[0];
00209 }
00210 /** Set external FSYNC configuration.
00211  * @see getExternalFrameSync()
00212  * @see MPU6050_RA_CONFIG
00213  * @param sync New FSYNC configuration value
00214  */
00215 void MPU6050::setExternalFrameSync(uint8_t sync)
00216 {
00217     i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
00218 }
00219 /** Get digital low-pass filter configuration.
00220  * The DLPF_CFG parameter sets the digital low pass filter configuration. It
00221  * also determines the internal sampling rate used by the device as shown in
00222  * the table below.
00223  *
00224  * Note: The accelerometer output rate is 1kHz. This means that for a Sample
00225  * Rate greater than 1kHz, the same accelerometer sample may be output to the
00226  * FIFO, DMP, and sensor registers more than once.
00227  *
00228  * <pre>
00229  *          |   ACCELEROMETER    |           GYROSCOPE
00230  * DLPF_CFG | Bandwidth | Delay  | Bandwidth | Delay  | Sample Rate
00231  * ---------+-----------+--------+-----------+--------+-------------
00232  * 0        | 260Hz     | 0ms    | 256Hz     | 0.98ms | 8kHz
00233  * 1        | 184Hz     | 2.0ms  | 188Hz     | 1.9ms  | 1kHz
00234  * 2        | 94Hz      | 3.0ms  | 98Hz      | 2.8ms  | 1kHz
00235  * 3        | 44Hz      | 4.9ms  | 42Hz      | 4.8ms  | 1kHz
00236  * 4        | 21Hz      | 8.5ms  | 20Hz      | 8.3ms  | 1kHz
00237  * 5        | 10Hz      | 13.8ms | 10Hz      | 13.4ms | 1kHz
00238  * 6        | 5Hz       | 19.0ms | 5Hz       | 18.6ms | 1kHz
00239  * 7        |   -- Reserved --   |   -- Reserved --   | Reserved
00240  * </pre>
00241  *
00242  * @return DLFP configuration
00243  * @see MPU6050_RA_CONFIG
00244  * @see MPU6050_CFG_DLPF_CFG_BIT
00245  * @see MPU6050_CFG_DLPF_CFG_LENGTH
00246  */
00247 uint8_t MPU6050::getDLPFMode()
00248 {
00249     i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
00250     return buffer[0];
00251 }
00252 /** Set digital low-pass filter configuration.
00253  * @param mode New DLFP configuration setting
00254  * @see getDLPFBandwidth()
00255  * @see MPU6050_DLPF_BW_256
00256  * @see MPU6050_RA_CONFIG
00257  * @see MPU6050_CFG_DLPF_CFG_BIT
00258  * @see MPU6050_CFG_DLPF_CFG_LENGTH
00259  */
00260 void MPU6050::setDLPFMode(uint8_t mode)
00261 {
00262     i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
00263 }
00264 
00265 // GYRO_CONFIG register
00266 
00267 /** Get full-scale gyroscope range.
00268  * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
00269  * as described in the table below.
00270  *
00271  * <pre>
00272  * 0 = +/- 250 degrees/sec
00273  * 1 = +/- 500 degrees/sec
00274  * 2 = +/- 1000 degrees/sec
00275  * 3 = +/- 2000 degrees/sec
00276  * </pre>
00277  *
00278  * @return Current full-scale gyroscope range setting
00279  * @see MPU6050_GYRO_FS_250
00280  * @see MPU6050_RA_GYRO_CONFIG
00281  * @see MPU6050_GCONFIG_FS_SEL_BIT
00282  * @see MPU6050_GCONFIG_FS_SEL_LENGTH
00283  */
00284 uint8_t MPU6050::getFullScaleGyroRange()
00285 {
00286     i2Cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
00287     return buffer[0];
00288 }
00289 /** Set full-scale gyroscope range.
00290  * @param range New full-scale gyroscope range value
00291  * @see getFullScaleRange()
00292  * @see MPU6050_GYRO_FS_250
00293  * @see MPU6050_RA_GYRO_CONFIG
00294  * @see MPU6050_GCONFIG_FS_SEL_BIT
00295  * @see MPU6050_GCONFIG_FS_SEL_LENGTH
00296  */
00297 void MPU6050::setFullScaleGyroRange(uint8_t range)
00298 {
00299     i2Cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
00300 }
00301 
00302 // ACCEL_CONFIG register
00303 
00304 /** Get self-test enabled setting for accelerometer X axis.
00305  * @return Self-test enabled value
00306  * @see MPU6050_RA_ACCEL_CONFIG
00307  */
00308 bool MPU6050::getAccelXSelfTest()
00309 {
00310     i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
00311     return buffer[0];
00312 }
00313 /** Get self-test enabled setting for accelerometer X axis.
00314  * @param enabled Self-test enabled value
00315  * @see MPU6050_RA_ACCEL_CONFIG
00316  */
00317 void MPU6050::setAccelXSelfTest(bool enabled)
00318 {
00319     i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
00320 }
00321 /** Get self-test enabled value for accelerometer Y axis.
00322  * @return Self-test enabled value
00323  * @see MPU6050_RA_ACCEL_CONFIG
00324  */
00325 bool MPU6050::getAccelYSelfTest()
00326 {
00327     i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
00328     return buffer[0];
00329 }
00330 /** Get self-test enabled value for accelerometer Y axis.
00331  * @param enabled Self-test enabled value
00332  * @see MPU6050_RA_ACCEL_CONFIG
00333  */
00334 void MPU6050::setAccelYSelfTest(bool enabled)
00335 {
00336     i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
00337 }
00338 /** Get self-test enabled value for accelerometer Z axis.
00339  * @return Self-test enabled value
00340  * @see MPU6050_RA_ACCEL_CONFIG
00341  */
00342 bool MPU6050::getAccelZSelfTest()
00343 {
00344     i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
00345     return buffer[0];
00346 }
00347 /** Set self-test enabled value for accelerometer Z axis.
00348  * @param enabled Self-test enabled value
00349  * @see MPU6050_RA_ACCEL_CONFIG
00350  */
00351 void MPU6050::setAccelZSelfTest(bool enabled)
00352 {
00353     i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
00354 }
00355 /** Get full-scale accelerometer range.
00356  * The FS_SEL parameter allows setting the full-scale range of the accelerometer
00357  * sensors, as described in the table below.
00358  *
00359  * <pre>
00360  * 0 = +/- 2g
00361  * 1 = +/- 4g
00362  * 2 = +/- 8g
00363  * 3 = +/- 16g
00364  * </pre>
00365  *
00366  * @return Current full-scale accelerometer range setting
00367  * @see MPU6050_ACCEL_FS_2
00368  * @see MPU6050_RA_ACCEL_CONFIG
00369  * @see MPU6050_ACONFIG_AFS_SEL_BIT
00370  * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
00371  */
00372 uint8_t MPU6050::getFullScaleAccelRange()
00373 {
00374     i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
00375     return buffer[0];
00376 }
00377 /** Set full-scale accelerometer range.
00378  * @param range New full-scale accelerometer range setting
00379  * @see getFullScaleAccelRange()
00380  */
00381 void MPU6050::setFullScaleAccelRange(uint8_t range)
00382 {
00383     i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
00384 }
00385 /** Get the high-pass filter configuration.
00386  * The DHPF is a filter module in the path leading to motion detectors (Free
00387  * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
00388  * available to the data registers (see Figure in Section 8 of the MPU-6000/
00389  * MPU-6050 Product Specification document).
00390  *
00391  * The high pass filter has three modes:
00392  *
00393  * <pre>
00394  *    Reset: The filter output settles to zero within one sample. This
00395  *           effectively disables the high pass filter. This mode may be toggled
00396  *           to quickly settle the filter.
00397  *
00398  *    On:    The high pass filter will pass signals above the cut off frequency.
00399  *
00400  *    Hold:  When triggered, the filter holds the present sample. The filter
00401  *           output will be the difference between the input sample and the held
00402  *           sample.
00403  * </pre>
00404  *
00405  * <pre>
00406  * ACCEL_HPF | Filter Mode | Cut-off Frequency
00407  * ----------+-------------+------------------
00408  * 0         | Reset       | None
00409  * 1         | On          | 5Hz
00410  * 2         | On          | 2.5Hz
00411  * 3         | On          | 1.25Hz
00412  * 4         | On          | 0.63Hz
00413  * 7         | Hold        | None
00414  * </pre>
00415  *
00416  * @return Current high-pass filter configuration
00417  * @see MPU6050_DHPF_RESET
00418  * @see MPU6050_RA_ACCEL_CONFIG
00419  */
00420 uint8_t MPU6050::getDHPFMode()
00421 {
00422     i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
00423     return buffer[0];
00424 }
00425 /** Set the high-pass filter configuration.
00426  * @param bandwidth New high-pass filter configuration
00427  * @see setDHPFMode()
00428  * @see MPU6050_DHPF_RESET
00429  * @see MPU6050_RA_ACCEL_CONFIG
00430  */
00431 void MPU6050::setDHPFMode(uint8_t bandwidth)
00432 {
00433     i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
00434 }
00435 
00436 // FF_THR register
00437 
00438 /** Get free-fall event acceleration threshold.
00439  * This register configures the detection threshold for Free Fall event
00440  * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
00441  * absolute value of the accelerometer measurements for the three axes are each
00442  * less than the detection threshold. This condition increments the Free Fall
00443  * duration counter (Register 30). The Free Fall interrupt is triggered when the
00444  * Free Fall duration counter reaches the time specified in FF_DUR.
00445  *
00446  * For more details on the Free Fall detection interrupt, see Section 8.2 of the
00447  * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
00448  * 58 of this document.
00449  *
00450  * @return Current free-fall acceleration threshold value (LSB = 2mg)
00451  * @see MPU6050_RA_FF_THR
00452  */
00453 uint8_t MPU6050::getFreefallDetectionThreshold()
00454 {
00455     i2Cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
00456     return buffer[0];
00457 }
00458 /** Get free-fall event acceleration threshold.
00459  * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
00460  * @see getFreefallDetectionThreshold()
00461  * @see MPU6050_RA_FF_THR
00462  */
00463 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold)
00464 {
00465     i2Cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
00466 }
00467 
00468 // FF_DUR register
00469 
00470 /** Get free-fall event duration threshold.
00471  * This register configures the duration counter threshold for Free Fall event
00472  * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
00473  * of 1 LSB = 1 ms.
00474  *
00475  * The Free Fall duration counter increments while the absolute value of the
00476  * accelerometer measurements are each less than the detection threshold
00477  * (Register 29). The Free Fall interrupt is triggered when the Free Fall
00478  * duration counter reaches the time specified in this register.
00479  *
00480  * For more details on the Free Fall detection interrupt, see Section 8.2 of
00481  * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
00482  * and 58 of this document.
00483  *
00484  * @return Current free-fall duration threshold value (LSB = 1ms)
00485  * @see MPU6050_RA_FF_DUR
00486  */
00487 uint8_t MPU6050::getFreefallDetectionDuration()
00488 {
00489     i2Cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
00490     return buffer[0];
00491 }
00492 /** Get free-fall event duration threshold.
00493  * @param duration New free-fall duration threshold value (LSB = 1ms)
00494  * @see getFreefallDetectionDuration()
00495  * @see MPU6050_RA_FF_DUR
00496  */
00497 void MPU6050::setFreefallDetectionDuration(uint8_t duration)
00498 {
00499     i2Cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
00500 }
00501 
00502 // MOT_THR register
00503 
00504 /** Get motion detection event acceleration threshold.
00505  * This register configures the detection threshold for Motion interrupt
00506  * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
00507  * absolute value of any of the accelerometer measurements exceeds this Motion
00508  * detection threshold. This condition increments the Motion detection duration
00509  * counter (Register 32). The Motion detection interrupt is triggered when the
00510  * Motion Detection counter reaches the time count specified in MOT_DUR
00511  * (Register 32).
00512  *
00513  * The Motion interrupt will indicate the axis and polarity of detected motion
00514  * in MOT_DETECT_STATUS (Register 97).
00515  *
00516  * For more details on the Motion detection interrupt, see Section 8.3 of the
00517  * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
00518  * 58 of this document.
00519  *
00520  * @return Current motion detection acceleration threshold value (LSB = 2mg)
00521  * @see MPU6050_RA_MOT_THR
00522  */
00523 uint8_t MPU6050::getMotionDetectionThreshold()
00524 {
00525     i2Cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
00526     return buffer[0];
00527 }
00528 /** Set free-fall event acceleration threshold.
00529  * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
00530  * @see getMotionDetectionThreshold()
00531  * @see MPU6050_RA_MOT_THR
00532  */
00533 void MPU6050::setMotionDetectionThreshold(uint8_t threshold)
00534 {
00535     i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
00536 }
00537 
00538 // MOT_DUR register
00539 
00540 /** Get motion detection event duration threshold.
00541  * This register configures the duration counter threshold for Motion interrupt
00542  * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
00543  * of 1LSB = 1ms. The Motion detection duration counter increments when the
00544  * absolute value of any of the accelerometer measurements exceeds the Motion
00545  * detection threshold (Register 31). The Motion detection interrupt is
00546  * triggered when the Motion detection counter reaches the time count specified
00547  * in this register.
00548  *
00549  * For more details on the Motion detection interrupt, see Section 8.3 of the
00550  * MPU-6000/MPU-6050 Product Specification document.
00551  *
00552  * @return Current motion detection duration threshold value (LSB = 1ms)
00553  * @see MPU6050_RA_MOT_DUR
00554  */
00555 uint8_t MPU6050::getMotionDetectionDuration()
00556 {
00557     i2Cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
00558     return buffer[0];
00559 }
00560 /** Set motion detection event duration threshold.
00561  * @param duration New motion detection duration threshold value (LSB = 1ms)
00562  * @see getMotionDetectionDuration()
00563  * @see MPU6050_RA_MOT_DUR
00564  */
00565 void MPU6050::setMotionDetectionDuration(uint8_t duration)
00566 {
00567     i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
00568 }
00569 
00570 // ZRMOT_THR register
00571 
00572 /** Get zero motion detection event acceleration threshold.
00573  * This register configures the detection threshold for Zero Motion interrupt
00574  * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
00575  * the absolute value of the accelerometer measurements for the 3 axes are each
00576  * less than the detection threshold. This condition increments the Zero Motion
00577  * duration counter (Register 34). The Zero Motion interrupt is triggered when
00578  * the Zero Motion duration counter reaches the time count specified in
00579  * ZRMOT_DUR (Register 34).
00580  *
00581  * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
00582  * interrupt both when Zero Motion is first detected and when Zero Motion is no
00583  * longer detected.
00584  *
00585  * When a zero motion event is detected, a Zero Motion Status will be indicated
00586  * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
00587  * condition is detected, the status bit is set to 1. When a zero-motion-to-
00588  * motion condition is detected, the status bit is set to 0.
00589  *
00590  * For more details on the Zero Motion detection interrupt, see Section 8.4 of
00591  * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
00592  * and 58 of this document.
00593  *
00594  * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
00595  * @see MPU6050_RA_ZRMOT_THR
00596  */
00597 uint8_t MPU6050::getZeroMotionDetectionThreshold()
00598 {
00599     i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
00600     return buffer[0];
00601 }
00602 /** Set zero motion detection event acceleration threshold.
00603  * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
00604  * @see getZeroMotionDetectionThreshold()
00605  * @see MPU6050_RA_ZRMOT_THR
00606  */
00607 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold)
00608 {
00609     i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
00610 }
00611 
00612 // ZRMOT_DUR register
00613 
00614 /** Get zero motion detection event duration threshold.
00615  * This register configures the duration counter threshold for Zero Motion
00616  * interrupt generation. The duration counter ticks at 16 Hz, therefore
00617  * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
00618  * increments while the absolute value of the accelerometer measurements are
00619  * each less than the detection threshold (Register 33). The Zero Motion
00620  * interrupt is triggered when the Zero Motion duration counter reaches the time
00621  * count specified in this register.
00622  *
00623  * For more details on the Zero Motion detection interrupt, see Section 8.4 of
00624  * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
00625  * and 58 of this document.
00626  *
00627  * @return Current zero motion detection duration threshold value (LSB = 64ms)
00628  * @see MPU6050_RA_ZRMOT_DUR
00629  */
00630 uint8_t MPU6050::getZeroMotionDetectionDuration()
00631 {
00632     i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
00633     return buffer[0];
00634 }
00635 /** Set zero motion detection event duration threshold.
00636  * @param duration New zero motion detection duration threshold value (LSB = 1ms)
00637  * @see getZeroMotionDetectionDuration()
00638  * @see MPU6050_RA_ZRMOT_DUR
00639  */
00640 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration)
00641 {
00642     i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
00643 }
00644 
00645 // FIFO_EN register
00646 
00647 /** Get temperature FIFO enabled value.
00648  * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
00649  * 66) to be written into the FIFO buffer.
00650  * @return Current temperature FIFO enabled value
00651  * @see MPU6050_RA_FIFO_EN
00652  */
00653 bool MPU6050::getTempFIFOEnabled()
00654 {
00655     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
00656     return buffer[0];
00657 }
00658 /** Set temperature FIFO enabled value.
00659  * @param enabled New temperature FIFO enabled value
00660  * @see getTempFIFOEnabled()
00661  * @see MPU6050_RA_FIFO_EN
00662  */
00663 void MPU6050::setTempFIFOEnabled(bool enabled)
00664 {
00665     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
00666 }
00667 /** Get gyroscope X-axis FIFO enabled value.
00668  * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
00669  * 68) to be written into the FIFO buffer.
00670  * @return Current gyroscope X-axis FIFO enabled value
00671  * @see MPU6050_RA_FIFO_EN
00672  */
00673 bool MPU6050::getXGyroFIFOEnabled()
00674 {
00675     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
00676     return buffer[0];
00677 }
00678 /** Set gyroscope X-axis FIFO enabled value.
00679  * @param enabled New gyroscope X-axis FIFO enabled value
00680  * @see getXGyroFIFOEnabled()
00681  * @see MPU6050_RA_FIFO_EN
00682  */
00683 void MPU6050::setXGyroFIFOEnabled(bool enabled)
00684 {
00685     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
00686 }
00687 /** Get gyroscope Y-axis FIFO enabled value.
00688  * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
00689  * 70) to be written into the FIFO buffer.
00690  * @return Current gyroscope Y-axis FIFO enabled value
00691  * @see MPU6050_RA_FIFO_EN
00692  */
00693 bool MPU6050::getYGyroFIFOEnabled()
00694 {
00695     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
00696     return buffer[0];
00697 }
00698 /** Set gyroscope Y-axis FIFO enabled value.
00699  * @param enabled New gyroscope Y-axis FIFO enabled value
00700  * @see getYGyroFIFOEnabled()
00701  * @see MPU6050_RA_FIFO_EN
00702  */
00703 void MPU6050::setYGyroFIFOEnabled(bool enabled)
00704 {
00705     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
00706 }
00707 /** Get gyroscope Z-axis FIFO enabled value.
00708  * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
00709  * 72) to be written into the FIFO buffer.
00710  * @return Current gyroscope Z-axis FIFO enabled value
00711  * @see MPU6050_RA_FIFO_EN
00712  */
00713 bool MPU6050::getZGyroFIFOEnabled()
00714 {
00715     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
00716     return buffer[0];
00717 }
00718 /** Set gyroscope Z-axis FIFO enabled value.
00719  * @param enabled New gyroscope Z-axis FIFO enabled value
00720  * @see getZGyroFIFOEnabled()
00721  * @see MPU6050_RA_FIFO_EN
00722  */
00723 void MPU6050::setZGyroFIFOEnabled(bool enabled)
00724 {
00725     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
00726 }
00727 /** Get accelerometer FIFO enabled value.
00728  * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
00729  * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
00730  * written into the FIFO buffer.
00731  * @return Current accelerometer FIFO enabled value
00732  * @see MPU6050_RA_FIFO_EN
00733  */
00734 bool MPU6050::getAccelFIFOEnabled()
00735 {
00736     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
00737     return buffer[0];
00738 }
00739 /** Set accelerometer FIFO enabled value.
00740  * @param enabled New accelerometer FIFO enabled value
00741  * @see getAccelFIFOEnabled()
00742  * @see MPU6050_RA_FIFO_EN
00743  */
00744 void MPU6050::setAccelFIFOEnabled(bool enabled)
00745 {
00746     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
00747 }
00748 /** Get Slave 2 FIFO enabled value.
00749  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00750  * associated with Slave 2 to be written into the FIFO buffer.
00751  * @return Current Slave 2 FIFO enabled value
00752  * @see MPU6050_RA_FIFO_EN
00753  */
00754 bool MPU6050::getSlave2FIFOEnabled()
00755 {
00756     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
00757     return buffer[0];
00758 }
00759 /** Set Slave 2 FIFO enabled value.
00760  * @param enabled New Slave 2 FIFO enabled value
00761  * @see getSlave2FIFOEnabled()
00762  * @see MPU6050_RA_FIFO_EN
00763  */
00764 void MPU6050::setSlave2FIFOEnabled(bool enabled)
00765 {
00766     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
00767 }
00768 /** Get Slave 1 FIFO enabled value.
00769  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00770  * associated with Slave 1 to be written into the FIFO buffer.
00771  * @return Current Slave 1 FIFO enabled value
00772  * @see MPU6050_RA_FIFO_EN
00773  */
00774 bool MPU6050::getSlave1FIFOEnabled()
00775 {
00776     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
00777     return buffer[0];
00778 }
00779 /** Set Slave 1 FIFO enabled value.
00780  * @param enabled New Slave 1 FIFO enabled value
00781  * @see getSlave1FIFOEnabled()
00782  * @see MPU6050_RA_FIFO_EN
00783  */
00784 void MPU6050::setSlave1FIFOEnabled(bool enabled)
00785 {
00786     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
00787 }
00788 /** Get Slave 0 FIFO enabled value.
00789  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00790  * associated with Slave 0 to be written into the FIFO buffer.
00791  * @return Current Slave 0 FIFO enabled value
00792  * @see MPU6050_RA_FIFO_EN
00793  */
00794 bool MPU6050::getSlave0FIFOEnabled()
00795 {
00796     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
00797     return buffer[0];
00798 }
00799 /** Set Slave 0 FIFO enabled value.
00800  * @param enabled New Slave 0 FIFO enabled value
00801  * @see getSlave0FIFOEnabled()
00802  * @see MPU6050_RA_FIFO_EN
00803  */
00804 void MPU6050::setSlave0FIFOEnabled(bool enabled)
00805 {
00806     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
00807 }
00808 
00809 // I2C_MST_CTRL register
00810 
00811 /** Get multi-master enabled value.
00812  * Multi-master capability allows multiple I2C masters to operate on the same
00813  * bus. In circuits where multi-master capability is required, set MULT_MST_EN
00814  * to 1. This will increase current drawn by approximately 30uA.
00815  *
00816  * In circuits where multi-master capability is required, the state of the I2C
00817  * bus must always be monitored by each separate I2C Master. Before an I2C
00818  * Master can assume arbitration of the bus, it must first confirm that no other
00819  * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
00820  * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
00821  * detect when the bus is available.
00822  *
00823  * @return Current multi-master enabled value
00824  * @see MPU6050_RA_I2C_MST_CTRL
00825  */
00826 bool MPU6050::getMultiMasterEnabled()
00827 {
00828     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
00829     return buffer[0];
00830 }
00831 /** Set multi-master enabled value.
00832  * @param enabled New multi-master enabled value
00833  * @see getMultiMasterEnabled()
00834  * @see MPU6050_RA_I2C_MST_CTRL
00835  */
00836 void MPU6050::setMultiMasterEnabled(bool enabled)
00837 {
00838     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
00839 }
00840 /** Get wait-for-external-sensor-data enabled value.
00841  * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
00842  * delayed until External Sensor data from the Slave Devices are loaded into the
00843  * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
00844  * data (i.e. from gyro and accel) and external sensor data have been loaded to
00845  * their respective data registers (i.e. the data is synced) when the Data Ready
00846  * interrupt is triggered.
00847  *
00848  * @return Current wait-for-external-sensor-data enabled value
00849  * @see MPU6050_RA_I2C_MST_CTRL
00850  */
00851 bool MPU6050::getWaitForExternalSensorEnabled()
00852 {
00853     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
00854     return buffer[0];
00855 }
00856 /** Set wait-for-external-sensor-data enabled value.
00857  * @param enabled New wait-for-external-sensor-data enabled value
00858  * @see getWaitForExternalSensorEnabled()
00859  * @see MPU6050_RA_I2C_MST_CTRL
00860  */
00861 void MPU6050::setWaitForExternalSensorEnabled(bool enabled)
00862 {
00863     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
00864 }
00865 /** Get Slave 3 FIFO enabled value.
00866  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00867  * associated with Slave 3 to be written into the FIFO buffer.
00868  * @return Current Slave 3 FIFO enabled value
00869  * @see MPU6050_RA_MST_CTRL
00870  */
00871 bool MPU6050::getSlave3FIFOEnabled()
00872 {
00873     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
00874     return buffer[0];
00875 }
00876 /** Set Slave 3 FIFO enabled value.
00877  * @param enabled New Slave 3 FIFO enabled value
00878  * @see getSlave3FIFOEnabled()
00879  * @see MPU6050_RA_MST_CTRL
00880  */
00881 void MPU6050::setSlave3FIFOEnabled(bool enabled)
00882 {
00883     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
00884 }
00885 /** Get slave read/write transition enabled value.
00886  * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
00887  * read to the next slave read. If the bit equals 0, there will be a restart
00888  * between reads. If the bit equals 1, there will be a stop followed by a start
00889  * of the following read. When a write transaction follows a read transaction,
00890  * the stop followed by a start of the successive write will be always used.
00891  *
00892  * @return Current slave read/write transition enabled value
00893  * @see MPU6050_RA_I2C_MST_CTRL
00894  */
00895 bool MPU6050::getSlaveReadWriteTransitionEnabled()
00896 {
00897     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
00898     return buffer[0];
00899 }
00900 /** Set slave read/write transition enabled value.
00901  * @param enabled New slave read/write transition enabled value
00902  * @see getSlaveReadWriteTransitionEnabled()
00903  * @see MPU6050_RA_I2C_MST_CTRL
00904  */
00905 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled)
00906 {
00907     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
00908 }
00909 /** Get I2C master clock speed.
00910  * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
00911  * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
00912  * the following table:
00913  *
00914  * <pre>
00915  * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
00916  * ------------+------------------------+-------------------
00917  * 0           | 348kHz                 | 23
00918  * 1           | 333kHz                 | 24
00919  * 2           | 320kHz                 | 25
00920  * 3           | 308kHz                 | 26
00921  * 4           | 296kHz                 | 27
00922  * 5           | 286kHz                 | 28
00923  * 6           | 276kHz                 | 29
00924  * 7           | 267kHz                 | 30
00925  * 8           | 258kHz                 | 31
00926  * 9           | 500kHz                 | 16
00927  * 10          | 471kHz                 | 17
00928  * 11          | 444kHz                 | 18
00929  * 12          | 421kHz                 | 19
00930  * 13          | 400kHz                 | 20
00931  * 14          | 381kHz                 | 21
00932  * 15          | 364kHz                 | 22
00933  * </pre>
00934  *
00935  * @return Current I2C master clock speed
00936  * @see MPU6050_RA_I2C_MST_CTRL
00937  */
00938 uint8_t MPU6050::getMasterClockSpeed()
00939 {
00940     i2Cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
00941     return buffer[0];
00942 }
00943 /** Set I2C master clock speed.
00944  * @reparam speed Current I2C master clock speed
00945  * @see MPU6050_RA_I2C_MST_CTRL
00946  */
00947 void MPU6050::setMasterClockSpeed(uint8_t speed)
00948 {
00949     i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
00950 }
00951 
00952 // I2C_SLV* registers (Slave 0-3)
00953 
00954 /** Get the I2C address of the specified slave (0-3).
00955  * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
00956  * operation, and if it is cleared, then it's a write operation. The remaining
00957  * bits (6-0) are the 7-bit device address of the slave device.
00958  *
00959  * In read mode, the result of the read is placed in the lowest available
00960  * EXT_SENS_DATA register. For further information regarding the allocation of
00961  * read results, please refer to the EXT_SENS_DATA register description
00962  * (Registers 73 - 96).
00963  *
00964  * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
00965  * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
00966  *
00967  * I2C data transactions are performed at the Sample Rate, as defined in
00968  * Register 25. The user is responsible for ensuring that I2C data transactions
00969  * to and from each enabled Slave can be completed within a single period of the
00970  * Sample Rate.
00971  *
00972  * The I2C slave access rate can be reduced relative to the Sample Rate. This
00973  * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
00974  * slave's access rate is reduced relative to the Sample Rate is determined by
00975  * I2C_MST_DELAY_CTRL (Register 103).
00976  *
00977  * The processing order for the slaves is fixed. The sequence followed for
00978  * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
00979  * particular Slave is disabled it will be skipped.
00980  *
00981  * Each slave can either be accessed at the sample rate or at a reduced sample
00982  * rate. In a case where some slaves are accessed at the Sample Rate and some
00983  * slaves are accessed at the reduced rate, the sequence of accessing the slaves
00984  * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
00985  * be skipped if their access rate dictates that they should not be accessed
00986  * during that particular cycle. For further information regarding the reduced
00987  * access rate, please refer to Register 52. Whether a slave is accessed at the
00988  * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
00989  * Register 103.
00990  *
00991  * @param num Slave number (0-3)
00992  * @return Current address for specified slave
00993  * @see MPU6050_RA_I2C_SLV0_ADDR
00994  */
00995 uint8_t MPU6050::getSlaveAddress(uint8_t num)
00996 {
00997     if (num > 3) return 0;
00998     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
00999     return buffer[0];
01000 }
01001 /** Set the I2C address of the specified slave (0-3).
01002  * @param num Slave number (0-3)
01003  * @param address New address for specified slave
01004  * @see getSlaveAddress()
01005  * @see MPU6050_RA_I2C_SLV0_ADDR
01006  */
01007 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address)
01008 {
01009     if (num > 3) return;
01010     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
01011 }
01012 /** Get the active internal register for the specified slave (0-3).
01013  * Read/write operations for this slave will be done to whatever internal
01014  * register address is stored in this MPU register.
01015  *
01016  * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
01017  * characteristics, and so it has its own functions.
01018  *
01019  * @param num Slave number (0-3)
01020  * @return Current active register for specified slave
01021  * @see MPU6050_RA_I2C_SLV0_REG
01022  */
01023 uint8_t MPU6050::getSlaveRegister(uint8_t num)
01024 {
01025     if (num > 3) return 0;
01026     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
01027     return buffer[0];
01028 }
01029 /** Set the active internal register for the specified slave (0-3).
01030  * @param num Slave number (0-3)
01031  * @param reg New active register for specified slave
01032  * @see getSlaveRegister()
01033  * @see MPU6050_RA_I2C_SLV0_REG
01034  */
01035 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg)
01036 {
01037     if (num > 3) return;
01038     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
01039 }
01040 /** Get the enabled value for the specified slave (0-3).
01041  * When set to 1, this bit enables Slave 0 for data transfer operations. When
01042  * cleared to 0, this bit disables Slave 0 from data transfer operations.
01043  * @param num Slave number (0-3)
01044  * @return Current enabled value for specified slave
01045  * @see MPU6050_RA_I2C_SLV0_CTRL
01046  */
01047 bool MPU6050::getSlaveEnabled(uint8_t num)
01048 {
01049     if (num > 3) return 0;
01050     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
01051     return buffer[0];
01052 }
01053 /** Set the enabled value for the specified slave (0-3).
01054  * @param num Slave number (0-3)
01055  * @param enabled New enabled value for specified slave 
01056  * @see getSlaveEnabled()
01057  * @see MPU6050_RA_I2C_SLV0_CTRL
01058  */
01059 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled)
01060 {
01061     if (num > 3) return;
01062     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
01063 }
01064 /** Get word pair byte-swapping enabled for the specified slave (0-3).
01065  * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
01066  * the high and low bytes of a word pair are swapped. Please refer to
01067  * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
01068  * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
01069  * registers in the order they were transferred.
01070  *
01071  * @param num Slave number (0-3)
01072  * @return Current word pair byte-swapping enabled value for specified slave
01073  * @see MPU6050_RA_I2C_SLV0_CTRL
01074  */
01075 bool MPU6050::getSlaveWordByteSwap(uint8_t num)
01076 {
01077     if (num > 3) return 0;
01078     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
01079     return buffer[0];
01080 }
01081 /** Set word pair byte-swapping enabled for the specified slave (0-3).
01082  * @param num Slave number (0-3)
01083  * @param enabled New word pair byte-swapping enabled value for specified slave
01084  * @see getSlaveWordByteSwap()
01085  * @see MPU6050_RA_I2C_SLV0_CTRL
01086  */
01087 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled)
01088 {
01089     if (num > 3) return;
01090     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
01091 }
01092 /** Get write mode for the specified slave (0-3).
01093  * When set to 1, the transaction will read or write data only. When cleared to
01094  * 0, the transaction will write a register address prior to reading or writing
01095  * data. This should equal 0 when specifying the register address within the
01096  * Slave device to/from which the ensuing data transaction will take place.
01097  *
01098  * @param num Slave number (0-3)
01099  * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
01100  * @see MPU6050_RA_I2C_SLV0_CTRL
01101  */
01102 bool MPU6050::getSlaveWriteMode(uint8_t num)
01103 {
01104     if (num > 3) return 0;
01105     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
01106     return buffer[0];
01107 }
01108 /** Set write mode for the specified slave (0-3).
01109  * @param num Slave number (0-3)
01110  * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
01111  * @see getSlaveWriteMode()
01112  * @see MPU6050_RA_I2C_SLV0_CTRL
01113  */
01114 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode)
01115 {
01116     if (num > 3) return;
01117     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
01118 }
01119 /** Get word pair grouping order offset for the specified slave (0-3).
01120  * This sets specifies the grouping order of word pairs received from registers.
01121  * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
01122  * then odd register addresses) are paired to form a word. When set to 1, bytes
01123  * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
01124  * register addresses) are paired to form a word.
01125  *
01126  * @param num Slave number (0-3)
01127  * @return Current word pair grouping order offset for specified slave
01128  * @see MPU6050_RA_I2C_SLV0_CTRL
01129  */
01130 bool MPU6050::getSlaveWordGroupOffset(uint8_t num)
01131 {
01132     if (num > 3) return 0;
01133     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
01134     return buffer[0];
01135 }
01136 /** Set word pair grouping order offset for the specified slave (0-3).
01137  * @param num Slave number (0-3)
01138  * @param enabled New word pair grouping order offset for specified slave
01139  * @see getSlaveWordGroupOffset()
01140  * @see MPU6050_RA_I2C_SLV0_CTRL
01141  */
01142 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled)
01143 {
01144     if (num > 3) return;
01145     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
01146 }
01147 /** Get number of bytes to read for the specified slave (0-3).
01148  * Specifies the number of bytes transferred to and from Slave 0. Clearing this
01149  * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
01150  * @param num Slave number (0-3)
01151  * @return Number of bytes to read for specified slave
01152  * @see MPU6050_RA_I2C_SLV0_CTRL
01153  */
01154 uint8_t MPU6050::getSlaveDataLength(uint8_t num)
01155 {
01156     if (num > 3) return 0;
01157     i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
01158     return buffer[0];
01159 }
01160 /** Set number of bytes to read for the specified slave (0-3).
01161  * @param num Slave number (0-3)
01162  * @param length Number of bytes to read for specified slave
01163  * @see getSlaveDataLength()
01164  * @see MPU6050_RA_I2C_SLV0_CTRL
01165  */
01166 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length)
01167 {
01168     if (num > 3) return;
01169     i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
01170 }
01171 
01172 // I2C_SLV* registers (Slave 4)
01173 
01174 /** Get the I2C address of Slave 4.
01175  * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
01176  * operation, and if it is cleared, then it's a write operation. The remaining
01177  * bits (6-0) are the 7-bit device address of the slave device.
01178  *
01179  * @return Current address for Slave 4
01180  * @see getSlaveAddress()
01181  * @see MPU6050_RA_I2C_SLV4_ADDR
01182  */
01183 uint8_t MPU6050::getSlave4Address()
01184 {
01185     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
01186     return buffer[0];
01187 }
01188 /** Set the I2C address of Slave 4.
01189  * @param address New address for Slave 4
01190  * @see getSlave4Address()
01191  * @see MPU6050_RA_I2C_SLV4_ADDR
01192  */
01193 void MPU6050::setSlave4Address(uint8_t address)
01194 {
01195     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
01196 }
01197 /** Get the active internal register for the Slave 4.
01198  * Read/write operations for this slave will be done to whatever internal
01199  * register address is stored in this MPU register.
01200  *
01201  * @return Current active register for Slave 4
01202  * @see MPU6050_RA_I2C_SLV4_REG
01203  */
01204 uint8_t MPU6050::getSlave4Register()
01205 {
01206     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
01207     return buffer[0];
01208 }
01209 /** Set the active internal register for Slave 4.
01210  * @param reg New active register for Slave 4
01211  * @see getSlave4Register()
01212  * @see MPU6050_RA_I2C_SLV4_REG
01213  */
01214 void MPU6050::setSlave4Register(uint8_t reg)
01215 {
01216     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
01217 }
01218 /** Set new byte to write to Slave 4.
01219  * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
01220  * is set 1 (set to read), this register has no effect.
01221  * @param data New byte to write to Slave 4
01222  * @see MPU6050_RA_I2C_SLV4_DO
01223  */
01224 void MPU6050::setSlave4OutputByte(uint8_t data)
01225 {
01226     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
01227 }
01228 /** Get the enabled value for the Slave 4.
01229  * When set to 1, this bit enables Slave 4 for data transfer operations. When
01230  * cleared to 0, this bit disables Slave 4 from data transfer operations.
01231  * @return Current enabled value for Slave 4
01232  * @see MPU6050_RA_I2C_SLV4_CTRL
01233  */
01234 bool MPU6050::getSlave4Enabled()
01235 {
01236     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
01237     return buffer[0];
01238 }
01239 /** Set the enabled value for Slave 4.
01240  * @param enabled New enabled value for Slave 4
01241  * @see getSlave4Enabled()
01242  * @see MPU6050_RA_I2C_SLV4_CTRL
01243  */
01244 void MPU6050::setSlave4Enabled(bool enabled)
01245 {
01246     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
01247 }
01248 /** Get the enabled value for Slave 4 transaction interrupts.
01249  * When set to 1, this bit enables the generation of an interrupt signal upon
01250  * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
01251  * generation of an interrupt signal upon completion of a Slave 4 transaction.
01252  * The interrupt status can be observed in Register 54.
01253  *
01254  * @return Current enabled value for Slave 4 transaction interrupts.
01255  * @see MPU6050_RA_I2C_SLV4_CTRL
01256  */
01257 bool MPU6050::getSlave4InterruptEnabled()
01258 {
01259     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
01260     return buffer[0];
01261 }
01262 /** Set the enabled value for Slave 4 transaction interrupts.
01263  * @param enabled New enabled value for Slave 4 transaction interrupts.
01264  * @see getSlave4InterruptEnabled()
01265  * @see MPU6050_RA_I2C_SLV4_CTRL
01266  */
01267 void MPU6050::setSlave4InterruptEnabled(bool enabled)
01268 {
01269     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
01270 }
01271 /** Get write mode for Slave 4.
01272  * When set to 1, the transaction will read or write data only. When cleared to
01273  * 0, the transaction will write a register address prior to reading or writing
01274  * data. This should equal 0 when specifying the register address within the
01275  * Slave device to/from which the ensuing data transaction will take place.
01276  *
01277  * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
01278  * @see MPU6050_RA_I2C_SLV4_CTRL
01279  */
01280 bool MPU6050::getSlave4WriteMode()
01281 {
01282     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
01283     return buffer[0];
01284 }
01285 /** Set write mode for the Slave 4.
01286  * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
01287  * @see getSlave4WriteMode()
01288  * @see MPU6050_RA_I2C_SLV4_CTRL
01289  */
01290 void MPU6050::setSlave4WriteMode(bool mode)
01291 {
01292     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
01293 }
01294 /** Get Slave 4 master delay value.
01295  * This configures the reduced access rate of I2C slaves relative to the Sample
01296  * Rate. When a slave's access rate is decreased relative to the Sample Rate,
01297  * the slave is accessed every:
01298  *
01299  *     1 / (1 + I2C_MST_DLY) samples
01300  *
01301  * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
01302  * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
01303  * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
01304  * further information regarding the Sample Rate, please refer to register 25.
01305  *
01306  * @return Current Slave 4 master delay value
01307  * @see MPU6050_RA_I2C_SLV4_CTRL
01308  */
01309 uint8_t MPU6050::getSlave4MasterDelay()
01310 {
01311     i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
01312     return buffer[0];
01313 }
01314 /** Set Slave 4 master delay value.
01315  * @param delay New Slave 4 master delay value
01316  * @see getSlave4MasterDelay()
01317  * @see MPU6050_RA_I2C_SLV4_CTRL
01318  */
01319 void MPU6050::setSlave4MasterDelay(uint8_t delay)
01320 {
01321     i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
01322 }
01323 /** Get last available byte read from Slave 4.
01324  * This register stores the data read from Slave 4. This field is populated
01325  * after a read transaction.
01326  * @return Last available byte read from to Slave 4
01327  * @see MPU6050_RA_I2C_SLV4_DI
01328  */
01329 uint8_t MPU6050::getSlate4InputByte()
01330 {
01331     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
01332     return buffer[0];
01333 }
01334 
01335 // I2C_MST_STATUS register
01336 
01337 /** Get FSYNC interrupt status.
01338  * This bit reflects the status of the FSYNC interrupt from an external device
01339  * into the MPU-60X0. This is used as a way to pass an external interrupt
01340  * through the MPU-60X0 to the host application processor. When set to 1, this
01341  * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
01342  * (Register 55).
01343  * @return FSYNC interrupt status
01344  * @see MPU6050_RA_I2C_MST_STATUS
01345  */
01346 bool MPU6050::getPassthroughStatus()
01347 {
01348     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
01349     return buffer[0];
01350 }
01351 /** Get Slave 4 transaction done status.
01352  * Automatically sets to 1 when a Slave 4 transaction has completed. This
01353  * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
01354  * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
01355  * I2C_SLV4_CTRL register (Register 52).
01356  * @return Slave 4 transaction done status
01357  * @see MPU6050_RA_I2C_MST_STATUS
01358  */
01359 bool MPU6050::getSlave4IsDone()
01360 {
01361     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
01362     return buffer[0];
01363 }
01364 /** Get master arbitration lost status.
01365  * This bit automatically sets to 1 when the I2C Master has lost arbitration of
01366  * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
01367  * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
01368  * @return Master arbitration lost status
01369  * @see MPU6050_RA_I2C_MST_STATUS
01370  */
01371 bool MPU6050::getLostArbitration()
01372 {
01373     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
01374     return buffer[0];
01375 }
01376 /** Get Slave 4 NACK status.
01377  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01378  * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
01379  * bit in the INT_ENABLE register (Register 56) is asserted.
01380  * @return Slave 4 NACK interrupt status
01381  * @see MPU6050_RA_I2C_MST_STATUS
01382  */
01383 bool MPU6050::getSlave4Nack()
01384 {
01385     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
01386     return buffer[0];
01387 }
01388 /** Get Slave 3 NACK status.
01389  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01390  * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
01391  * bit in the INT_ENABLE register (Register 56) is asserted.
01392  * @return Slave 3 NACK interrupt status
01393  * @see MPU6050_RA_I2C_MST_STATUS
01394  */
01395 bool MPU6050::getSlave3Nack()
01396 {
01397     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
01398     return buffer[0];
01399 }
01400 /** Get Slave 2 NACK status.
01401  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01402  * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
01403  * bit in the INT_ENABLE register (Register 56) is asserted.
01404  * @return Slave 2 NACK interrupt status
01405  * @see MPU6050_RA_I2C_MST_STATUS
01406  */
01407 bool MPU6050::getSlave2Nack()
01408 {
01409     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
01410     return buffer[0];
01411 }
01412 /** Get Slave 1 NACK status.
01413  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01414  * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
01415  * bit in the INT_ENABLE register (Register 56) is asserted.
01416  * @return Slave 1 NACK interrupt status
01417  * @see MPU6050_RA_I2C_MST_STATUS
01418  */
01419 bool MPU6050::getSlave1Nack()
01420 {
01421     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
01422     return buffer[0];
01423 }
01424 /** Get Slave 0 NACK status.
01425  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01426  * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
01427  * bit in the INT_ENABLE register (Register 56) is asserted.
01428  * @return Slave 0 NACK interrupt status
01429  * @see MPU6050_RA_I2C_MST_STATUS
01430  */
01431 bool MPU6050::getSlave0Nack()
01432 {
01433     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
01434     return buffer[0];
01435 }
01436 
01437 // INT_PIN_CFG register
01438 
01439 /** Get interrupt logic level mode.
01440  * Will be set 0 for active-high, 1 for active-low.
01441  * @return Current interrupt mode (0=active-high, 1=active-low)
01442  * @see MPU6050_RA_INT_PIN_CFG
01443  * @see MPU6050_INTCFG_INT_LEVEL_BIT
01444  */
01445 bool MPU6050::getInterruptMode()
01446 {
01447     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
01448     return buffer[0];
01449 }
01450 /** Set interrupt logic level mode.
01451  * @param mode New interrupt mode (0=active-high, 1=active-low)
01452  * @see getInterruptMode()
01453  * @see MPU6050_RA_INT_PIN_CFG
01454  * @see MPU6050_INTCFG_INT_LEVEL_BIT
01455  */
01456 void MPU6050::setInterruptMode(bool mode)
01457 {
01458     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
01459 }
01460 /** Get interrupt drive mode.
01461  * Will be set 0 for push-pull, 1 for open-drain.
01462  * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
01463  * @see MPU6050_RA_INT_PIN_CFG
01464  * @see MPU6050_INTCFG_INT_OPEN_BIT
01465  */
01466 bool MPU6050::getInterruptDrive()
01467 {
01468     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
01469     return buffer[0];
01470 }
01471 /** Set interrupt drive mode.
01472  * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
01473  * @see getInterruptDrive()
01474  * @see MPU6050_RA_INT_PIN_CFG
01475  * @see MPU6050_INTCFG_INT_OPEN_BIT
01476  */
01477 void MPU6050::setInterruptDrive(bool drive)
01478 {
01479     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
01480 }
01481 /** Get interrupt latch mode.
01482  * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
01483  * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
01484  * @see MPU6050_RA_INT_PIN_CFG
01485  * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
01486  */
01487 bool MPU6050::getInterruptLatch()
01488 {
01489     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
01490     return buffer[0];
01491 }
01492 /** Set interrupt latch mode.
01493  * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
01494  * @see getInterruptLatch()
01495  * @see MPU6050_RA_INT_PIN_CFG
01496  * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
01497  */
01498 void MPU6050::setInterruptLatch(bool latch)
01499 {
01500     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
01501 }
01502 /** Get interrupt latch clear mode.
01503  * Will be set 0 for status-read-only, 1 for any-register-read.
01504  * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
01505  * @see MPU6050_RA_INT_PIN_CFG
01506  * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
01507  */
01508 bool MPU6050::getInterruptLatchClear()
01509 {
01510     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
01511     return buffer[0];
01512 }
01513 /** Set interrupt latch clear mode.
01514  * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
01515  * @see getInterruptLatchClear()
01516  * @see MPU6050_RA_INT_PIN_CFG
01517  * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
01518  */
01519 void MPU6050::setInterruptLatchClear(bool clear)
01520 {
01521     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
01522 }
01523 /** Get FSYNC interrupt logic level mode.
01524  * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
01525  * @see getFSyncInterruptMode()
01526  * @see MPU6050_RA_INT_PIN_CFG
01527  * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
01528  */
01529 bool MPU6050::getFSyncInterruptLevel()
01530 {
01531     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
01532     return buffer[0];
01533 }
01534 /** Set FSYNC interrupt logic level mode.
01535  * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
01536  * @see getFSyncInterruptMode()
01537  * @see MPU6050_RA_INT_PIN_CFG
01538  * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
01539  */
01540 void MPU6050::setFSyncInterruptLevel(bool level)
01541 {
01542     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
01543 }
01544 /** Get FSYNC pin interrupt enabled setting.
01545  * Will be set 0 for disabled, 1 for enabled.
01546  * @return Current interrupt enabled setting
01547  * @see MPU6050_RA_INT_PIN_CFG
01548  * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
01549  */
01550 bool MPU6050::getFSyncInterruptEnabled()
01551 {
01552     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
01553     return buffer[0];
01554 }
01555 /** Set FSYNC pin interrupt enabled setting.
01556  * @param enabled New FSYNC pin interrupt enabled setting
01557  * @see getFSyncInterruptEnabled()
01558  * @see MPU6050_RA_INT_PIN_CFG
01559  * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
01560  */
01561 void MPU6050::setFSyncInterruptEnabled(bool enabled)
01562 {
01563     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
01564 }
01565 /** Get I2C bypass enabled status.
01566  * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
01567  * 0, the host application processor will be able to directly access the
01568  * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
01569  * application processor will not be able to directly access the auxiliary I2C
01570  * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
01571  * bit[5]).
01572  * @return Current I2C bypass enabled status
01573  * @see MPU6050_RA_INT_PIN_CFG
01574  * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
01575  */
01576 bool MPU6050::getI2CBypassEnabled()
01577 {
01578     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
01579     return buffer[0];
01580 }
01581 /** Set I2C bypass enabled status.
01582  * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
01583  * 0, the host application processor will be able to directly access the
01584  * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
01585  * application processor will not be able to directly access the auxiliary I2C
01586  * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
01587  * bit[5]).
01588  * @param enabled New I2C bypass enabled status
01589  * @see MPU6050_RA_INT_PIN_CFG
01590  * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
01591  */
01592 void MPU6050::setI2CBypassEnabled(bool enabled)
01593 {
01594     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
01595 }
01596 /** Get reference clock output enabled status.
01597  * When this bit is equal to 1, a reference clock output is provided at the
01598  * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
01599  * further information regarding CLKOUT, please refer to the MPU-60X0 Product
01600  * Specification document.
01601  * @return Current reference clock output enabled status
01602  * @see MPU6050_RA_INT_PIN_CFG
01603  * @see MPU6050_INTCFG_CLKOUT_EN_BIT
01604  */
01605 bool MPU6050::getClockOutputEnabled()
01606 {
01607     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
01608     return buffer[0];
01609 }
01610 /** Set reference clock output enabled status.
01611  * When this bit is equal to 1, a reference clock output is provided at the
01612  * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
01613  * further information regarding CLKOUT, please refer to the MPU-60X0 Product
01614  * Specification document.
01615  * @param enabled New reference clock output enabled status
01616  * @see MPU6050_RA_INT_PIN_CFG
01617  * @see MPU6050_INTCFG_CLKOUT_EN_BIT
01618  */
01619 void MPU6050::setClockOutputEnabled(bool enabled)
01620 {
01621     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
01622 }
01623 
01624 // INT_ENABLE register
01625 
01626 /** Get full interrupt enabled status.
01627  * Full register byte for all interrupts, for quick reading. Each bit will be
01628  * set 0 for disabled, 1 for enabled.
01629  * @return Current interrupt enabled status
01630  * @see MPU6050_RA_INT_ENABLE
01631  * @see MPU6050_INTERRUPT_FF_BIT
01632  **/
01633 uint8_t MPU6050::getIntEnabled()
01634 {
01635     i2Cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
01636     return buffer[0];
01637 }
01638 /** Set full interrupt enabled status.
01639  * Full register byte for all interrupts, for quick reading. Each bit should be
01640  * set 0 for disabled, 1 for enabled.
01641  * @param enabled New interrupt enabled status
01642  * @see getIntFreefallEnabled()
01643  * @see MPU6050_RA_INT_ENABLE
01644  * @see MPU6050_INTERRUPT_FF_BIT
01645  **/
01646 void MPU6050::setIntEnabled(uint8_t enabled)
01647 {
01648     i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
01649 }
01650 /** Get Free Fall interrupt enabled status.
01651  * Will be set 0 for disabled, 1 for enabled.
01652  * @return Current interrupt enabled status
01653  * @see MPU6050_RA_INT_ENABLE
01654  * @see MPU6050_INTERRUPT_FF_BIT
01655  **/
01656 bool MPU6050::getIntFreefallEnabled()
01657 {
01658     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
01659     return buffer[0];
01660 }
01661 /** Set Free Fall interrupt enabled status.
01662  * @param enabled New interrupt enabled status
01663  * @see getIntFreefallEnabled()
01664  * @see MPU6050_RA_INT_ENABLE
01665  * @see MPU6050_INTERRUPT_FF_BIT
01666  **/
01667 void MPU6050::setIntFreefallEnabled(bool enabled)
01668 {
01669     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
01670 }
01671 /** Get Motion Detection interrupt enabled status.
01672  * Will be set 0 for disabled, 1 for enabled.
01673  * @return Current interrupt enabled status
01674  * @see MPU6050_RA_INT_ENABLE
01675  * @see MPU6050_INTERRUPT_MOT_BIT
01676  **/
01677 bool MPU6050::getIntMotionEnabled()
01678 {
01679     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
01680     return buffer[0];
01681 }
01682 /** Set Motion Detection interrupt enabled status.
01683  * @param enabled New interrupt enabled status
01684  * @see getIntMotionEnabled()
01685  * @see MPU6050_RA_INT_ENABLE
01686  * @see MPU6050_INTERRUPT_MOT_BIT
01687  **/
01688 void MPU6050::setIntMotionEnabled(bool enabled)
01689 {
01690     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
01691 }
01692 /** Get Zero Motion Detection interrupt enabled status.
01693  * Will be set 0 for disabled, 1 for enabled.
01694  * @return Current interrupt enabled status
01695  * @see MPU6050_RA_INT_ENABLE
01696  * @see MPU6050_INTERRUPT_ZMOT_BIT
01697  **/
01698 bool MPU6050::getIntZeroMotionEnabled()
01699 {
01700     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
01701     return buffer[0];
01702 }
01703 /** Set Zero Motion Detection interrupt enabled status.
01704  * @param enabled New interrupt enabled status
01705  * @see getIntZeroMotionEnabled()
01706  * @see MPU6050_RA_INT_ENABLE
01707  * @see MPU6050_INTERRUPT_ZMOT_BIT
01708  **/
01709 void MPU6050::setIntZeroMotionEnabled(bool enabled)
01710 {
01711     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
01712 }
01713 /** Get FIFO Buffer Overflow interrupt enabled status.
01714  * Will be set 0 for disabled, 1 for enabled.
01715  * @return Current interrupt enabled status
01716  * @see MPU6050_RA_INT_ENABLE
01717  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01718  **/
01719 bool MPU6050::getIntFIFOBufferOverflowEnabled()
01720 {
01721     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
01722     return buffer[0];
01723 }
01724 /** Set FIFO Buffer Overflow interrupt enabled status.
01725  * @param enabled New interrupt enabled status
01726  * @see getIntFIFOBufferOverflowEnabled()
01727  * @see MPU6050_RA_INT_ENABLE
01728  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01729  **/
01730 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled)
01731 {
01732     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
01733 }
01734 /** Get I2C Master interrupt enabled status.
01735  * This enables any of the I2C Master interrupt sources to generate an
01736  * interrupt. Will be set 0 for disabled, 1 for enabled.
01737  * @return Current interrupt enabled status
01738  * @see MPU6050_RA_INT_ENABLE
01739  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01740  **/
01741 bool MPU6050::getIntI2CMasterEnabled()
01742 {
01743     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
01744     return buffer[0];
01745 }
01746 /** Set I2C Master interrupt enabled status.
01747  * @param enabled New interrupt enabled status
01748  * @see getIntI2CMasterEnabled()
01749  * @see MPU6050_RA_INT_ENABLE
01750  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01751  **/
01752 void MPU6050::setIntI2CMasterEnabled(bool enabled)
01753 {
01754     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
01755 }
01756 /** Get Data Ready interrupt enabled setting.
01757  * This event occurs each time a write operation to all of the sensor registers
01758  * has been completed. Will be set 0 for disabled, 1 for enabled.
01759  * @return Current interrupt enabled status
01760  * @see MPU6050_RA_INT_ENABLE
01761  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01762  */
01763 bool MPU6050::getIntDataReadyEnabled()
01764 {
01765     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
01766     return buffer[0];
01767 }
01768 /** Set Data Ready interrupt enabled status.
01769  * @param enabled New interrupt enabled status
01770  * @see getIntDataReadyEnabled()
01771  * @see MPU6050_RA_INT_CFG
01772  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01773  */
01774 void MPU6050::setIntDataReadyEnabled(bool enabled)
01775 {
01776     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
01777 }
01778 
01779 // INT_STATUS register
01780 
01781 /** Get full set of interrupt status bits.
01782  * These bits clear to 0 after the register has been read. Very useful
01783  * for getting multiple INT statuses, since each single bit read clears
01784  * all of them because it has to read the whole byte.
01785  * @return Current interrupt status
01786  * @see MPU6050_RA_INT_STATUS
01787  */
01788 uint8_t MPU6050::getIntStatus()
01789 {
01790     i2Cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
01791     return buffer[0];
01792 }
01793 /** Get Free Fall interrupt status.
01794  * This bit automatically sets to 1 when a Free Fall interrupt has been
01795  * generated. The bit clears to 0 after the register has been read.
01796  * @return Current interrupt status
01797  * @see MPU6050_RA_INT_STATUS
01798  * @see MPU6050_INTERRUPT_FF_BIT
01799  */
01800 bool MPU6050::getIntFreefallStatus()
01801 {
01802     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
01803     return buffer[0];
01804 }
01805 /** Get Motion Detection interrupt status.
01806  * This bit automatically sets to 1 when a Motion Detection interrupt has been
01807  * generated. The bit clears to 0 after the register has been read.
01808  * @return Current interrupt status
01809  * @see MPU6050_RA_INT_STATUS
01810  * @see MPU6050_INTERRUPT_MOT_BIT
01811  */
01812 bool MPU6050::getIntMotionStatus()
01813 {
01814     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
01815     return buffer[0];
01816 }
01817 /** Get Zero Motion Detection interrupt status.
01818  * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
01819  * been generated. The bit clears to 0 after the register has been read.
01820  * @return Current interrupt status
01821  * @see MPU6050_RA_INT_STATUS
01822  * @see MPU6050_INTERRUPT_ZMOT_BIT
01823  */
01824 bool MPU6050::getIntZeroMotionStatus()
01825 {
01826     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
01827     return buffer[0];
01828 }
01829 /** Get FIFO Buffer Overflow interrupt status.
01830  * This bit automatically sets to 1 when a Free Fall interrupt has been
01831  * generated. The bit clears to 0 after the register has been read.
01832  * @return Current interrupt status
01833  * @see MPU6050_RA_INT_STATUS
01834  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01835  */
01836 bool MPU6050::getIntFIFOBufferOverflowStatus()
01837 {
01838     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
01839     return buffer[0];
01840 }
01841 /** Get I2C Master interrupt status.
01842  * This bit automatically sets to 1 when an I2C Master interrupt has been
01843  * generated. For a list of I2C Master interrupts, please refer to Register 54.
01844  * The bit clears to 0 after the register has been read.
01845  * @return Current interrupt status
01846  * @see MPU6050_RA_INT_STATUS
01847  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01848  */
01849 bool MPU6050::getIntI2CMasterStatus()
01850 {
01851     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
01852     return buffer[0];
01853 }
01854 /** Get Data Ready interrupt status.
01855  * This bit automatically sets to 1 when a Data Ready interrupt has been
01856  * generated. The bit clears to 0 after the register has been read.
01857  * @return Current interrupt status
01858  * @see MPU6050_RA_INT_STATUS
01859  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01860  */
01861 bool MPU6050::getIntDataReadyStatus()
01862 {
01863     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
01864     return buffer[0];
01865 }
01866 
01867 // ACCEL_*OUT_* registers
01868 
01869 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
01870  * FUNCTION NOT FULLY IMPLEMENTED YET.
01871  * @param ax 16-bit signed integer container for accelerometer X-axis value
01872  * @param ay 16-bit signed integer container for accelerometer Y-axis value
01873  * @param az 16-bit signed integer container for accelerometer Z-axis value
01874  * @param gx 16-bit signed integer container for gyroscope X-axis value
01875  * @param gy 16-bit signed integer container for gyroscope Y-axis value
01876  * @param gz 16-bit signed integer container for gyroscope Z-axis value
01877  * @param mx 16-bit signed integer container for magnetometer X-axis value
01878  * @param my 16-bit signed integer container for magnetometer Y-axis value
01879  * @param mz 16-bit signed integer container for magnetometer Z-axis value
01880  * @see getMotion6()
01881  * @see getAcceleration()
01882  * @see getRotation()
01883  * @see MPU6050_RA_ACCEL_XOUT_H
01884  */
01885 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz)
01886 {
01887     getMotion6(ax, ay, az, gx, gy, gz);
01888     // TODO: magnetometer integration
01889 }
01890 
01891 /** Get raw 6-axis motion sensor readings (accel/gyro).
01892  * Retrieves all currently available motion sensor values.
01893  * @param ax 16-bit signed integer container for accelerometer X-axis value
01894  * @param ay 16-bit signed integer container for accelerometer Y-axis value
01895  * @param az 16-bit signed integer container for accelerometer Z-axis value
01896  * @param gx 16-bit signed integer container for gyroscope X-axis value
01897  * @param gy 16-bit signed integer container for gyroscope Y-axis value
01898  * @param gz 16-bit signed integer container for gyroscope Z-axis value
01899  * @see getAcceleration()
01900  * @see getRotation()
01901  * @see MPU6050_RA_ACCEL_XOUT_H
01902  */
01903 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz)
01904 {
01905     *ax = ax_cache;
01906     *ay = ay_cache;
01907     *az = az_cache;
01908     *gx = gx_cache;
01909     *gy = gy_cache;
01910     *gz = gz_cache;
01911 }
01912 
01913 /*
01914  * Populate readings cache when finished reading from I2C
01915  */
01916 uint32_t mpureadfin(uint32_t param){
01917     MPU6050* ins = (MPU6050*)param;
01918     ins->ax_cache = (((int16_t)ins->mpu_buffer[0]) << 8) | ins->mpu_buffer[1];
01919     ins->ay_cache = (((int16_t)ins->mpu_buffer[2]) << 8) | ins->mpu_buffer[3];
01920     ins->az_cache = (((int16_t)ins->mpu_buffer[4]) << 8) | ins->mpu_buffer[5];
01921     ins->gx_cache = (((int16_t)ins->mpu_buffer[8]) << 8) | ins->mpu_buffer[9];
01922     ins->gy_cache = (((int16_t)ins->mpu_buffer[10]) << 8) | ins->mpu_buffer[11];
01923     ins->gz_cache = (((int16_t)ins->mpu_buffer[12]) << 8) | ins->mpu_buffer[13];
01924     return 0;
01925 }
01926 
01927 void MPU6050::sample(bool on){
01928    if (sampling && !on)
01929       mpu_sampling.detach();
01930    if (!sampling && on)
01931       start_sampling();
01932    sampling = on;
01933 }
01934 
01935 void MPU6050::mpu_sample_func(){
01936     i2Cdev.readBytes_nb(devAddr, &mpu_cmd, 14, (uint8_t*)mpu_buffer, &mpureadfin, this);
01937 }
01938 
01939 void MPU6050::start_sampling(){
01940     sampling = true;
01941     mpu_cmd = MPU6050_RA_ACCEL_XOUT_H;
01942     mpu_sampling.attach_us(this, &MPU6050::mpu_sample_func, 2000);
01943 }
01944 
01945 /** Get 3-axis accelerometer readings.
01946  * These registers store the most recent accelerometer measurements.
01947  * Accelerometer measurements are written to these registers at the Sample Rate
01948  * as defined in Register 25.
01949  *
01950  * The accelerometer measurement registers, along with the temperature
01951  * measurement registers, gyroscope measurement registers, and external sensor
01952  * data registers, are composed of two sets of registers: an internal register
01953  * set and a user-facing read register set.
01954  *
01955  * The data within the accelerometer sensors' internal register set is always
01956  * updated at the Sample Rate. Meanwhile, the user-facing read register set
01957  * duplicates the internal register set's data values whenever the serial
01958  * interface is idle. This guarantees that a burst read of sensor registers will
01959  * read measurements from the same sampling instant. Note that if burst reads
01960  * are not used, the user is responsible for ensuring a set of single byte reads
01961  * correspond to a single sampling instant by checking the Data Ready interrupt.
01962  *
01963  * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
01964  * (Register 28). For each full scale setting, the accelerometers' sensitivity
01965  * per LSB in ACCEL_xOUT is shown in the table below:
01966  *
01967  * <pre>
01968  * AFS_SEL | Full Scale Range | LSB Sensitivity
01969  * --------+------------------+----------------
01970  * 0       | +/- 2g           | 8192 LSB/mg
01971  * 1       | +/- 4g           | 4096 LSB/mg
01972  * 2       | +/- 8g           | 2048 LSB/mg
01973  * 3       | +/- 16g          | 1024 LSB/mg
01974  * </pre>
01975  *
01976  * @param x 16-bit signed integer container for X-axis acceleration
01977  * @param y 16-bit signed integer container for Y-axis acceleration
01978  * @param z 16-bit signed integer container for Z-axis acceleration
01979  * @see MPU6050_RA_GYRO_XOUT_H
01980  */
01981 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z)
01982 {
01983     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
01984     *x = (((int16_t)buffer[0]) << 8) | buffer[1];
01985     *y = (((int16_t)buffer[2]) << 8) | buffer[3];
01986     *z = (((int16_t)buffer[4]) << 8) | buffer[5];
01987 }
01988 /** Get X-axis accelerometer reading.
01989  * @return X-axis acceleration measurement in 16-bit 2's complement format
01990  * @see getMotion6()
01991  * @see MPU6050_RA_ACCEL_XOUT_H
01992  */
01993 int16_t MPU6050::getAccelerationX()
01994 {
01995     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
01996     return (((int16_t)buffer[0]) << 8) | buffer[1];
01997 }
01998 /** Get Y-axis accelerometer reading.
01999  * @return Y-axis acceleration measurement in 16-bit 2's complement format
02000  * @see getMotion6()
02001  * @see MPU6050_RA_ACCEL_YOUT_H
02002  */
02003 int16_t MPU6050::getAccelerationY()
02004 {
02005     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
02006     return (((int16_t)buffer[0]) << 8) | buffer[1];
02007 }
02008 /** Get Z-axis accelerometer reading.
02009  * @return Z-axis acceleration measurement in 16-bit 2's complement format
02010  * @see getMotion6()
02011  * @see MPU6050_RA_ACCEL_ZOUT_H
02012  */
02013 int16_t MPU6050::getAccelerationZ()
02014 {
02015     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
02016     return (((int16_t)buffer[0]) << 8) | buffer[1];
02017 }
02018 
02019 // TEMP_OUT_* registers
02020 
02021 /** Get current internal temperature.
02022  * @return Temperature reading in 16-bit 2's complement format
02023  * @see MPU6050_RA_TEMP_OUT_H
02024  */
02025 int16_t MPU6050::getTemperature()
02026 {
02027     i2Cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
02028     return (((int16_t)buffer[0]) << 8) | buffer[1];
02029 }
02030 
02031 // GYRO_*OUT_* registers
02032 
02033 /** Get 3-axis gyroscope readings.
02034  * These gyroscope measurement registers, along with the accelerometer
02035  * measurement registers, temperature measurement registers, and external sensor
02036  * data registers, are composed of two sets of registers: an internal register
02037  * set and a user-facing read register set.
02038  * The data within the gyroscope sensors' internal register set is always
02039  * updated at the Sample Rate. Meanwhile, the user-facing read register set
02040  * duplicates the internal register set's data values whenever the serial
02041  * interface is idle. This guarantees that a burst read of sensor registers will
02042  * read measurements from the same sampling instant. Note that if burst reads
02043  * are not used, the user is responsible for ensuring a set of single byte reads
02044  * correspond to a single sampling instant by checking the Data Ready interrupt.
02045  *
02046  * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
02047  * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
02048  * LSB in GYRO_xOUT is shown in the table below:
02049  *
02050  * <pre>
02051  * FS_SEL | Full Scale Range   | LSB Sensitivity
02052  * -------+--------------------+----------------
02053  * 0      | +/- 250 degrees/s  | 131 LSB/deg/s
02054  * 1      | +/- 500 degrees/s  | 65.5 LSB/deg/s
02055  * 2      | +/- 1000 degrees/s | 32.8 LSB/deg/s
02056  * 3      | +/- 2000 degrees/s | 16.4 LSB/deg/s
02057  * </pre>
02058  *
02059  * @param x 16-bit signed integer container for X-axis rotation
02060  * @param y 16-bit signed integer container for Y-axis rotation
02061  * @param z 16-bit signed integer container for Z-axis rotation
02062  * @see getMotion6()
02063  * @see MPU6050_RA_GYRO_XOUT_H
02064  */
02065 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z)
02066 {
02067     i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
02068     *x = (((int16_t)buffer[0]) << 8) | buffer[1];
02069     *y = (((int16_t)buffer[2]) << 8) | buffer[3];
02070     *z = (((int16_t)buffer[4]) << 8) | buffer[5];
02071 }
02072 /** Get X-axis gyroscope reading.
02073  * @return X-axis rotation measurement in 16-bit 2's complement format
02074  * @see getMotion6()
02075  * @see MPU6050_RA_GYRO_XOUT_H
02076  */
02077 int16_t MPU6050::getRotationX()
02078 {
02079     i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
02080     return (((int16_t)buffer[0]) << 8) | buffer[1];
02081 }
02082 /** Get Y-axis gyroscope reading.
02083  * @return Y-axis rotation measurement in 16-bit 2's complement format
02084  * @see getMotion6()
02085  * @see MPU6050_RA_GYRO_YOUT_H
02086  */
02087 int16_t MPU6050::getRotationY()
02088 {
02089     i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
02090     return (((int16_t)buffer[0]) << 8) | buffer[1];
02091 }
02092 /** Get Z-axis gyroscope reading.
02093  * @return Z-axis rotation measurement in 16-bit 2's complement format
02094  * @see getMotion6()
02095  * @see MPU6050_RA_GYRO_ZOUT_H
02096  */
02097 int16_t MPU6050::getRotationZ()
02098 {
02099     i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
02100     return (((int16_t)buffer[0]) << 8) | buffer[1];
02101 }
02102 
02103 // EXT_SENS_DATA_* registers
02104 
02105 /** Read single byte from external sensor data register.
02106  * These registers store data read from external sensors by the Slave 0, 1, 2,
02107  * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
02108  * I2C_SLV4_DI (Register 53).
02109  *
02110  * External sensor data is written to these registers at the Sample Rate as
02111  * defined in Register 25. This access rate can be reduced by using the Slave
02112  * Delay Enable registers (Register 103).
02113  *
02114  * External sensor data registers, along with the gyroscope measurement
02115  * registers, accelerometer measurement registers, and temperature measurement
02116  * registers, are composed of two sets of registers: an internal register set
02117  * and a user-facing read register set.
02118  *
02119  * The data within the external sensors' internal register set is always updated
02120  * at the Sample Rate (or the reduced access rate) whenever the serial interface
02121  * is idle. This guarantees that a burst read of sensor registers will read
02122  * measurements from the same sampling instant. Note that if burst reads are not
02123  * used, the user is responsible for ensuring a set of single byte reads
02124  * correspond to a single sampling instant by checking the Data Ready interrupt.
02125  *
02126  * Data is placed in these external sensor data registers according to
02127  * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
02128  * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
02129  * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
02130  * defined in Register 25) or delayed rate (if specified in Register 52 and
02131  * 103). During each Sample cycle, slave reads are performed in order of Slave
02132  * number. If all slaves are enabled with more than zero bytes to be read, the
02133  * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
02134  *
02135  * Each enabled slave will have EXT_SENS_DATA registers associated with it by
02136  * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
02137  * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
02138  * change the higher numbered slaves' associated registers. Furthermore, if
02139  * fewer total bytes are being read from the external sensors as a result of
02140  * such a change, then the data remaining in the registers which no longer have
02141  * an associated slave device (i.e. high numbered registers) will remain in
02142  * these previously allocated registers unless reset.
02143  *
02144  * If the sum of the read lengths of all SLVx transactions exceed the number of
02145  * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
02146  * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
02147  * the slaves cannot be greater than 24 or some bytes will be lost.
02148  *
02149  * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
02150  * information regarding the characteristics of Slave 4, please refer to
02151  * Registers 49 to 53.
02152  *
02153  * EXAMPLE:
02154  * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
02155  * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
02156  * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
02157  * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
02158  * will be associated with Slave 1. If Slave 2 is enabled as well, registers
02159  * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
02160  *
02161  * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
02162  * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
02163  * instead.
02164  *
02165  * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
02166  * If a slave is disabled at any time, the space initially allocated to the
02167  * slave in the EXT_SENS_DATA register, will remain associated with that slave.
02168  * This is to avoid dynamic adjustment of the register allocation.
02169  *
02170  * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
02171  * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
02172  *
02173  * This above is also true if one of the slaves gets NACKed and stops
02174  * functioning.
02175  *
02176  * @param position Starting position (0-23)
02177  * @return Byte read from register
02178  */
02179 uint8_t MPU6050::getExternalSensorByte(int position)
02180 {
02181     i2Cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
02182     return buffer[0];
02183 }
02184 /** Read word (2 bytes) from external sensor data registers.
02185  * @param position Starting position (0-21)
02186  * @return Word read from register
02187  * @see getExternalSensorByte()
02188  */
02189 uint16_t MPU6050::getExternalSensorWord(int position)
02190 {
02191     i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
02192     return (((uint16_t)buffer[0]) << 8) | buffer[1];
02193 }
02194 /** Read double word (4 bytes) from external sensor data registers.
02195  * @param position Starting position (0-20)
02196  * @return Double word read from registers
02197  * @see getExternalSensorByte()
02198  */
02199 uint32_t MPU6050::getExternalSensorDWord(int position)
02200 {
02201     i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
02202     return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
02203 }
02204 
02205 // MOT_DETECT_STATUS register
02206 
02207 /** Get X-axis negative motion detection interrupt status.
02208  * @return Motion detection status
02209  * @see MPU6050_RA_MOT_DETECT_STATUS
02210  * @see MPU6050_MOTION_MOT_XNEG_BIT
02211  */
02212 bool MPU6050::getXNegMotionDetected()
02213 {
02214     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
02215     return buffer[0];
02216 }
02217 /** Get X-axis positive motion detection interrupt status.
02218  * @return Motion detection status
02219  * @see MPU6050_RA_MOT_DETECT_STATUS
02220  * @see MPU6050_MOTION_MOT_XPOS_BIT
02221  */
02222 bool MPU6050::getXPosMotionDetected()
02223 {
02224     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
02225     return buffer[0];
02226 }
02227 /** Get Y-axis negative motion detection interrupt status.
02228  * @return Motion detection status
02229  * @see MPU6050_RA_MOT_DETECT_STATUS
02230  * @see MPU6050_MOTION_MOT_YNEG_BIT
02231  */
02232 bool MPU6050::getYNegMotionDetected()
02233 {
02234     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
02235     return buffer[0];
02236 }
02237 /** Get Y-axis positive motion detection interrupt status.
02238  * @return Motion detection status
02239  * @see MPU6050_RA_MOT_DETECT_STATUS
02240  * @see MPU6050_MOTION_MOT_YPOS_BIT
02241  */
02242 bool MPU6050::getYPosMotionDetected()
02243 {
02244     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
02245     return buffer[0];
02246 }
02247 /** Get Z-axis negative motion detection interrupt status.
02248  * @return Motion detection status
02249  * @see MPU6050_RA_MOT_DETECT_STATUS
02250  * @see MPU6050_MOTION_MOT_ZNEG_BIT
02251  */
02252 bool MPU6050::getZNegMotionDetected()
02253 {
02254     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
02255     return buffer[0];
02256 }
02257 /** Get Z-axis positive motion detection interrupt status.
02258  * @return Motion detection status
02259  * @see MPU6050_RA_MOT_DETECT_STATUS
02260  * @see MPU6050_MOTION_MOT_ZPOS_BIT
02261  */
02262 bool MPU6050::getZPosMotionDetected()
02263 {
02264     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
02265     return buffer[0];
02266 }
02267 /** Get zero motion detection interrupt status.
02268  * @return Motion detection status
02269  * @see MPU6050_RA_MOT_DETECT_STATUS
02270  * @see MPU6050_MOTION_MOT_ZRMOT_BIT
02271  */
02272 bool MPU6050::getZeroMotionDetected()
02273 {
02274     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
02275     return buffer[0];
02276 }
02277 
02278 // I2C_SLV*_DO register
02279 
02280 /** Write byte to Data Output container for specified slave.
02281  * This register holds the output data written into Slave when Slave is set to
02282  * write mode. For further information regarding Slave control, please
02283  * refer to Registers 37 to 39 and immediately following.
02284  * @param num Slave number (0-3)
02285  * @param data Byte to write
02286  * @see MPU6050_RA_I2C_SLV0_DO
02287  */
02288 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data)
02289 {
02290     if (num > 3) return;
02291     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
02292 }
02293 
02294 // I2C_MST_DELAY_CTRL register
02295 
02296 /** Get external data shadow delay enabled status.
02297  * This register is used to specify the timing of external sensor data
02298  * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
02299  * sensor data is delayed until all data has been received.
02300  * @return Current external data shadow delay enabled status.
02301  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02302  * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
02303  */
02304 bool MPU6050::getExternalShadowDelayEnabled()
02305 {
02306     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
02307     return buffer[0];
02308 }
02309 /** Set external data shadow delay enabled status.
02310  * @param enabled New external data shadow delay enabled status.
02311  * @see getExternalShadowDelayEnabled()
02312  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02313  * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
02314  */
02315 void MPU6050::setExternalShadowDelayEnabled(bool enabled)
02316 {
02317     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
02318 }
02319 /** Get slave delay enabled status.
02320  * When a particular slave delay is enabled, the rate of access for the that
02321  * slave device is reduced. When a slave's access rate is decreased relative to
02322  * the Sample Rate, the slave is accessed every:
02323  *
02324  *     1 / (1 + I2C_MST_DLY) Samples
02325  *
02326  * This base Sample Rate in turn is determined by SMPLRT_DIV (register  * 25)
02327  * and DLPF_CFG (register 26).
02328  *
02329  * For further information regarding I2C_MST_DLY, please refer to register 52.
02330  * For further information regarding the Sample Rate, please refer to register 25.
02331  *
02332  * @param num Slave number (0-4)
02333  * @return Current slave delay enabled status.
02334  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02335  * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
02336  */
02337 bool MPU6050::getSlaveDelayEnabled(uint8_t num)
02338 {
02339     // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
02340     if (num > 4) return 0;
02341     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
02342     return buffer[0];
02343 }
02344 /** Set slave delay enabled status.
02345  * @param num Slave number (0-4)
02346  * @param enabled New slave delay enabled status.
02347  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02348  * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
02349  */
02350 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled)
02351 {
02352     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
02353 }
02354 
02355 // SIGNAL_PATH_RESET register
02356 
02357 /** Reset gyroscope signal path.
02358  * The reset will revert the signal path analog to digital converters and
02359  * filters to their power up configurations.
02360  * @see MPU6050_RA_SIGNAL_PATH_RESET
02361  * @see MPU6050_PATHRESET_GYRO_RESET_BIT
02362  */
02363 void MPU6050::resetGyroscopePath()
02364 {
02365     i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
02366 }
02367 /** Reset accelerometer signal path.
02368  * The reset will revert the signal path analog to digital converters and
02369  * filters to their power up configurations.
02370  * @see MPU6050_RA_SIGNAL_PATH_RESET
02371  * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
02372  */
02373 void MPU6050::resetAccelerometerPath()
02374 {
02375     i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
02376 }
02377 /** Reset temperature sensor signal path.
02378  * The reset will revert the signal path analog to digital converters and
02379  * filters to their power up configurations.
02380  * @see MPU6050_RA_SIGNAL_PATH_RESET
02381  * @see MPU6050_PATHRESET_TEMP_RESET_BIT
02382  */
02383 void MPU6050::resetTemperaturePath()
02384 {
02385     i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
02386 }
02387 
02388 // MOT_DETECT_CTRL register
02389 
02390 /** Get accelerometer power-on delay.
02391  * The accelerometer data path provides samples to the sensor registers, Motion
02392  * detection, Zero Motion detection, and Free Fall detection modules. The
02393  * signal path contains filters which must be flushed on wake-up with new
02394  * samples before the detection modules begin operations. The default wake-up
02395  * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
02396  * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
02397  * any value above zero unless instructed otherwise by InvenSense. Please refer
02398  * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
02399  * further information regarding the detection modules.
02400  * @return Current accelerometer power-on delay
02401  * @see MPU6050_RA_MOT_DETECT_CTRL
02402  * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
02403  */
02404 uint8_t MPU6050::getAccelerometerPowerOnDelay()
02405 {
02406     i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
02407     return buffer[0];
02408 }
02409 /** Set accelerometer power-on delay.
02410  * @param delay New accelerometer power-on delay (0-3)
02411  * @see getAccelerometerPowerOnDelay()
02412  * @see MPU6050_RA_MOT_DETECT_CTRL
02413  * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
02414  */
02415 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay)
02416 {
02417     i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
02418 }
02419 /** Get Free Fall detection counter decrement configuration.
02420  * Detection is registered by the Free Fall detection module after accelerometer
02421  * measurements meet their respective threshold conditions over a specified
02422  * number of samples. When the threshold conditions are met, the corresponding
02423  * detection counter increments by 1. The user may control the rate at which the
02424  * detection counter decrements when the threshold condition is not met by
02425  * configuring FF_COUNT. The decrement rate can be set according to the
02426  * following table:
02427  *
02428  * <pre>
02429  * FF_COUNT | Counter Decrement
02430  * ---------+------------------
02431  * 0        | Reset
02432  * 1        | 1
02433  * 2        | 2
02434  * 3        | 4
02435  * </pre>
02436  *
02437  * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
02438  * reset the counter to 0. For further information on Free Fall detection,
02439  * please refer to Registers 29 to 32.
02440  *
02441  * @return Current decrement configuration
02442  * @see MPU6050_RA_MOT_DETECT_CTRL
02443  * @see MPU6050_DETECT_FF_COUNT_BIT
02444  */
02445 uint8_t MPU6050::getFreefallDetectionCounterDecrement()
02446 {
02447     i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
02448     return buffer[0];
02449 }
02450 /** Set Free Fall detection counter decrement configuration.
02451  * @param decrement New decrement configuration value
02452  * @see getFreefallDetectionCounterDecrement()
02453  * @see MPU6050_RA_MOT_DETECT_CTRL
02454  * @see MPU6050_DETECT_FF_COUNT_BIT
02455  */
02456 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement)
02457 {
02458     i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
02459 }
02460 /** Get Motion detection counter decrement configuration.
02461  * Detection is registered by the Motion detection module after accelerometer
02462  * measurements meet their respective threshold conditions over a specified
02463  * number of samples. When the threshold conditions are met, the corresponding
02464  * detection counter increments by 1. The user may control the rate at which the
02465  * detection counter decrements when the threshold condition is not met by
02466  * configuring MOT_COUNT. The decrement rate can be set according to the
02467  * following table:
02468  *
02469  * <pre>
02470  * MOT_COUNT | Counter Decrement
02471  * ----------+------------------
02472  * 0         | Reset
02473  * 1         | 1
02474  * 2         | 2
02475  * 3         | 4
02476  * </pre>
02477  *
02478  * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
02479  * reset the counter to 0. For further information on Motion detection,
02480  * please refer to Registers 29 to 32.
02481  *
02482  */
02483 uint8_t MPU6050::getMotionDetectionCounterDecrement()
02484 {
02485     i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
02486     return buffer[0];
02487 }
02488 /** Set Motion detection counter decrement configuration.
02489  * @param decrement New decrement configuration value
02490  * @see getMotionDetectionCounterDecrement()
02491  * @see MPU6050_RA_MOT_DETECT_CTRL
02492  * @see MPU6050_DETECT_MOT_COUNT_BIT
02493  */
02494 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement)
02495 {
02496     i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
02497 }
02498 
02499 // USER_CTRL register
02500 
02501 /** Get FIFO enabled status.
02502  * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
02503  * cannot be written to or read from while disabled. The FIFO buffer's state
02504  * does not change unless the MPU-60X0 is power cycled.
02505  * @return Current FIFO enabled status
02506  * @see MPU6050_RA_USER_CTRL
02507  * @see MPU6050_USERCTRL_FIFO_EN_BIT
02508  */
02509 bool MPU6050::getFIFOEnabled()
02510 {
02511     i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
02512     return buffer[0];
02513 }
02514 /** Set FIFO enabled status.
02515  * @param enabled New FIFO enabled status
02516  * @see getFIFOEnabled()
02517  * @see MPU6050_RA_USER_CTRL
02518  * @see MPU6050_USERCTRL_FIFO_EN_BIT
02519  */
02520 void MPU6050::setFIFOEnabled(bool enabled)
02521 {
02522     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
02523 }
02524 /** Get I2C Master Mode enabled status.
02525  * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
02526  * external sensor slave devices on the auxiliary I2C bus. When this bit is
02527  * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
02528  * driven by the primary I2C bus (SDA and SCL). This is a precondition to
02529  * enabling Bypass Mode. For further information regarding Bypass Mode, please
02530  * refer to Register 55.
02531  * @return Current I2C Master Mode enabled status
02532  * @see MPU6050_RA_USER_CTRL
02533  * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
02534  */
02535 bool MPU6050::getI2CMasterModeEnabled()
02536 {
02537     i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
02538     return buffer[0];
02539 }
02540 /** Set I2C Master Mode enabled status.
02541  * @param enabled New I2C Master Mode enabled status
02542  * @see getI2CMasterModeEnabled()
02543  * @see MPU6050_RA_USER_CTRL
02544  * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
02545  */
02546 void MPU6050::setI2CMasterModeEnabled(bool enabled)
02547 {
02548     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
02549 }
02550 /** Switch from I2C to SPI mode (MPU-6000 only)
02551  * If this is set, the primary SPI interface will be enabled in place of the
02552  * disabled primary I2C interface.
02553  */
02554 void MPU6050::switchSPIEnabled(bool enabled)
02555 {
02556     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
02557 }
02558 /** Reset the FIFO.
02559  * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
02560  * bit automatically clears to 0 after the reset has been triggered.
02561  * @see MPU6050_RA_USER_CTRL
02562  * @see MPU6050_USERCTRL_FIFO_RESET_BIT
02563  */
02564 void MPU6050::resetFIFO()
02565 {
02566     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
02567 }
02568 /** Reset the I2C Master.
02569  * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
02570  * This bit automatically clears to 0 after the reset has been triggered.
02571  * @see MPU6050_RA_USER_CTRL
02572  * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
02573  */
02574 void MPU6050::resetI2CMaster()
02575 {
02576     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
02577 }
02578 /** Reset all sensor registers and signal paths.
02579  * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
02580  * accelerometers, and temperature sensor). This operation will also clear the
02581  * sensor registers. This bit automatically clears to 0 after the reset has been
02582  * triggered.
02583  *
02584  * When resetting only the signal path (and not the sensor registers), please
02585  * use Register 104, SIGNAL_PATH_RESET.
02586  *
02587  * @see MPU6050_RA_USER_CTRL
02588  * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
02589  */
02590 void MPU6050::resetSensors()
02591 {
02592     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
02593 }
02594 
02595 // PWR_MGMT_1 register
02596 
02597 /** Trigger a full device reset.
02598  * A small delay of ~50ms may be desirable after triggering a reset.
02599  * @see MPU6050_RA_PWR_MGMT_1
02600  * @see MPU6050_PWR1_DEVICE_RESET_BIT
02601  */
02602 void MPU6050::reset()
02603 {
02604     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
02605 }
02606 /** Get sleep mode status.
02607  * Setting the SLEEP bit in the register puts the device into very low power
02608  * sleep mode. In this mode, only the serial interface and internal registers
02609  * remain active, allowing for a very low standby current. Clearing this bit
02610  * puts the device back into normal mode. To save power, the individual standby
02611  * selections for each of the gyros should be used if any gyro axis is not used
02612  * by the application.
02613  * @return Current sleep mode enabled status
02614  * @see MPU6050_RA_PWR_MGMT_1
02615  * @see MPU6050_PWR1_SLEEP_BIT
02616  */
02617 bool MPU6050::getSleepEnabled()
02618 {
02619     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
02620     return buffer[0];
02621 }
02622 /** Set sleep mode status.
02623  * @param enabled New sleep mode enabled status
02624  * @see getSleepEnabled()
02625  * @see MPU6050_RA_PWR_MGMT_1
02626  * @see MPU6050_PWR1_SLEEP_BIT
02627  */
02628 void MPU6050::setSleepEnabled(bool enabled)
02629 {
02630     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
02631 }
02632 /** Get wake cycle enabled status.
02633  * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
02634  * between sleep mode and waking up to take a single sample of data from active
02635  * sensors at a rate determined by LP_WAKE_CTRL (register 108).
02636  * @return Current sleep mode enabled status
02637  * @see MPU6050_RA_PWR_MGMT_1
02638  * @see MPU6050_PWR1_CYCLE_BIT
02639  */
02640 bool MPU6050::getWakeCycleEnabled()
02641 {
02642     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
02643     return buffer[0];
02644 }
02645 /** Set wake cycle enabled status.
02646  * @param enabled New sleep mode enabled status
02647  * @see getWakeCycleEnabled()
02648  * @see MPU6050_RA_PWR_MGMT_1
02649  * @see MPU6050_PWR1_CYCLE_BIT
02650  */
02651 void MPU6050::setWakeCycleEnabled(bool enabled)
02652 {
02653     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
02654 }
02655 /** Get temperature sensor enabled status.
02656  * Control the usage of the internal temperature sensor.
02657  *
02658  * Note: this register stores the *disabled* value, but for consistency with the
02659  * rest of the code, the function is named and used with standard true/false
02660  * values to indicate whether the sensor is enabled or disabled, respectively.
02661  *
02662  * @return Current temperature sensor enabled status
02663  * @see MPU6050_RA_PWR_MGMT_1
02664  * @see MPU6050_PWR1_TEMP_DIS_BIT
02665  */
02666 bool MPU6050::getTempSensorEnabled()
02667 {
02668     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
02669     return buffer[0] == 0; // 1 is actually disabled here
02670 }
02671 /** Set temperature sensor enabled status.
02672  * Note: this register stores the *disabled* value, but for consistency with the
02673  * rest of the code, the function is named and used with standard true/false
02674  * values to indicate whether the sensor is enabled or disabled, respectively.
02675  *
02676  * @param enabled New temperature sensor enabled status
02677  * @see getTempSensorEnabled()
02678  * @see MPU6050_RA_PWR_MGMT_1
02679  * @see MPU6050_PWR1_TEMP_DIS_BIT
02680  */
02681 void MPU6050::setTempSensorEnabled(bool enabled)
02682 {
02683     // 1 is actually disabled here
02684     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
02685 }
02686 /** Get clock source setting.
02687  * @return Current clock source setting
02688  * @see MPU6050_RA_PWR_MGMT_1
02689  * @see MPU6050_PWR1_CLKSEL_BIT
02690  * @see MPU6050_PWR1_CLKSEL_LENGTH
02691  */
02692 uint8_t MPU6050::getClockSource()
02693 {
02694     i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
02695     return buffer[0];
02696 }
02697 /** Set clock source setting.
02698  * An internal 8MHz oscillator, gyroscope based clock, or external sources can
02699  * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
02700  * or an external source is chosen as the clock source, the MPU-60X0 can operate
02701  * in low power modes with the gyroscopes disabled.
02702  *
02703  * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
02704  * However, it is highly recommended that the device be configured to use one of
02705  * the gyroscopes (or an external clock source) as the clock reference for
02706  * improved stability. The clock source can be selected according to the following table:
02707  *
02708  * <pre>
02709  * CLK_SEL | Clock Source
02710  * --------+--------------------------------------
02711  * 0       | Internal oscillator
02712  * 1       | PLL with X Gyro reference
02713  * 2       | PLL with Y Gyro reference
02714  * 3       | PLL with Z Gyro reference
02715  * 4       | PLL with external 32.768kHz reference
02716  * 5       | PLL with external 19.2MHz reference
02717  * 6       | Reserved
02718  * 7       | Stops the clock and keeps the timing generator in reset
02719  * </pre>
02720  *
02721  * @param source New clock source setting
02722  * @see getClockSource()
02723  * @see MPU6050_RA_PWR_MGMT_1
02724  * @see MPU6050_PWR1_CLKSEL_BIT
02725  * @see MPU6050_PWR1_CLKSEL_LENGTH
02726  */
02727 void MPU6050::setClockSource(uint8_t source)
02728 {
02729     i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
02730 }
02731 
02732 // PWR_MGMT_2 register
02733 
02734 /** Get wake frequency in Accel-Only Low Power Mode.
02735  * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
02736  * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
02737  * the device will power off all devices except for the primary I2C interface,
02738  * waking only the accelerometer at fixed intervals to take a single
02739  * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
02740  * as shown below:
02741  *
02742  * <pre>
02743  * LP_WAKE_CTRL | Wake-up Frequency
02744  * -------------+------------------
02745  * 0            | 1.25 Hz
02746  * 1            | 2.5 Hz
02747  * 2            | 5 Hz
02748  * 3            | 10 Hz
02749  * <pre>
02750  *
02751  * For further information regarding the MPU-60X0's power modes, please refer to
02752  * Register 107.
02753  *
02754  * @return Current wake frequency
02755  * @see MPU6050_RA_PWR_MGMT_2
02756  */
02757 uint8_t MPU6050::getWakeFrequency()
02758 {
02759     i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
02760     return buffer[0];
02761 }
02762 /** Set wake frequency in Accel-Only Low Power Mode.
02763  * @param frequency New wake frequency
02764  * @see MPU6050_RA_PWR_MGMT_2
02765  */
02766 void MPU6050::setWakeFrequency(uint8_t frequency)
02767 {
02768     i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
02769 }
02770 
02771 /** Get X-axis accelerometer standby enabled status.
02772  * If enabled, the X-axis will not gather or report data (or use power).
02773  * @return Current X-axis standby enabled status
02774  * @see MPU6050_RA_PWR_MGMT_2
02775  * @see MPU6050_PWR2_STBY_XA_BIT
02776  */
02777 bool MPU6050::getStandbyXAccelEnabled()
02778 {
02779     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
02780     return buffer[0];
02781 }
02782 /** Set X-axis accelerometer standby enabled status.
02783  * @param New X-axis standby enabled status
02784  * @see getStandbyXAccelEnabled()
02785  * @see MPU6050_RA_PWR_MGMT_2
02786  * @see MPU6050_PWR2_STBY_XA_BIT
02787  */
02788 void MPU6050::setStandbyXAccelEnabled(bool enabled)
02789 {
02790     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
02791 }
02792 /** Get Y-axis accelerometer standby enabled status.
02793  * If enabled, the Y-axis will not gather or report data (or use power).
02794  * @return Current Y-axis standby enabled status
02795  * @see MPU6050_RA_PWR_MGMT_2
02796  * @see MPU6050_PWR2_STBY_YA_BIT
02797  */
02798 bool MPU6050::getStandbyYAccelEnabled()
02799 {
02800     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
02801     return buffer[0];
02802 }
02803 /** Set Y-axis accelerometer standby enabled status.
02804  * @param New Y-axis standby enabled status
02805  * @see getStandbyYAccelEnabled()
02806  * @see MPU6050_RA_PWR_MGMT_2
02807  * @see MPU6050_PWR2_STBY_YA_BIT
02808  */
02809 void MPU6050::setStandbyYAccelEnabled(bool enabled)
02810 {
02811     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
02812 }
02813 /** Get Z-axis accelerometer standby enabled status.
02814  * If enabled, the Z-axis will not gather or report data (or use power).
02815  * @return Current Z-axis standby enabled status
02816  * @see MPU6050_RA_PWR_MGMT_2
02817  * @see MPU6050_PWR2_STBY_ZA_BIT
02818  */
02819 bool MPU6050::getStandbyZAccelEnabled()
02820 {
02821     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
02822     return buffer[0];
02823 }
02824 /** Set Z-axis accelerometer standby enabled status.
02825  * @param New Z-axis standby enabled status
02826  * @see getStandbyZAccelEnabled()
02827  * @see MPU6050_RA_PWR_MGMT_2
02828  * @see MPU6050_PWR2_STBY_ZA_BIT
02829  */
02830 void MPU6050::setStandbyZAccelEnabled(bool enabled)
02831 {
02832     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
02833 }
02834 /** Get X-axis gyroscope standby enabled status.
02835  * If enabled, the X-axis will not gather or report data (or use power).
02836  * @return Current X-axis standby enabled status
02837  * @see MPU6050_RA_PWR_MGMT_2
02838  * @see MPU6050_PWR2_STBY_XG_BIT
02839  */
02840 bool MPU6050::getStandbyXGyroEnabled()
02841 {
02842     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
02843     return buffer[0];
02844 }
02845 /** Set X-axis gyroscope standby enabled status.
02846  * @param New X-axis standby enabled status
02847  * @see getStandbyXGyroEnabled()
02848  * @see MPU6050_RA_PWR_MGMT_2
02849  * @see MPU6050_PWR2_STBY_XG_BIT
02850  */
02851 void MPU6050::setStandbyXGyroEnabled(bool enabled)
02852 {
02853     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
02854 }
02855 /** Get Y-axis gyroscope standby enabled status.
02856  * If enabled, the Y-axis will not gather or report data (or use power).
02857  * @return Current Y-axis standby enabled status
02858  * @see MPU6050_RA_PWR_MGMT_2
02859  * @see MPU6050_PWR2_STBY_YG_BIT
02860  */
02861 bool MPU6050::getStandbyYGyroEnabled()
02862 {
02863     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
02864     return buffer[0];
02865 }
02866 /** Set Y-axis gyroscope standby enabled status.
02867  * @param New Y-axis standby enabled status
02868  * @see getStandbyYGyroEnabled()
02869  * @see MPU6050_RA_PWR_MGMT_2
02870  * @see MPU6050_PWR2_STBY_YG_BIT
02871  */
02872 void MPU6050::setStandbyYGyroEnabled(bool enabled)
02873 {
02874     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
02875 }
02876 /** Get Z-axis gyroscope standby enabled status.
02877  * If enabled, the Z-axis will not gather or report data (or use power).
02878  * @return Current Z-axis standby enabled status
02879  * @see MPU6050_RA_PWR_MGMT_2
02880  * @see MPU6050_PWR2_STBY_ZG_BIT
02881  */
02882 bool MPU6050::getStandbyZGyroEnabled()
02883 {
02884     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
02885     return buffer[0];
02886 }
02887 /** Set Z-axis gyroscope standby enabled status.
02888  * @param New Z-axis standby enabled status
02889  * @see getStandbyZGyroEnabled()
02890  * @see MPU6050_RA_PWR_MGMT_2
02891  * @see MPU6050_PWR2_STBY_ZG_BIT
02892  */
02893 void MPU6050::setStandbyZGyroEnabled(bool enabled)
02894 {
02895     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
02896 }
02897 
02898 // FIFO_COUNT* registers
02899 
02900 /** Get current FIFO buffer size.
02901  * This value indicates the number of bytes stored in the FIFO buffer. This
02902  * number is in turn the number of bytes that can be read from the FIFO buffer
02903  * and it is directly proportional to the number of samples available given the
02904  * set of sensor data bound to be stored in the FIFO (register 35 and 36).
02905  * @return Current FIFO buffer size
02906  */
02907 uint16_t MPU6050::getFIFOCount()
02908 {
02909     i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
02910     return (((uint16_t)buffer[0]) << 8) | buffer[1];
02911 }
02912 
02913 // FIFO_R_W register
02914 
02915 /** Get byte from FIFO buffer.
02916  * This register is used to read and write data from the FIFO buffer. Data is
02917  * written to the FIFO in order of register number (from lowest to highest). If
02918  * all the FIFO enable flags (see below) are enabled and all External Sensor
02919  * Data registers (Registers 73 to 96) are associated with a Slave device, the
02920  * contents of registers 59 through 96 will be written in order at the Sample
02921  * Rate.
02922  *
02923  * The contents of the sensor data registers (Registers 59 to 96) are written
02924  * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
02925  * in FIFO_EN (Register 35). An additional flag for the sensor data registers
02926  * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
02927  *
02928  * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
02929  * automatically set to 1. This bit is located in INT_STATUS (Register 58).
02930  * When the FIFO buffer has overflowed, the oldest data will be lost and new
02931  * data will be written to the FIFO.
02932  *
02933  * If the FIFO buffer is empty, reading this register will return the last byte
02934  * that was previously read from the FIFO until new data is available. The user
02935  * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
02936  * empty.
02937  *
02938  * @return Byte from FIFO buffer
02939  */
02940 uint8_t MPU6050::getFIFOByte()
02941 {
02942     i2Cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
02943     return buffer[0];
02944 }
02945 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length)
02946 {
02947     i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
02948 }
02949 /** Write byte to FIFO buffer.
02950  * @see getFIFOByte()
02951  * @see MPU6050_RA_FIFO_R_W
02952  */
02953 void MPU6050::setFIFOByte(uint8_t data)
02954 {
02955     i2Cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
02956 }
02957 
02958 // WHO_AM_I register
02959 
02960 /** Get Device ID.
02961  * This register is used to verify the identity of the device (0b110100, 0x34).
02962  * @return Device ID (6 bits only! should be 0x34)
02963  * @see MPU6050_RA_WHO_AM_I
02964  * @see MPU6050_WHO_AM_I_BIT
02965  * @see MPU6050_WHO_AM_I_LENGTH
02966  */
02967 uint8_t MPU6050::getDeviceID()
02968 {
02969     i2Cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
02970     return buffer[0];
02971 }
02972 /** Set Device ID.
02973  * Write a new ID into the WHO_AM_I register (no idea why this should ever be
02974  * necessary though).
02975  * @param id New device ID to set.
02976  * @see getDeviceID()
02977  * @see MPU6050_RA_WHO_AM_I
02978  * @see MPU6050_WHO_AM_I_BIT
02979  * @see MPU6050_WHO_AM_I_LENGTH
02980  */
02981 void MPU6050::setDeviceID(uint8_t id)
02982 {
02983     i2Cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
02984 }
02985 
02986 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
02987 
02988 // XG_OFFS_TC register
02989 
02990 uint8_t MPU6050::getOTPBankValid()
02991 {
02992     i2Cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
02993     return buffer[0];
02994 }
02995 void MPU6050::setOTPBankValid(bool enabled)
02996 {
02997     i2Cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
02998 }
02999 int8_t MPU6050::getXGyroOffset()
03000 {
03001     i2Cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
03002     return buffer[0];
03003 }
03004 void MPU6050::setXGyroOffset(int8_t offset)
03005 {
03006     i2Cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
03007 }
03008 
03009 // YG_OFFS_TC register
03010 
03011 int8_t MPU6050::getYGyroOffset()
03012 {
03013     i2Cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
03014     return buffer[0];
03015 }
03016 void MPU6050::setYGyroOffset(int8_t offset)
03017 {
03018     i2Cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
03019 }
03020 
03021 // ZG_OFFS_TC register
03022 
03023 int8_t MPU6050::getZGyroOffset()
03024 {
03025     i2Cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
03026     return buffer[0];
03027 }
03028 void MPU6050::setZGyroOffset(int8_t offset)
03029 {
03030     i2Cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
03031 }
03032 
03033 // X_FINE_GAIN register
03034 
03035 int8_t MPU6050::getXFineGain()
03036 {
03037     i2Cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
03038     return buffer[0];
03039 }
03040 void MPU6050::setXFineGain(int8_t gain)
03041 {
03042     i2Cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
03043 }
03044 
03045 // Y_FINE_GAIN register
03046 
03047 int8_t MPU6050::getYFineGain()
03048 {
03049     i2Cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
03050     return buffer[0];
03051 }
03052 void MPU6050::setYFineGain(int8_t gain)
03053 {
03054     i2Cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
03055 }
03056 
03057 // Z_FINE_GAIN register
03058 
03059 int8_t MPU6050::getZFineGain()
03060 {
03061     i2Cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
03062     return buffer[0];
03063 }
03064 void MPU6050::setZFineGain(int8_t gain)
03065 {
03066     i2Cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
03067 }
03068 
03069 // XA_OFFS_* registers
03070 
03071 int16_t MPU6050::getXAccelOffset()
03072 {
03073     i2Cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
03074     return (((int16_t)buffer[0]) << 8) | buffer[1];
03075 }
03076 void MPU6050::setXAccelOffset(int16_t offset)
03077 {
03078     i2Cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
03079 }
03080 
03081 // YA_OFFS_* register
03082 
03083 int16_t MPU6050::getYAccelOffset()
03084 {
03085     i2Cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
03086     return (((int16_t)buffer[0]) << 8) | buffer[1];
03087 }
03088 void MPU6050::setYAccelOffset(int16_t offset)
03089 {
03090     i2Cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
03091 }
03092 
03093 // ZA_OFFS_* register
03094 
03095 int16_t MPU6050::getZAccelOffset()
03096 {
03097     i2Cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
03098     return (((int16_t)buffer[0]) << 8) | buffer[1];
03099 }
03100 void MPU6050::setZAccelOffset(int16_t offset)
03101 {
03102     i2Cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
03103 }
03104 
03105 // XG_OFFS_USR* registers
03106 
03107 int16_t MPU6050::getXGyroOffsetUser()
03108 {
03109     i2Cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
03110     return (((int16_t)buffer[0]) << 8) | buffer[1];
03111 }
03112 void MPU6050::setXGyroOffsetUser(int16_t offset)
03113 {
03114     i2Cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
03115 }
03116 
03117 // YG_OFFS_USR* register
03118 
03119 int16_t MPU6050::getYGyroOffsetUser()
03120 {
03121     i2Cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
03122     return (((int16_t)buffer[0]) << 8) | buffer[1];
03123 }
03124 void MPU6050::setYGyroOffsetUser(int16_t offset)
03125 {
03126     i2Cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
03127 }
03128 
03129 // ZG_OFFS_USR* register
03130 
03131 int16_t MPU6050::getZGyroOffsetUser()
03132 {
03133     i2Cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
03134     return (((int16_t)buffer[0]) << 8) | buffer[1];
03135 }
03136 void MPU6050::setZGyroOffsetUser(int16_t offset)
03137 {
03138     i2Cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
03139 }
03140 
03141 // INT_ENABLE register (DMP functions)
03142 
03143 bool MPU6050::getIntPLLReadyEnabled()
03144 {
03145     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
03146     return buffer[0];
03147 }
03148 void MPU6050::setIntPLLReadyEnabled(bool enabled)
03149 {
03150     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
03151 }
03152 bool MPU6050::getIntDMPEnabled()
03153 {
03154     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
03155     return buffer[0];
03156 }
03157 void MPU6050::setIntDMPEnabled(bool enabled)
03158 {
03159     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
03160 }
03161 
03162 // DMP_INT_STATUS
03163 
03164 bool MPU6050::getDMPInt5Status()
03165 {
03166     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
03167     return buffer[0];
03168 }
03169 bool MPU6050::getDMPInt4Status()
03170 {
03171     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
03172     return buffer[0];
03173 }
03174 bool MPU6050::getDMPInt3Status()
03175 {
03176     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
03177     return buffer[0];
03178 }
03179 bool MPU6050::getDMPInt2Status()
03180 {
03181     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
03182     return buffer[0];
03183 }
03184 bool MPU6050::getDMPInt1Status()
03185 {
03186     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
03187     return buffer[0];
03188 }
03189 bool MPU6050::getDMPInt0Status()
03190 {
03191     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
03192     return buffer[0];
03193 }
03194 
03195 // INT_STATUS register (DMP functions)
03196 
03197 bool MPU6050::getIntPLLReadyStatus()
03198 {
03199     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
03200     return buffer[0];
03201 }
03202 bool MPU6050::getIntDMPStatus()
03203 {
03204     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
03205     return buffer[0];
03206 }
03207 
03208 // USER_CTRL register (DMP functions)
03209 
03210 bool MPU6050::getDMPEnabled()
03211 {
03212     i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
03213     return buffer[0];
03214 }
03215 void MPU6050::setDMPEnabled(bool enabled)
03216 {
03217     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
03218 }
03219 void MPU6050::resetDMP()
03220 {
03221     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
03222 }
03223 
03224 // BANK_SEL register
03225 
03226 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank)
03227 {
03228     bank &= 0x1F;
03229     if (userBank) bank |= 0x20;
03230     if (prefetchEnabled) bank |= 0x40;
03231     i2Cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
03232 }
03233 
03234 // MEM_START_ADDR register
03235 
03236 void MPU6050::setMemoryStartAddress(uint8_t address)
03237 {
03238     i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
03239 }
03240 
03241 // MEM_R_W register
03242 
03243 uint8_t MPU6050::readMemoryByte()
03244 {
03245     i2Cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
03246     return buffer[0];
03247 }
03248 void MPU6050::writeMemoryByte(uint8_t data)
03249 {
03250     i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
03251 }
03252 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address)
03253 {
03254     setMemoryBank(bank);
03255     setMemoryStartAddress(address);
03256     uint8_t chunkSize;
03257     for (uint16_t i = 0; i < dataSize;) {
03258         // determine correct chunk size according to bank position and data size
03259         chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
03260 
03261         // make sure we don't go past the data size
03262         if (i + chunkSize > dataSize) chunkSize = dataSize - i;
03263 
03264         // make sure this chunk doesn't go past the bank boundary (256 bytes)
03265         if (chunkSize > 256 - address) chunkSize = 256 - address;
03266 
03267         // read the chunk of data as specified
03268         i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
03269 
03270         // increase byte index by [chunkSize]
03271         i += chunkSize;
03272 
03273         // uint8_t automatically wraps to 0 at 256
03274         address += chunkSize;
03275 
03276         // if we aren't done, update bank (if necessary) and address
03277         if (i < dataSize) {
03278             if (address == 0) bank++;
03279             setMemoryBank(bank);
03280             setMemoryStartAddress(address);
03281         }
03282     }
03283 }
03284 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem)
03285 {
03286     setMemoryBank(bank);
03287     setMemoryStartAddress(address);
03288     uint8_t chunkSize;
03289     uint8_t *verifyBuffer;
03290     uint8_t *progBuffer;
03291     uint16_t i;
03292     uint8_t j;
03293     if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
03294     if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
03295     for (i = 0; i < dataSize;) {
03296         // determine correct chunk size according to bank position and data size
03297         chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
03298 
03299         // make sure we don't go past the data size
03300         if (i + chunkSize > dataSize) chunkSize = dataSize - i;
03301 
03302         // make sure this chunk doesn't go past the bank boundary (256 bytes)
03303         if (chunkSize > 256 - address) chunkSize = 256 - address;
03304 
03305         if (useProgMem) {
03306             // write the chunk of data as specified
03307             for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
03308         } else {
03309             // write the chunk of data as specified
03310             progBuffer = (uint8_t *)data + i;
03311         }
03312 
03313         i2Cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
03314 
03315         // verify data if needed
03316         if (verify && verifyBuffer) {
03317             setMemoryBank(bank);
03318             setMemoryStartAddress(address);
03319             i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
03320             if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
03321                 /*Serial.print("Block write verification error, bank ");
03322                 Serial.print(bank, DEC);
03323                 Serial.print(", address ");
03324                 Serial.print(address, DEC);
03325                 Serial.print("!\nExpected:");
03326                 for (j = 0; j < chunkSize; j++) {
03327                     Serial.print(" 0x");
03328                     if (progBuffer[j] < 16) Serial.print("0");
03329                     Serial.print(progBuffer[j], HEX);
03330                 }
03331                 Serial.print("\nReceived:");
03332                 for (uint8_t j = 0; j < chunkSize; j++) {
03333                     Serial.print(" 0x");
03334                     if (verifyBuffer[i + j] < 16) Serial.print("0");
03335                     Serial.print(verifyBuffer[i + j], HEX);
03336                 }
03337                 Serial.print("\n");*/
03338                 free(verifyBuffer);
03339                 if (useProgMem) free(progBuffer);
03340                 return false; // uh oh.
03341             }
03342         }
03343 
03344         // increase byte index by [chunkSize]
03345         i += chunkSize;
03346 
03347         // uint8_t automatically wraps to 0 at 256
03348         address += chunkSize;
03349 
03350         // if we aren't done, update bank (if necessary) and address
03351         if (i < dataSize) {
03352             if (address == 0) bank++;
03353             setMemoryBank(bank);
03354             setMemoryStartAddress(address);
03355         }
03356     }
03357     if (verify) free(verifyBuffer);
03358     if (useProgMem) free(progBuffer);
03359     return true;
03360 }
03361 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify)
03362 {
03363     return writeMemoryBlock(data, dataSize, bank, address, verify, true);
03364 }
03365 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem)
03366 {
03367     uint8_t *progBuffer, success, special;
03368     uint16_t i, j;
03369     if (useProgMem) {
03370         progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
03371     }
03372 
03373     // config set data is a long string of blocks with the following structure:
03374     // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
03375     uint8_t bank, offset, length;
03376     for (i = 0; i < dataSize;) {
03377         if (useProgMem) {
03378             bank = pgm_read_byte(data + i++);
03379             offset = pgm_read_byte(data + i++);
03380             length = pgm_read_byte(data + i++);
03381         } else {
03382             bank = data[i++];
03383             offset = data[i++];
03384             length = data[i++];
03385         }
03386 
03387         // write data or perform special action
03388         if (length > 0) {
03389             // regular block of data to write
03390             /*Serial.print("Writing config block to bank ");
03391             Serial.print(bank);
03392             Serial.print(", offset ");
03393             Serial.print(offset);
03394             Serial.print(", length=");
03395             Serial.println(length);*/
03396             if (useProgMem) {
03397                 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
03398                 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
03399             } else {
03400                 progBuffer = (uint8_t *)data + i;
03401             }
03402             success = writeMemoryBlock(progBuffer, length, bank, offset, true);
03403             i += length;
03404         } else {
03405             // special instruction
03406             // NOTE: this kind of behavior (what and when to do certain things)
03407             // is totally undocumented. This code is in here based on observed
03408             // behavior only, and exactly why (or even whether) it has to be here
03409             // is anybody's guess for now.
03410             if (useProgMem) {
03411                 special = pgm_read_byte(data + i++);
03412             } else {
03413                 special = data[i++];
03414             }
03415             /*Serial.print("Special command code ");
03416             Serial.print(special, HEX);
03417             Serial.println(" found...");*/
03418             if (special == 0x01) {
03419                 // enable DMP-related interrupts
03420 
03421                 //setIntZeroMotionEnabled(true);
03422                 //setIntFIFOBufferOverflowEnabled(true);
03423                 //setIntDMPEnabled(true);
03424                 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32);  // single operation
03425 
03426                 success = true;
03427             } else {
03428                 // unknown special command
03429                 success = false;
03430             }
03431         }
03432 
03433         if (!success) {
03434             if (useProgMem) free(progBuffer);
03435             return false; // uh oh
03436         }
03437     }
03438     if (useProgMem) free(progBuffer);
03439     return true;
03440 }
03441 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize)
03442 {
03443     return writeDMPConfigurationSet(data, dataSize, false);
03444 }
03445 
03446 // DMP_CFG_1 register
03447 
03448 uint8_t MPU6050::getDMPConfig1()
03449 {
03450     i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
03451     return buffer[0];
03452 }
03453 void MPU6050::setDMPConfig1(uint8_t config)
03454 {
03455     i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
03456 }
03457 
03458 // DMP_CFG_2 register
03459 
03460 uint8_t MPU6050::getDMPConfig2()
03461 {
03462     i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
03463     return buffer[0];
03464 }
03465 void MPU6050::setDMPConfig2(uint8_t config)
03466 {
03467     i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
03468 }