first test

Dependents:   LoRaWAN-lmic-app_tjm

Fork of LMiC by Semtech

Committer:
dudmuck
Date:
Wed Nov 25 02:49:45 2015 +0000
Revision:
2:974cafbfb159
Parent:
1:d3b7bde3995c
Child:
4:85b2b647cb64
add US 8ch operation "hybrid"

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mluis 0:62d1edcc13d1 1 /*******************************************************************************
mluis 1:d3b7bde3995c 2 * Copyright (c) 2014-2015 IBM Corporation.
mluis 0:62d1edcc13d1 3 * All rights reserved. This program and the accompanying materials
mluis 0:62d1edcc13d1 4 * are made available under the terms of the Eclipse Public License v1.0
mluis 0:62d1edcc13d1 5 * which accompanies this distribution, and is available at
mluis 0:62d1edcc13d1 6 * http://www.eclipse.org/legal/epl-v10.html
mluis 0:62d1edcc13d1 7 *
mluis 0:62d1edcc13d1 8 * Contributors:
mluis 0:62d1edcc13d1 9 * IBM Zurich Research Lab - initial API, implementation and documentation
mluis 0:62d1edcc13d1 10 * Semtech Apps Team - Modified to support the MBED sx1276 driver
mluis 0:62d1edcc13d1 11 * library.
mluis 0:62d1edcc13d1 12 * Possibility to use original or Semtech's MBED
mluis 0:62d1edcc13d1 13 * radio driver. The selection is done by setting
mluis 0:62d1edcc13d1 14 * USE_SMTC_RADIO_DRIVER preprocessing directive
mluis 0:62d1edcc13d1 15 * in lmic.h
mluis 0:62d1edcc13d1 16 *******************************************************************************/
mluis 1:d3b7bde3995c 17
mluis 0:62d1edcc13d1 18 #include "lmic.h"
mluis 0:62d1edcc13d1 19
mluis 0:62d1edcc13d1 20 #if USE_SMTC_RADIO_DRIVER
mluis 0:62d1edcc13d1 21 #include "sx1276-hal.h"
mluis 0:62d1edcc13d1 22
mluis 0:62d1edcc13d1 23 /*!
mluis 1:d3b7bde3995c 24 * Syncword for lora networks
mluis 0:62d1edcc13d1 25 */
mluis 1:d3b7bde3995c 26 #define LORA_MAC_SYNCWORD 0x34
mluis 0:62d1edcc13d1 27
mluis 0:62d1edcc13d1 28 /*
mluis 0:62d1edcc13d1 29 * Callback functions prototypes
mluis 0:62d1edcc13d1 30 */
mluis 0:62d1edcc13d1 31 /*!
mluis 0:62d1edcc13d1 32 * @brief Function to be executed on Radio Tx Done event
mluis 0:62d1edcc13d1 33 */
mluis 0:62d1edcc13d1 34 void OnTxDone( void );
mluis 0:62d1edcc13d1 35
mluis 0:62d1edcc13d1 36 /*!
mluis 0:62d1edcc13d1 37 * @brief Function to be executed on Radio Rx Done event
mluis 0:62d1edcc13d1 38 */
mluis 0:62d1edcc13d1 39 void OnRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
mluis 0:62d1edcc13d1 40
mluis 0:62d1edcc13d1 41 /*!
mluis 0:62d1edcc13d1 42 * @brief Function executed on Radio Tx Timeout event
mluis 0:62d1edcc13d1 43 */
mluis 0:62d1edcc13d1 44 void OnTxTimeout( void );
mluis 0:62d1edcc13d1 45
mluis 0:62d1edcc13d1 46 /*!
mluis 0:62d1edcc13d1 47 * @brief Function executed on Radio Rx Timeout event
mluis 0:62d1edcc13d1 48 */
mluis 0:62d1edcc13d1 49 void OnRxTimeout( void );
mluis 0:62d1edcc13d1 50
mluis 0:62d1edcc13d1 51 /*!
mluis 0:62d1edcc13d1 52 * @brief Function executed on Radio Rx Error event
mluis 0:62d1edcc13d1 53 */
mluis 0:62d1edcc13d1 54 void OnRxError( void );
mluis 0:62d1edcc13d1 55
mluis 0:62d1edcc13d1 56 /*!
mluis 0:62d1edcc13d1 57 * @brief Function executed on Radio Fhss Change Channel event
mluis 0:62d1edcc13d1 58 */
mluis 0:62d1edcc13d1 59 void OnFhssChangeChannel( uint8_t channelIndex );
mluis 0:62d1edcc13d1 60
mluis 0:62d1edcc13d1 61 /*!
mluis 0:62d1edcc13d1 62 * @brief Function executed on CAD Done event
mluis 0:62d1edcc13d1 63 */
mluis 0:62d1edcc13d1 64 void OnCadDone( void );
mluis 0:62d1edcc13d1 65
mluis 0:62d1edcc13d1 66 /*
mluis 0:62d1edcc13d1 67 * Radio object declraration
mluis 0:62d1edcc13d1 68 */
mluis 0:62d1edcc13d1 69 SX1276MB1xAS Radio( OnTxDone, OnTxTimeout, OnRxDone, OnRxTimeout, OnRxError, NULL, NULL );
mluis 0:62d1edcc13d1 70
mluis 0:62d1edcc13d1 71 static const u2_t LORA_RXDONE_FIXUP[] = {
mluis 0:62d1edcc13d1 72 [FSK] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 73 [SF7] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 74 [SF8] = us2osticks(1648), // ( 54 ticks)
mluis 0:62d1edcc13d1 75 [SF9] = us2osticks(3265), // ( 107 ticks)
mluis 0:62d1edcc13d1 76 [SF10] = us2osticks(7049), // ( 231 ticks)
mluis 0:62d1edcc13d1 77 [SF11] = us2osticks(13641), // ( 447 ticks)
mluis 0:62d1edcc13d1 78 [SF12] = us2osticks(31189), // (1022 ticks)
mluis 0:62d1edcc13d1 79 };
mluis 0:62d1edcc13d1 80
mluis 0:62d1edcc13d1 81 void OnTxDone( void )
mluis 0:62d1edcc13d1 82 {
mluis 0:62d1edcc13d1 83 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 84 // save exact tx time
mluis 1:d3b7bde3995c 85 LMIC.txend = now - us2osticks( RADIO_WAKEUP_TIME ); // TXDONE FIXUP
mluis 0:62d1edcc13d1 86
mluis 0:62d1edcc13d1 87 // go from stanby to sleep
mluis 0:62d1edcc13d1 88 Radio.Sleep( );
mluis 0:62d1edcc13d1 89 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 90 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 91 }
mluis 0:62d1edcc13d1 92
mluis 0:62d1edcc13d1 93 void OnRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
mluis 0:62d1edcc13d1 94 {
mluis 0:62d1edcc13d1 95 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 96 // save exact rx time
mluis 1:d3b7bde3995c 97 if( getBw( LMIC.rps ) == BW125 )
mluis 1:d3b7bde3995c 98 {
mluis 1:d3b7bde3995c 99 now -= LORA_RXDONE_FIXUP[getSf( LMIC.rps )];
mluis 1:d3b7bde3995c 100 }
mluis 1:d3b7bde3995c 101 LMIC.rxtime = now;
mluis 0:62d1edcc13d1 102 // read the PDU and inform the MAC that we received something
mluis 0:62d1edcc13d1 103 LMIC.dataLen = size;
mluis 0:62d1edcc13d1 104 // now read the FIFO
mluis 0:62d1edcc13d1 105 memcpy( LMIC.frame, payload, size );
mluis 0:62d1edcc13d1 106 // read rx quality parameters
mluis 1:d3b7bde3995c 107 LMIC.snr = snr; // SNR [dB] * 4
mluis 1:d3b7bde3995c 108 LMIC.rssi = rssi; // RSSI [dBm] (-196...+63)
mluis 0:62d1edcc13d1 109
mluis 0:62d1edcc13d1 110 // go from stanby to sleep
mluis 0:62d1edcc13d1 111 Radio.Sleep( );
mluis 0:62d1edcc13d1 112 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 113 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 114 }
mluis 0:62d1edcc13d1 115
mluis 0:62d1edcc13d1 116 void OnTxTimeout( void )
mluis 0:62d1edcc13d1 117 {
mluis 0:62d1edcc13d1 118 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 119
mluis 0:62d1edcc13d1 120 // indicate error
mluis 1:d3b7bde3995c 121 LMIC.dataLen = 0;
mluis 1:d3b7bde3995c 122
mluis 0:62d1edcc13d1 123 // go from stanby to sleep
mluis 0:62d1edcc13d1 124 Radio.Sleep( );
mluis 0:62d1edcc13d1 125 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 126 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 127 }
mluis 0:62d1edcc13d1 128
mluis 0:62d1edcc13d1 129 void OnRxTimeout( void )
mluis 0:62d1edcc13d1 130 {
mluis 0:62d1edcc13d1 131 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 132 // indicate timeout
mluis 0:62d1edcc13d1 133 LMIC.dataLen = 0;
mluis 0:62d1edcc13d1 134
mluis 0:62d1edcc13d1 135 // go from stanby to sleep
mluis 0:62d1edcc13d1 136 Radio.Sleep( );
mluis 0:62d1edcc13d1 137 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 138 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 139 }
mluis 0:62d1edcc13d1 140
mluis 0:62d1edcc13d1 141 void OnRxError( void )
mluis 0:62d1edcc13d1 142 {
mluis 0:62d1edcc13d1 143 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 144
mluis 0:62d1edcc13d1 145 // indicate error
mluis 0:62d1edcc13d1 146 LMIC.dataLen = 0;
mluis 0:62d1edcc13d1 147
mluis 0:62d1edcc13d1 148 // go from stanby to sleep
mluis 0:62d1edcc13d1 149 Radio.Sleep( );
mluis 0:62d1edcc13d1 150 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 151 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 152 }
mluis 0:62d1edcc13d1 153
mluis 0:62d1edcc13d1 154 /*!
mluis 0:62d1edcc13d1 155 * LMIC API implementation
mluis 0:62d1edcc13d1 156 */
mluis 0:62d1edcc13d1 157 // RADIO STATE
mluis 0:62d1edcc13d1 158 // (initialized by radio_init( ), used by radio_rand1( ))
mluis 0:62d1edcc13d1 159 static u1_t randbuf[16];
mluis 0:62d1edcc13d1 160
mluis 0:62d1edcc13d1 161 // get random seed from wideband noise rssi
mluis 0:62d1edcc13d1 162 void radio_init( void )
mluis 0:62d1edcc13d1 163 {
mluis 0:62d1edcc13d1 164 hal_disableIRQs( );
mluis 0:62d1edcc13d1 165
mluis 0:62d1edcc13d1 166 // seed 15-byte randomness via noise rssi
mluis 0:62d1edcc13d1 167 // Set LoRa modem ON
mluis 0:62d1edcc13d1 168 Radio.SetModem( MODEM_LORA );
mluis 0:62d1edcc13d1 169 // Disable LoRa modem interrupts
mluis 0:62d1edcc13d1 170 Radio.Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
mluis 0:62d1edcc13d1 171 RFLR_IRQFLAGS_RXDONE |
mluis 0:62d1edcc13d1 172 RFLR_IRQFLAGS_PAYLOADCRCERROR |
mluis 0:62d1edcc13d1 173 RFLR_IRQFLAGS_VALIDHEADER |
mluis 0:62d1edcc13d1 174 RFLR_IRQFLAGS_TXDONE |
mluis 0:62d1edcc13d1 175 RFLR_IRQFLAGS_CADDONE |
mluis 0:62d1edcc13d1 176 RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
mluis 0:62d1edcc13d1 177 RFLR_IRQFLAGS_CADDETECTED );
mluis 0:62d1edcc13d1 178
mluis 0:62d1edcc13d1 179 // Set radio in continuous reception
mluis 0:62d1edcc13d1 180 Radio.Rx( 0 );
mluis 0:62d1edcc13d1 181
mluis 0:62d1edcc13d1 182 for( int i = 1; i < 16; i++ )
mluis 0:62d1edcc13d1 183 {
mluis 0:62d1edcc13d1 184 for( int j = 0; j < 8; j++ )
mluis 0:62d1edcc13d1 185 {
mluis 0:62d1edcc13d1 186 u1_t b; // wait for two non-identical subsequent least-significant bits
mluis 0:62d1edcc13d1 187 while( ( b = Radio.Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) == ( Radio.Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) );
mluis 0:62d1edcc13d1 188 randbuf[i] = ( randbuf[i] << 1 ) | b;
mluis 0:62d1edcc13d1 189 }
mluis 0:62d1edcc13d1 190 }
mluis 0:62d1edcc13d1 191 randbuf[0] = 16; // set initial index
mluis 0:62d1edcc13d1 192
mluis 0:62d1edcc13d1 193 // Change LoRa modem SyncWord
mluis 0:62d1edcc13d1 194 Radio.Write( REG_LR_SYNCWORD, LORA_MAC_SYNCWORD );
mluis 0:62d1edcc13d1 195
dudmuck 2:974cafbfb159 196 // correct bitrate tracking with RX inverted-IQ
dudmuck 2:974cafbfb159 197 Radio.Write(0x3b, 0x19);
dudmuck 2:974cafbfb159 198
mluis 0:62d1edcc13d1 199 Radio.Sleep( );
mluis 0:62d1edcc13d1 200
mluis 0:62d1edcc13d1 201 hal_enableIRQs( );
mluis 0:62d1edcc13d1 202 }
mluis 0:62d1edcc13d1 203
mluis 0:62d1edcc13d1 204 // return next random byte derived from seed buffer
mluis 0:62d1edcc13d1 205 // (buf[0] holds index of next byte to be returned)
mluis 0:62d1edcc13d1 206 u1_t radio_rand1( void )
mluis 0:62d1edcc13d1 207 {
mluis 0:62d1edcc13d1 208 u1_t i = randbuf[0];
mluis 0:62d1edcc13d1 209 ASSERT( i != 0 );
mluis 0:62d1edcc13d1 210 if( i == 16 )
mluis 0:62d1edcc13d1 211 {
mluis 0:62d1edcc13d1 212 os_aes( AES_ENC, randbuf, 16 ); // encrypt seed with any key
mluis 0:62d1edcc13d1 213 i = 0;
mluis 0:62d1edcc13d1 214 }
mluis 0:62d1edcc13d1 215 u1_t v = randbuf[i++];
mluis 0:62d1edcc13d1 216 randbuf[0] = i;
mluis 0:62d1edcc13d1 217 return v;
mluis 0:62d1edcc13d1 218 }
mluis 0:62d1edcc13d1 219
mluis 0:62d1edcc13d1 220 void os_radio( u1_t mode )
mluis 0:62d1edcc13d1 221 {
mluis 0:62d1edcc13d1 222 hal_disableIRQs( );
mluis 0:62d1edcc13d1 223 switch( mode )
mluis 0:62d1edcc13d1 224 {
mluis 0:62d1edcc13d1 225 case RADIO_RST:
mluis 0:62d1edcc13d1 226 // put radio to sleep
mluis 0:62d1edcc13d1 227 Radio.Sleep( );
mluis 0:62d1edcc13d1 228 break;
mluis 0:62d1edcc13d1 229
mluis 0:62d1edcc13d1 230 case RADIO_TX:
mluis 0:62d1edcc13d1 231 // transmit frame now
mluis 0:62d1edcc13d1 232 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 233
mluis 0:62d1edcc13d1 234 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 235 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 236 { // FSK modem
mluis 0:62d1edcc13d1 237 Radio.SetTxConfig( MODEM_FSK, LMIC.txpow, 25e3, 0, 50e3, 0, 5, false, true, 0, 0, false, 3e6 );
mluis 0:62d1edcc13d1 238 }
mluis 0:62d1edcc13d1 239 else
mluis 0:62d1edcc13d1 240 { // LoRa modem
mluis 0:62d1edcc13d1 241
mluis 1:d3b7bde3995c 242 Radio.SetTxConfig( MODEM_LORA, LMIC.txpow, 0, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 8, getIh( LMIC.rps ) ? true : false, ( getNocrc( LMIC.rps ) == 0 ) ? true : false, 0, 0, false, 3e6 );
mluis 0:62d1edcc13d1 243 }
mluis 0:62d1edcc13d1 244
mluis 0:62d1edcc13d1 245 //starttx( ); // buf=LMIC.frame, len=LMIC.dataLen
mluis 0:62d1edcc13d1 246 Radio.Send( LMIC.frame, LMIC.dataLen );
mluis 0:62d1edcc13d1 247 break;
mluis 0:62d1edcc13d1 248
mluis 0:62d1edcc13d1 249 case RADIO_RX:
mluis 0:62d1edcc13d1 250 // receive frame now (exactly at rxtime)
mluis 0:62d1edcc13d1 251 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 252
mluis 0:62d1edcc13d1 253 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 254 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 255 { // FSK modem
mluis 0:62d1edcc13d1 256 //Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, false );
mluis 0:62d1edcc13d1 257 Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, true );
mluis 0:62d1edcc13d1 258 }
mluis 0:62d1edcc13d1 259 else
mluis 0:62d1edcc13d1 260 { // LoRa modem
mluis 1:d3b7bde3995c 261 if( ( getSf( LMIC.rps ) <= SF9 ) && ( LMIC.rxsyms < 8 ) )
mluis 1:d3b7bde3995c 262 {
mluis 1:d3b7bde3995c 263 Radio.SetRxConfig( MODEM_LORA, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 0, 8, LMIC.rxsyms + 3, getIh( LMIC.rps ) ? true : false, getIh( LMIC.rps ), ( getNocrc( LMIC.rps ) == 0 ) ? true : false, 0, 0, true, false );
mluis 1:d3b7bde3995c 264 }
mluis 1:d3b7bde3995c 265 else
mluis 1:d3b7bde3995c 266 {
mluis 1:d3b7bde3995c 267 Radio.SetRxConfig( MODEM_LORA, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 0, 8, LMIC.rxsyms, getIh( LMIC.rps ) ? true : false, getIh( LMIC.rps ), ( getNocrc( LMIC.rps ) == 0 ) ? true : false, 0, 0, true, false );
mluis 1:d3b7bde3995c 268 }
mluis 0:62d1edcc13d1 269 }
mluis 0:62d1edcc13d1 270
mluis 0:62d1edcc13d1 271 // now instruct the radio to receive
mluis 0:62d1edcc13d1 272 hal_waitUntil( LMIC.rxtime ); // busy wait until exact rx time
mluis 0:62d1edcc13d1 273
mluis 0:62d1edcc13d1 274 //startrx( RXMODE_SINGLE ); // buf = LMIC.frame, time = LMIC.rxtime, timeout=LMIC.rxsyms
mluis 0:62d1edcc13d1 275 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 276 { // FSK modem
mluis 0:62d1edcc13d1 277 Radio.Rx( 50e3 ); // Max Rx window 50 ms
mluis 0:62d1edcc13d1 278 }
mluis 0:62d1edcc13d1 279 else
mluis 0:62d1edcc13d1 280 { // LoRa modem
mluis 0:62d1edcc13d1 281 Radio.Rx( 3e6 ); // Max Rx window 3 seconds
mluis 0:62d1edcc13d1 282 }
mluis 0:62d1edcc13d1 283 break;
mluis 0:62d1edcc13d1 284
mluis 0:62d1edcc13d1 285 case RADIO_RXON:
mluis 0:62d1edcc13d1 286 // start scanning for beacon now
mluis 0:62d1edcc13d1 287
mluis 0:62d1edcc13d1 288 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 289
mluis 0:62d1edcc13d1 290 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 291 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 292 { // FSK modem
mluis 0:62d1edcc13d1 293 Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, true );
mluis 0:62d1edcc13d1 294 }
mluis 0:62d1edcc13d1 295 else
mluis 0:62d1edcc13d1 296 { // LoRa modem
mluis 1:d3b7bde3995c 297 Radio.SetRxConfig( MODEM_LORA, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 0, 8, LMIC.rxsyms, getIh( LMIC.rps ) ? true : false, getIh( LMIC.rps ), ( getNocrc( LMIC.rps ) == 0 ) ? true : false, 0, 0, true, true );
mluis 0:62d1edcc13d1 298 }
mluis 0:62d1edcc13d1 299
mluis 1:d3b7bde3995c 300 //startrx( RXMODE_SCAN ); // buf = LMIC.frame
mluis 0:62d1edcc13d1 301 Radio.Rx( 0 );
mluis 0:62d1edcc13d1 302 break;
mluis 0:62d1edcc13d1 303 }
mluis 0:62d1edcc13d1 304 hal_enableIRQs( );
mluis 0:62d1edcc13d1 305 }
mluis 0:62d1edcc13d1 306
mluis 0:62d1edcc13d1 307 #else
mluis 0:62d1edcc13d1 308
mluis 0:62d1edcc13d1 309 // ----------------------------------------
mluis 0:62d1edcc13d1 310 // Registers Mapping
mluis 0:62d1edcc13d1 311 #define RegFifo 0x00 // common
mluis 0:62d1edcc13d1 312 #define RegOpMode 0x01 // common
mluis 0:62d1edcc13d1 313 #define FSKRegBitrateMsb 0x02
mluis 0:62d1edcc13d1 314 #define FSKRegBitrateLsb 0x03
mluis 0:62d1edcc13d1 315 #define FSKRegFdevMsb 0x04
mluis 0:62d1edcc13d1 316 #define FSKRegFdevLsb 0x05
mluis 0:62d1edcc13d1 317 #define RegFrfMsb 0x06 // common
mluis 0:62d1edcc13d1 318 #define RegFrfMid 0x07 // common
mluis 0:62d1edcc13d1 319 #define RegFrfLsb 0x08 // common
mluis 0:62d1edcc13d1 320 #define RegPaConfig 0x09 // common
mluis 0:62d1edcc13d1 321 #define RegPaRamp 0x0A // common
mluis 0:62d1edcc13d1 322 #define RegOcp 0x0B // common
mluis 0:62d1edcc13d1 323 #define RegLna 0x0C // common
mluis 0:62d1edcc13d1 324 #define FSKRegRxConfig 0x0D
mluis 0:62d1edcc13d1 325 #define LORARegFifoAddrPtr 0x0D
mluis 0:62d1edcc13d1 326 #define FSKRegRssiConfig 0x0E
mluis 0:62d1edcc13d1 327 #define LORARegFifoTxBaseAddr 0x0E
mluis 0:62d1edcc13d1 328 #define FSKRegRssiCollision 0x0F
mluis 0:62d1edcc13d1 329 #define LORARegFifoRxBaseAddr 0x0F
mluis 0:62d1edcc13d1 330 #define FSKRegRssiThresh 0x10
mluis 0:62d1edcc13d1 331 #define LORARegFifoRxCurrentAddr 0x10
mluis 0:62d1edcc13d1 332 #define FSKRegRssiValue 0x11
mluis 0:62d1edcc13d1 333 #define LORARegIrqFlagsMask 0x11
mluis 0:62d1edcc13d1 334 #define FSKRegRxBw 0x12
mluis 0:62d1edcc13d1 335 #define LORARegIrqFlags 0x12
mluis 0:62d1edcc13d1 336 #define FSKRegAfcBw 0x13
mluis 0:62d1edcc13d1 337 #define LORARegRxNbBytes 0x13
mluis 0:62d1edcc13d1 338 #define FSKRegOokPeak 0x14
mluis 0:62d1edcc13d1 339 #define LORARegRxHeaderCntValueMsb 0x14
mluis 0:62d1edcc13d1 340 #define FSKRegOokFix 0x15
mluis 0:62d1edcc13d1 341 #define LORARegRxHeaderCntValueLsb 0x15
mluis 0:62d1edcc13d1 342 #define FSKRegOokAvg 0x16
mluis 0:62d1edcc13d1 343 #define LORARegRxPacketCntValueMsb 0x16
mluis 0:62d1edcc13d1 344 #define LORARegRxpacketCntValueLsb 0x17
mluis 0:62d1edcc13d1 345 #define LORARegModemStat 0x18
mluis 0:62d1edcc13d1 346 #define LORARegPktSnrValue 0x19
mluis 0:62d1edcc13d1 347 #define FSKRegAfcFei 0x1A
mluis 0:62d1edcc13d1 348 #define LORARegPktRssiValue 0x1A
mluis 0:62d1edcc13d1 349 #define FSKRegAfcMsb 0x1B
mluis 0:62d1edcc13d1 350 #define LORARegRssiValue 0x1B
mluis 0:62d1edcc13d1 351 #define FSKRegAfcLsb 0x1C
mluis 0:62d1edcc13d1 352 #define LORARegHopChannel 0x1C
mluis 0:62d1edcc13d1 353 #define FSKRegFeiMsb 0x1D
mluis 0:62d1edcc13d1 354 #define LORARegModemConfig1 0x1D
mluis 0:62d1edcc13d1 355 #define FSKRegFeiLsb 0x1E
mluis 0:62d1edcc13d1 356 #define LORARegModemConfig2 0x1E
mluis 0:62d1edcc13d1 357 #define FSKRegPreambleDetect 0x1F
mluis 0:62d1edcc13d1 358 #define LORARegSymbTimeoutLsb 0x1F
mluis 0:62d1edcc13d1 359 #define FSKRegRxTimeout1 0x20
mluis 0:62d1edcc13d1 360 #define LORARegPreambleMsb 0x20
mluis 0:62d1edcc13d1 361 #define FSKRegRxTimeout2 0x21
mluis 0:62d1edcc13d1 362 #define LORARegPreambleLsb 0x21
mluis 0:62d1edcc13d1 363 #define FSKRegRxTimeout3 0x22
mluis 0:62d1edcc13d1 364 #define LORARegPayloadLength 0x22
mluis 0:62d1edcc13d1 365 #define FSKRegRxDelay 0x23
mluis 0:62d1edcc13d1 366 #define LORARegPayloadMaxLength 0x23
mluis 0:62d1edcc13d1 367 #define FSKRegOsc 0x24
mluis 0:62d1edcc13d1 368 #define LORARegHopPeriod 0x24
mluis 0:62d1edcc13d1 369 #define FSKRegPreambleMsb 0x25
mluis 0:62d1edcc13d1 370 #define LORARegFifoRxByteAddr 0x25
mluis 0:62d1edcc13d1 371 #define LORARegModemConfig3 0x26
mluis 0:62d1edcc13d1 372 #define FSKRegPreambleLsb 0x26
mluis 0:62d1edcc13d1 373 #define FSKRegSyncConfig 0x27
mluis 0:62d1edcc13d1 374 #define LORARegFeiMsb 0x28
mluis 0:62d1edcc13d1 375 #define FSKRegSyncValue1 0x28
mluis 0:62d1edcc13d1 376 #define LORAFeiMib 0x29
mluis 0:62d1edcc13d1 377 #define FSKRegSyncValue2 0x29
mluis 0:62d1edcc13d1 378 #define LORARegFeiLsb 0x2A
mluis 0:62d1edcc13d1 379 #define FSKRegSyncValue3 0x2A
mluis 0:62d1edcc13d1 380 #define FSKRegSyncValue4 0x2B
mluis 0:62d1edcc13d1 381 #define LORARegRssiWideband 0x2C
mluis 0:62d1edcc13d1 382 #define FSKRegSyncValue5 0x2C
mluis 0:62d1edcc13d1 383 #define FSKRegSyncValue6 0x2D
mluis 0:62d1edcc13d1 384 #define FSKRegSyncValue7 0x2E
mluis 0:62d1edcc13d1 385 #define FSKRegSyncValue8 0x2F
mluis 0:62d1edcc13d1 386 #define FSKRegPacketConfig1 0x30
mluis 0:62d1edcc13d1 387 #define FSKRegPacketConfig2 0x31
mluis 0:62d1edcc13d1 388 #define LORARegDetectOptimize 0x31
mluis 0:62d1edcc13d1 389 #define FSKRegPayloadLength 0x32
mluis 0:62d1edcc13d1 390 #define FSKRegNodeAdrs 0x33
mluis 0:62d1edcc13d1 391 #define LORARegInvertIQ 0x33
mluis 0:62d1edcc13d1 392 #define FSKRegBroadcastAdrs 0x34
mluis 0:62d1edcc13d1 393 #define FSKRegFifoThresh 0x35
mluis 0:62d1edcc13d1 394 #define FSKRegSeqConfig1 0x36
mluis 0:62d1edcc13d1 395 #define FSKRegSeqConfig2 0x37
mluis 0:62d1edcc13d1 396 #define LORARegDetectionThreshold 0x37
mluis 0:62d1edcc13d1 397 #define FSKRegTimerResol 0x38
mluis 0:62d1edcc13d1 398 #define FSKRegTimer1Coef 0x39
mluis 0:62d1edcc13d1 399 #define LORARegSyncWord 0x39
mluis 0:62d1edcc13d1 400 #define FSKRegTimer2Coef 0x3A
mluis 0:62d1edcc13d1 401 #define FSKRegImageCal 0x3B
mluis 0:62d1edcc13d1 402 #define FSKRegTemp 0x3C
mluis 0:62d1edcc13d1 403 #define FSKRegLowBat 0x3D
mluis 0:62d1edcc13d1 404 #define FSKRegIrqFlags1 0x3E
mluis 0:62d1edcc13d1 405 #define FSKRegIrqFlags2 0x3F
mluis 0:62d1edcc13d1 406 #define RegDioMapping1 0x40 // common
mluis 0:62d1edcc13d1 407 #define RegDioMapping2 0x41 // common
mluis 0:62d1edcc13d1 408 #define RegVersion 0x42 // common
mluis 0:62d1edcc13d1 409 // #define RegAgcRef 0x43 // common
mluis 0:62d1edcc13d1 410 // #define RegAgcThresh1 0x44 // common
mluis 0:62d1edcc13d1 411 // #define RegAgcThresh2 0x45 // common
mluis 0:62d1edcc13d1 412 // #define RegAgcThresh3 0x46 // common
mluis 0:62d1edcc13d1 413 // #define RegPllHop 0x4B // common
mluis 0:62d1edcc13d1 414 // #define RegTcxo 0x58 // common
mluis 0:62d1edcc13d1 415 #define RegPaDac 0x5A // common
mluis 0:62d1edcc13d1 416 // #define RegPll 0x5C // common
mluis 0:62d1edcc13d1 417 // #define RegPllLowPn 0x5E // common
mluis 0:62d1edcc13d1 418 // #define RegFormerTemp 0x6C // common
mluis 0:62d1edcc13d1 419 // #define RegBitRateFrac 0x70 // common
mluis 0:62d1edcc13d1 420
mluis 0:62d1edcc13d1 421 // ----------------------------------------
mluis 0:62d1edcc13d1 422 // spread factors and mode for RegModemConfig2
mluis 0:62d1edcc13d1 423 #define SX1272_MC2_FSK 0x00
mluis 0:62d1edcc13d1 424 #define SX1272_MC2_SF7 0x70
mluis 0:62d1edcc13d1 425 #define SX1272_MC2_SF8 0x80
mluis 0:62d1edcc13d1 426 #define SX1272_MC2_SF9 0x90
mluis 0:62d1edcc13d1 427 #define SX1272_MC2_SF10 0xA0
mluis 0:62d1edcc13d1 428 #define SX1272_MC2_SF11 0xB0
mluis 0:62d1edcc13d1 429 #define SX1272_MC2_SF12 0xC0
mluis 0:62d1edcc13d1 430 // bandwidth for RegModemConfig1
mluis 0:62d1edcc13d1 431 #define SX1272_MC1_BW_125 0x00
mluis 0:62d1edcc13d1 432 #define SX1272_MC1_BW_250 0x40
mluis 0:62d1edcc13d1 433 #define SX1272_MC1_BW_500 0x80
mluis 0:62d1edcc13d1 434 // coding rate for RegModemConfig1
mluis 0:62d1edcc13d1 435 #define SX1272_MC1_CR_4_5 0x08
mluis 0:62d1edcc13d1 436 #define SX1272_MC1_CR_4_6 0x10
mluis 0:62d1edcc13d1 437 #define SX1272_MC1_CR_4_7 0x18
mluis 0:62d1edcc13d1 438 #define SX1272_MC1_CR_4_8 0x20
mluis 0:62d1edcc13d1 439 #define SX1272_MC1_IMPLICIT_HEADER_MODE_ON 0x04 // required for receive
mluis 0:62d1edcc13d1 440 #define SX1272_MC1_RX_PAYLOAD_CRCON 0x02
mluis 0:62d1edcc13d1 441 #define SX1272_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for SF11 and SF12
mluis 0:62d1edcc13d1 442 // transmit power configuration for RegPaConfig
mluis 0:62d1edcc13d1 443 #define SX1272_PAC_PA_SELECT_PA_BOOST 0x80
mluis 0:62d1edcc13d1 444 #define SX1272_PAC_PA_SELECT_RFIO_PIN 0x00
mluis 0:62d1edcc13d1 445
mluis 0:62d1edcc13d1 446
mluis 0:62d1edcc13d1 447 // sx1276 RegModemConfig1
mluis 0:62d1edcc13d1 448 #define SX1276_MC1_BW_125 0x70
mluis 0:62d1edcc13d1 449 #define SX1276_MC1_BW_250 0x80
mluis 0:62d1edcc13d1 450 #define SX1276_MC1_BW_500 0x90
mluis 0:62d1edcc13d1 451 #define SX1276_MC1_CR_4_5 0x02
mluis 0:62d1edcc13d1 452 #define SX1276_MC1_CR_4_6 0x04
mluis 0:62d1edcc13d1 453 #define SX1276_MC1_CR_4_7 0x06
mluis 0:62d1edcc13d1 454 #define SX1276_MC1_CR_4_8 0x08
mluis 0:62d1edcc13d1 455
mluis 0:62d1edcc13d1 456 #define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01
mluis 0:62d1edcc13d1 457
mluis 0:62d1edcc13d1 458 // sx1276 RegModemConfig2
mluis 0:62d1edcc13d1 459 #define SX1276_MC2_RX_PAYLOAD_CRCON 0x04
mluis 0:62d1edcc13d1 460
mluis 0:62d1edcc13d1 461 // sx1276 RegModemConfig3
mluis 0:62d1edcc13d1 462 #define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08
mluis 0:62d1edcc13d1 463 #define SX1276_MC3_AGCAUTO 0x04
mluis 0:62d1edcc13d1 464
mluis 0:62d1edcc13d1 465 // preamble for lora networks (nibbles swapped)
mluis 1:d3b7bde3995c 466 #define LORA_MAC_PREAMBLE 0x34
mluis 0:62d1edcc13d1 467
mluis 0:62d1edcc13d1 468 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
mluis 0:62d1edcc13d1 469 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 470 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
mluis 0:62d1edcc13d1 471 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 472 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
mluis 0:62d1edcc13d1 473 #endif
mluis 0:62d1edcc13d1 474
mluis 0:62d1edcc13d1 475
mluis 0:62d1edcc13d1 476
mluis 0:62d1edcc13d1 477 // ----------------------------------------
mluis 0:62d1edcc13d1 478 // Constants for radio registers
mluis 0:62d1edcc13d1 479 #define OPMODE_LORA 0x80
mluis 0:62d1edcc13d1 480 #define OPMODE_MASK 0x07
mluis 0:62d1edcc13d1 481 #define OPMODE_SLEEP 0x00
mluis 0:62d1edcc13d1 482 #define OPMODE_STANDBY 0x01
mluis 0:62d1edcc13d1 483 #define OPMODE_FSTX 0x02
mluis 0:62d1edcc13d1 484 #define OPMODE_TX 0x03
mluis 0:62d1edcc13d1 485 #define OPMODE_FSRX 0x04
mluis 0:62d1edcc13d1 486 #define OPMODE_RX 0x05
mluis 0:62d1edcc13d1 487 #define OPMODE_RX_SINGLE 0x06
mluis 0:62d1edcc13d1 488 #define OPMODE_CAD 0x07
mluis 0:62d1edcc13d1 489
mluis 0:62d1edcc13d1 490 // ----------------------------------------
mluis 0:62d1edcc13d1 491 // Bits masking the corresponding IRQs from the radio
mluis 0:62d1edcc13d1 492 #define IRQ_LORA_RXTOUT_MASK 0x80
mluis 0:62d1edcc13d1 493 #define IRQ_LORA_RXDONE_MASK 0x40
mluis 0:62d1edcc13d1 494 #define IRQ_LORA_CRCERR_MASK 0x20
mluis 0:62d1edcc13d1 495 #define IRQ_LORA_HEADER_MASK 0x10
mluis 0:62d1edcc13d1 496 #define IRQ_LORA_TXDONE_MASK 0x08
mluis 0:62d1edcc13d1 497 #define IRQ_LORA_CDDONE_MASK 0x04
mluis 0:62d1edcc13d1 498 #define IRQ_LORA_FHSSCH_MASK 0x02
mluis 0:62d1edcc13d1 499 #define IRQ_LORA_CDDETD_MASK 0x01
mluis 0:62d1edcc13d1 500
mluis 0:62d1edcc13d1 501 #define IRQ_FSK1_MODEREADY_MASK 0x80
mluis 0:62d1edcc13d1 502 #define IRQ_FSK1_RXREADY_MASK 0x40
mluis 0:62d1edcc13d1 503 #define IRQ_FSK1_TXREADY_MASK 0x20
mluis 0:62d1edcc13d1 504 #define IRQ_FSK1_PLLLOCK_MASK 0x10
mluis 0:62d1edcc13d1 505 #define IRQ_FSK1_RSSI_MASK 0x08
mluis 0:62d1edcc13d1 506 #define IRQ_FSK1_TIMEOUT_MASK 0x04
mluis 0:62d1edcc13d1 507 #define IRQ_FSK1_PREAMBLEDETECT_MASK 0x02
mluis 0:62d1edcc13d1 508 #define IRQ_FSK1_SYNCADDRESSMATCH_MASK 0x01
mluis 0:62d1edcc13d1 509 #define IRQ_FSK2_FIFOFULL_MASK 0x80
mluis 0:62d1edcc13d1 510 #define IRQ_FSK2_FIFOEMPTY_MASK 0x40
mluis 0:62d1edcc13d1 511 #define IRQ_FSK2_FIFOLEVEL_MASK 0x20
mluis 0:62d1edcc13d1 512 #define IRQ_FSK2_FIFOOVERRUN_MASK 0x10
mluis 0:62d1edcc13d1 513 #define IRQ_FSK2_PACKETSENT_MASK 0x08
mluis 0:62d1edcc13d1 514 #define IRQ_FSK2_PAYLOADREADY_MASK 0x04
mluis 0:62d1edcc13d1 515 #define IRQ_FSK2_CRCOK_MASK 0x02
mluis 0:62d1edcc13d1 516 #define IRQ_FSK2_LOWBAT_MASK 0x01
mluis 0:62d1edcc13d1 517
mluis 0:62d1edcc13d1 518 // ----------------------------------------
mluis 0:62d1edcc13d1 519 // DIO function mappings D0D1D2D3
mluis 0:62d1edcc13d1 520 #define MAP_DIO0_LORA_RXDONE 0x00 // 00------
mluis 0:62d1edcc13d1 521 #define MAP_DIO0_LORA_TXDONE 0x40 // 01------
mluis 0:62d1edcc13d1 522 #define MAP_DIO1_LORA_RXTOUT 0x00 // --00----
mluis 0:62d1edcc13d1 523 #define MAP_DIO1_LORA_NOP 0x30 // --11----
mluis 0:62d1edcc13d1 524 #define MAP_DIO2_LORA_NOP 0xC0 // ----11--
mluis 0:62d1edcc13d1 525
mluis 0:62d1edcc13d1 526 #define MAP_DIO0_FSK_READY 0x00 // 00------ (packet sent / payload ready)
mluis 0:62d1edcc13d1 527 #define MAP_DIO1_FSK_NOP 0x30 // --11----
mluis 0:62d1edcc13d1 528 #define MAP_DIO2_FSK_TXNOP 0x04 // ----01--
mluis 0:62d1edcc13d1 529 #define MAP_DIO2_FSK_TIMEOUT 0x08 // ----10--
mluis 0:62d1edcc13d1 530
mluis 0:62d1edcc13d1 531
mluis 0:62d1edcc13d1 532 // FSK IMAGECAL defines
mluis 0:62d1edcc13d1 533 #define RF_IMAGECAL_AUTOIMAGECAL_MASK 0x7F
mluis 0:62d1edcc13d1 534 #define RF_IMAGECAL_AUTOIMAGECAL_ON 0x80
mluis 0:62d1edcc13d1 535 #define RF_IMAGECAL_AUTOIMAGECAL_OFF 0x00 // Default
mluis 0:62d1edcc13d1 536
mluis 0:62d1edcc13d1 537 #define RF_IMAGECAL_IMAGECAL_MASK 0xBF
mluis 0:62d1edcc13d1 538 #define RF_IMAGECAL_IMAGECAL_START 0x40
mluis 0:62d1edcc13d1 539
mluis 0:62d1edcc13d1 540 #define RF_IMAGECAL_IMAGECAL_RUNNING 0x20
mluis 0:62d1edcc13d1 541 #define RF_IMAGECAL_IMAGECAL_DONE 0x00 // Default
mluis 0:62d1edcc13d1 542
mluis 0:62d1edcc13d1 543
mluis 0:62d1edcc13d1 544 // RADIO STATE
mluis 0:62d1edcc13d1 545 // (initialized by radio_init(), used by radio_rand1())
mluis 0:62d1edcc13d1 546 static u1_t randbuf[16];
mluis 0:62d1edcc13d1 547
mluis 0:62d1edcc13d1 548
mluis 0:62d1edcc13d1 549 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 550 #define LNA_RX_GAIN (0x20|0x1)
mluis 0:62d1edcc13d1 551 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 552 #define LNA_RX_GAIN (0x20|0x03)
mluis 0:62d1edcc13d1 553 #else
mluis 0:62d1edcc13d1 554 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 555 #endif
mluis 0:62d1edcc13d1 556
mluis 1:d3b7bde3995c 557 #define RADIO_DBG
mluis 1:d3b7bde3995c 558 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 559 DigitalOut txStateIo( PB_8 );
mluis 1:d3b7bde3995c 560 DigitalOut rxStateIo( PB_9 );
mluis 1:d3b7bde3995c 561 #endif
mluis 1:d3b7bde3995c 562
mluis 0:62d1edcc13d1 563 static void writeReg (u1_t addr, u1_t data ) {
mluis 0:62d1edcc13d1 564 hal_pin_nss(0);
mluis 0:62d1edcc13d1 565 hal_spi(addr | 0x80);
mluis 0:62d1edcc13d1 566 hal_spi(data);
mluis 0:62d1edcc13d1 567 hal_pin_nss(1);
mluis 0:62d1edcc13d1 568 }
mluis 0:62d1edcc13d1 569
mluis 0:62d1edcc13d1 570 static u1_t readReg (u1_t addr) {
mluis 0:62d1edcc13d1 571 hal_pin_nss(0);
mluis 0:62d1edcc13d1 572 hal_spi(addr & 0x7F);
mluis 0:62d1edcc13d1 573 u1_t val = hal_spi(0x00);
mluis 0:62d1edcc13d1 574 hal_pin_nss(1);
mluis 0:62d1edcc13d1 575 return val;
mluis 0:62d1edcc13d1 576 }
mluis 0:62d1edcc13d1 577
mluis 0:62d1edcc13d1 578 static void writeBuf (u1_t addr, xref2u1_t buf, u1_t len) {
mluis 0:62d1edcc13d1 579 hal_pin_nss(0);
mluis 0:62d1edcc13d1 580 hal_spi(addr | 0x80);
mluis 0:62d1edcc13d1 581 for (u1_t i=0; i<len; i++) {
mluis 0:62d1edcc13d1 582 hal_spi(buf[i]);
mluis 0:62d1edcc13d1 583 }
mluis 0:62d1edcc13d1 584 hal_pin_nss(1);
mluis 0:62d1edcc13d1 585 }
mluis 0:62d1edcc13d1 586
mluis 0:62d1edcc13d1 587 static void readBuf (u1_t addr, xref2u1_t buf, u1_t len) {
mluis 0:62d1edcc13d1 588 hal_pin_nss(0);
mluis 0:62d1edcc13d1 589 hal_spi(addr & 0x7F);
mluis 0:62d1edcc13d1 590 for (u1_t i=0; i<len; i++) {
mluis 0:62d1edcc13d1 591 buf[i] = hal_spi(0x00);
mluis 0:62d1edcc13d1 592 }
mluis 0:62d1edcc13d1 593 hal_pin_nss(1);
mluis 0:62d1edcc13d1 594 }
mluis 0:62d1edcc13d1 595
mluis 0:62d1edcc13d1 596 static void opmode (u1_t mode) {
mluis 0:62d1edcc13d1 597 writeReg(RegOpMode, (readReg(RegOpMode) & ~OPMODE_MASK) | mode);
mluis 0:62d1edcc13d1 598 }
mluis 0:62d1edcc13d1 599
mluis 1:d3b7bde3995c 600 static void opmodeLora() {
mluis 0:62d1edcc13d1 601 u1_t u = OPMODE_LORA;
mluis 0:62d1edcc13d1 602 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 603 u |= 0x8; // TBD: sx1276 high freq
mluis 0:62d1edcc13d1 604 #endif
mluis 0:62d1edcc13d1 605 writeReg(RegOpMode, u);
mluis 0:62d1edcc13d1 606 }
mluis 0:62d1edcc13d1 607
mluis 1:d3b7bde3995c 608 static void opmodeFSK() {
mluis 0:62d1edcc13d1 609 u1_t u = 0;
mluis 0:62d1edcc13d1 610 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 611 u |= 0x8; // TBD: sx1276 high freq
mluis 0:62d1edcc13d1 612 #endif
mluis 0:62d1edcc13d1 613 writeReg(RegOpMode, u);
mluis 0:62d1edcc13d1 614 }
mluis 0:62d1edcc13d1 615
mluis 0:62d1edcc13d1 616 // configure LoRa modem (cfg1, cfg2)
mluis 1:d3b7bde3995c 617 static void configLoraModem () {
mluis 0:62d1edcc13d1 618 sf_t sf = getSf(LMIC.rps);
mluis 0:62d1edcc13d1 619
mluis 0:62d1edcc13d1 620 #ifdef CFG_sx1276_radio
mluis 1:d3b7bde3995c 621 u1_t mc1 = 0, mc2 = 0, mc3 = 0;
mluis 0:62d1edcc13d1 622
mluis 1:d3b7bde3995c 623 switch (getBw(LMIC.rps)) {
mluis 1:d3b7bde3995c 624 case BW125: mc1 |= SX1276_MC1_BW_125; break;
mluis 1:d3b7bde3995c 625 case BW250: mc1 |= SX1276_MC1_BW_250; break;
mluis 1:d3b7bde3995c 626 case BW500: mc1 |= SX1276_MC1_BW_500; break;
mluis 1:d3b7bde3995c 627 default:
mluis 1:d3b7bde3995c 628 ASSERT(0);
mluis 1:d3b7bde3995c 629 }
mluis 1:d3b7bde3995c 630 switch( getCr(LMIC.rps) ) {
mluis 1:d3b7bde3995c 631 case CR_4_5: mc1 |= SX1276_MC1_CR_4_5; break;
mluis 1:d3b7bde3995c 632 case CR_4_6: mc1 |= SX1276_MC1_CR_4_6; break;
mluis 1:d3b7bde3995c 633 case CR_4_7: mc1 |= SX1276_MC1_CR_4_7; break;
mluis 1:d3b7bde3995c 634 case CR_4_8: mc1 |= SX1276_MC1_CR_4_8; break;
mluis 1:d3b7bde3995c 635 default:
mluis 1:d3b7bde3995c 636 ASSERT(0);
mluis 1:d3b7bde3995c 637 }
mluis 0:62d1edcc13d1 638
mluis 1:d3b7bde3995c 639 if (getIh(LMIC.rps)) {
mluis 1:d3b7bde3995c 640 mc1 |= SX1276_MC1_IMPLICIT_HEADER_MODE_ON;
mluis 1:d3b7bde3995c 641 writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
mluis 1:d3b7bde3995c 642 }
mluis 1:d3b7bde3995c 643 // set ModemConfig1
mluis 1:d3b7bde3995c 644 writeReg(LORARegModemConfig1, mc1);
mluis 0:62d1edcc13d1 645
mluis 1:d3b7bde3995c 646 mc2 = (SX1272_MC2_SF7 + ((sf-1)<<4));
mluis 1:d3b7bde3995c 647 if (getNocrc(LMIC.rps) == 0) {
mluis 1:d3b7bde3995c 648 mc2 |= SX1276_MC2_RX_PAYLOAD_CRCON;
mluis 1:d3b7bde3995c 649 }
mluis 1:d3b7bde3995c 650 writeReg(LORARegModemConfig2, mc2);
mluis 1:d3b7bde3995c 651
mluis 1:d3b7bde3995c 652 mc3 = SX1276_MC3_AGCAUTO;
mluis 1:d3b7bde3995c 653 if ((sf == SF11 || sf == SF12) && getBw(LMIC.rps) == BW125) {
mluis 1:d3b7bde3995c 654 mc3 |= SX1276_MC3_LOW_DATA_RATE_OPTIMIZE;
mluis 1:d3b7bde3995c 655 }
mluis 1:d3b7bde3995c 656 writeReg(LORARegModemConfig3, mc3);
mluis 0:62d1edcc13d1 657 #elif CFG_sx1272_radio
mluis 1:d3b7bde3995c 658 u1_t mc1 = (getBw(LMIC.rps)<<6);
mluis 0:62d1edcc13d1 659
mluis 1:d3b7bde3995c 660 switch( getCr(LMIC.rps) ) {
mluis 1:d3b7bde3995c 661 case CR_4_5: mc1 |= SX1272_MC1_CR_4_5; break;
mluis 1:d3b7bde3995c 662 case CR_4_6: mc1 |= SX1272_MC1_CR_4_6; break;
mluis 1:d3b7bde3995c 663 case CR_4_7: mc1 |= SX1272_MC1_CR_4_7; break;
mluis 1:d3b7bde3995c 664 case CR_4_8: mc1 |= SX1272_MC1_CR_4_8; break;
mluis 1:d3b7bde3995c 665 }
mluis 1:d3b7bde3995c 666
mluis 1:d3b7bde3995c 667 if ((sf == SF11 || sf == SF12) && getBw(LMIC.rps) == BW125) {
mluis 1:d3b7bde3995c 668 mc1 |= SX1272_MC1_LOW_DATA_RATE_OPTIMIZE;
mluis 1:d3b7bde3995c 669 }
mluis 1:d3b7bde3995c 670
mluis 1:d3b7bde3995c 671 if (getNocrc(LMIC.rps) == 0) {
mluis 1:d3b7bde3995c 672 mc1 |= SX1272_MC1_RX_PAYLOAD_CRCON;
mluis 1:d3b7bde3995c 673 }
mluis 1:d3b7bde3995c 674
mluis 1:d3b7bde3995c 675 if (getIh(LMIC.rps)) {
mluis 1:d3b7bde3995c 676 mc1 |= SX1272_MC1_IMPLICIT_HEADER_MODE_ON;
mluis 1:d3b7bde3995c 677 writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
mluis 1:d3b7bde3995c 678 }
mluis 1:d3b7bde3995c 679 // set ModemConfig1
mluis 1:d3b7bde3995c 680 writeReg(LORARegModemConfig1, mc1);
mluis 1:d3b7bde3995c 681
mluis 1:d3b7bde3995c 682 // set ModemConfig2 (sf, AgcAutoOn=1 SymbTimeoutHi=00)
mluis 1:d3b7bde3995c 683 writeReg(LORARegModemConfig2, (SX1272_MC2_SF7 + ((sf-1)<<4)) | 0x04);
mluis 0:62d1edcc13d1 684 #else
mluis 0:62d1edcc13d1 685 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 686 #endif /* CFG_sx1272_radio */
mluis 0:62d1edcc13d1 687 }
mluis 0:62d1edcc13d1 688
mluis 1:d3b7bde3995c 689 static void configChannel () {
mluis 0:62d1edcc13d1 690 // set frequency: FQ = (FRF * 32 Mhz) / (2 ^ 19)
mluis 0:62d1edcc13d1 691 u8_t frf = ((u8_t)LMIC.freq << 19) / 32000000;
mluis 0:62d1edcc13d1 692 writeReg(RegFrfMsb, (u1_t)(frf>>16));
mluis 0:62d1edcc13d1 693 writeReg(RegFrfMid, (u1_t)(frf>> 8));
mluis 0:62d1edcc13d1 694 writeReg(RegFrfLsb, (u1_t)(frf>> 0));
mluis 0:62d1edcc13d1 695 }
mluis 0:62d1edcc13d1 696
mluis 0:62d1edcc13d1 697
mluis 0:62d1edcc13d1 698
mluis 1:d3b7bde3995c 699 static void configPower () {
mluis 0:62d1edcc13d1 700 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 701 // no boost used for now
mluis 0:62d1edcc13d1 702 s1_t pw = (s1_t)LMIC.txpow;
mluis 1:d3b7bde3995c 703 if(pw >= 17) {
mluis 1:d3b7bde3995c 704 pw = 15;
mluis 1:d3b7bde3995c 705 } else if(pw < 2) {
mluis 1:d3b7bde3995c 706 pw = 2;
mluis 0:62d1edcc13d1 707 }
mluis 0:62d1edcc13d1 708 // check board type for BOOST pin
mluis 1:d3b7bde3995c 709 writeReg(RegPaConfig, (u1_t)(0x80|(pw&0xf)));
mluis 0:62d1edcc13d1 710 writeReg(RegPaDac, readReg(RegPaDac)|0x4);
mluis 0:62d1edcc13d1 711
mluis 0:62d1edcc13d1 712 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 713 // set PA config (2-17 dBm using PA_BOOST)
mluis 0:62d1edcc13d1 714 s1_t pw = (s1_t)LMIC.txpow;
mluis 0:62d1edcc13d1 715 if(pw > 17) {
mluis 1:d3b7bde3995c 716 pw = 17;
mluis 0:62d1edcc13d1 717 } else if(pw < 2) {
mluis 1:d3b7bde3995c 718 pw = 2;
mluis 0:62d1edcc13d1 719 }
mluis 0:62d1edcc13d1 720 writeReg(RegPaConfig, (u1_t)(0x80|(pw-2)));
mluis 0:62d1edcc13d1 721 #else
mluis 0:62d1edcc13d1 722 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 723 #endif /* CFG_sx1272_radio */
mluis 0:62d1edcc13d1 724 }
mluis 0:62d1edcc13d1 725
mluis 1:d3b7bde3995c 726 static void txfsk () {
mluis 0:62d1edcc13d1 727 // select FSK modem (from sleep mode)
mluis 0:62d1edcc13d1 728 writeReg(RegOpMode, 0x10); // FSK, BT=0.5
mluis 0:62d1edcc13d1 729 ASSERT(readReg(RegOpMode) == 0x10);
mluis 0:62d1edcc13d1 730 // enter standby mode (required for FIFO loading))
mluis 0:62d1edcc13d1 731 opmode(OPMODE_STANDBY);
mluis 1:d3b7bde3995c 732 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 733 txStateIo = 0;
mluis 1:d3b7bde3995c 734 rxStateIo = 0;
mluis 1:d3b7bde3995c 735 #endif
mluis 0:62d1edcc13d1 736 // set bitrate
mluis 0:62d1edcc13d1 737 writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
mluis 0:62d1edcc13d1 738 writeReg(FSKRegBitrateLsb, 0x80);
mluis 0:62d1edcc13d1 739 // set frequency deviation
mluis 0:62d1edcc13d1 740 writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
mluis 0:62d1edcc13d1 741 writeReg(FSKRegFdevLsb, 0x99);
mluis 0:62d1edcc13d1 742 // frame and packet handler settings
mluis 0:62d1edcc13d1 743 writeReg(FSKRegPreambleMsb, 0x00);
mluis 0:62d1edcc13d1 744 writeReg(FSKRegPreambleLsb, 0x05);
mluis 0:62d1edcc13d1 745 writeReg(FSKRegSyncConfig, 0x12);
mluis 0:62d1edcc13d1 746 writeReg(FSKRegPacketConfig1, 0xD0);
mluis 0:62d1edcc13d1 747 writeReg(FSKRegPacketConfig2, 0x40);
mluis 0:62d1edcc13d1 748 writeReg(FSKRegSyncValue1, 0xC1);
mluis 0:62d1edcc13d1 749 writeReg(FSKRegSyncValue2, 0x94);
mluis 0:62d1edcc13d1 750 writeReg(FSKRegSyncValue3, 0xC1);
mluis 0:62d1edcc13d1 751 // configure frequency
mluis 0:62d1edcc13d1 752 configChannel();
mluis 0:62d1edcc13d1 753 // configure output power
mluis 0:62d1edcc13d1 754 configPower();
mluis 0:62d1edcc13d1 755
mluis 0:62d1edcc13d1 756 // set the IRQ mapping DIO0=PacketSent DIO1=NOP DIO2=NOP
mluis 0:62d1edcc13d1 757 writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TXNOP);
mluis 0:62d1edcc13d1 758
mluis 0:62d1edcc13d1 759 // initialize the payload size and address pointers
mluis 0:62d1edcc13d1 760 writeReg(FSKRegPayloadLength, LMIC.dataLen+1); // (insert length byte into payload))
mluis 0:62d1edcc13d1 761
mluis 0:62d1edcc13d1 762 // download length byte and buffer to the radio FIFO
mluis 0:62d1edcc13d1 763 writeReg(RegFifo, LMIC.dataLen);
mluis 0:62d1edcc13d1 764 writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 0:62d1edcc13d1 765
mluis 0:62d1edcc13d1 766 // enable antenna switch for TX
mluis 0:62d1edcc13d1 767 hal_pin_rxtx(1);
mluis 0:62d1edcc13d1 768
mluis 0:62d1edcc13d1 769 // now we actually start the transmission
mluis 0:62d1edcc13d1 770 opmode(OPMODE_TX);
mluis 1:d3b7bde3995c 771 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 772 txStateIo = 1;
mluis 1:d3b7bde3995c 773 #endif
mluis 0:62d1edcc13d1 774 }
mluis 0:62d1edcc13d1 775
mluis 1:d3b7bde3995c 776 static void txlora () {
mluis 0:62d1edcc13d1 777 // select LoRa modem (from sleep mode)
mluis 0:62d1edcc13d1 778 //writeReg(RegOpMode, OPMODE_LORA);
mluis 0:62d1edcc13d1 779 opmodeLora();
mluis 0:62d1edcc13d1 780 ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
mluis 0:62d1edcc13d1 781
mluis 0:62d1edcc13d1 782 // enter standby mode (required for FIFO loading))
mluis 0:62d1edcc13d1 783 opmode(OPMODE_STANDBY);
mluis 1:d3b7bde3995c 784 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 785 txStateIo = 0;
mluis 1:d3b7bde3995c 786 rxStateIo = 0;
mluis 1:d3b7bde3995c 787 #endif
mluis 0:62d1edcc13d1 788 // configure LoRa modem (cfg1, cfg2)
mluis 0:62d1edcc13d1 789 configLoraModem();
mluis 0:62d1edcc13d1 790 // configure frequency
mluis 0:62d1edcc13d1 791 configChannel();
mluis 0:62d1edcc13d1 792 // configure output power
mluis 0:62d1edcc13d1 793 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA ramp-up time 50 uSec
mluis 0:62d1edcc13d1 794 configPower();
mluis 0:62d1edcc13d1 795 // set sync word
mluis 0:62d1edcc13d1 796 writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
mluis 0:62d1edcc13d1 797
mluis 0:62d1edcc13d1 798 // set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP
mluis 0:62d1edcc13d1 799 writeReg(RegDioMapping1, MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LORA_NOP);
mluis 0:62d1edcc13d1 800 // clear all radio IRQ flags
mluis 0:62d1edcc13d1 801 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 802 // mask all IRQs but TxDone
mluis 0:62d1edcc13d1 803 writeReg(LORARegIrqFlagsMask, ~IRQ_LORA_TXDONE_MASK);
mluis 0:62d1edcc13d1 804
mluis 0:62d1edcc13d1 805 // initialize the payload size and address pointers
mluis 0:62d1edcc13d1 806 writeReg(LORARegFifoTxBaseAddr, 0x00);
mluis 0:62d1edcc13d1 807 writeReg(LORARegFifoAddrPtr, 0x00);
mluis 0:62d1edcc13d1 808 writeReg(LORARegPayloadLength, LMIC.dataLen);
mluis 0:62d1edcc13d1 809
mluis 0:62d1edcc13d1 810 // download buffer to the radio FIFO
mluis 0:62d1edcc13d1 811 writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 0:62d1edcc13d1 812
mluis 0:62d1edcc13d1 813 // enable antenna switch for TX
mluis 0:62d1edcc13d1 814 hal_pin_rxtx(1);
mluis 0:62d1edcc13d1 815
mluis 0:62d1edcc13d1 816 // now we actually start the transmission
mluis 0:62d1edcc13d1 817 opmode(OPMODE_TX);
mluis 0:62d1edcc13d1 818 }
mluis 0:62d1edcc13d1 819
mluis 0:62d1edcc13d1 820 // start transmitter (buf=LMIC.frame, len=LMIC.dataLen)
mluis 1:d3b7bde3995c 821 static void starttx () {
mluis 0:62d1edcc13d1 822 ASSERT( (readReg(RegOpMode) & OPMODE_MASK) == OPMODE_SLEEP );
mluis 0:62d1edcc13d1 823 if(getSf(LMIC.rps) == FSK) { // FSK modem
mluis 0:62d1edcc13d1 824 txfsk();
mluis 0:62d1edcc13d1 825 } else { // LoRa modem
mluis 0:62d1edcc13d1 826 txlora();
mluis 0:62d1edcc13d1 827 }
mluis 0:62d1edcc13d1 828 // the radio will go back to STANDBY mode as soon as the TX is finished
mluis 0:62d1edcc13d1 829 // the corresponding IRQ will inform us about completion.
mluis 0:62d1edcc13d1 830 }
mluis 0:62d1edcc13d1 831
mluis 0:62d1edcc13d1 832 enum { RXMODE_SINGLE, RXMODE_SCAN, RXMODE_RSSI };
mluis 0:62d1edcc13d1 833
mluis 0:62d1edcc13d1 834 static const u1_t rxlorairqmask[] = {
mluis 0:62d1edcc13d1 835 [RXMODE_SINGLE] = IRQ_LORA_RXDONE_MASK|IRQ_LORA_RXTOUT_MASK,
mluis 0:62d1edcc13d1 836 [RXMODE_SCAN] = IRQ_LORA_RXDONE_MASK,
mluis 0:62d1edcc13d1 837 [RXMODE_RSSI] = 0x00,
mluis 0:62d1edcc13d1 838 };
mluis 0:62d1edcc13d1 839
mluis 0:62d1edcc13d1 840 // start LoRa receiver (time=LMIC.rxtime, timeout=LMIC.rxsyms, result=LMIC.frame[LMIC.dataLen])
mluis 0:62d1edcc13d1 841 static void rxlora (u1_t rxmode) {
mluis 0:62d1edcc13d1 842 // select LoRa modem (from sleep mode)
mluis 0:62d1edcc13d1 843 opmodeLora();
mluis 0:62d1edcc13d1 844 ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
mluis 0:62d1edcc13d1 845 // enter standby mode (warm up))
mluis 0:62d1edcc13d1 846 opmode(OPMODE_STANDBY);
mluis 1:d3b7bde3995c 847 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 848 txStateIo = 0;
mluis 1:d3b7bde3995c 849 rxStateIo = 0;
mluis 1:d3b7bde3995c 850 #endif
mluis 0:62d1edcc13d1 851 // don't use MAC settings at startup
mluis 0:62d1edcc13d1 852 if(rxmode == RXMODE_RSSI) { // use fixed settings for rssi scan
mluis 0:62d1edcc13d1 853 writeReg(LORARegModemConfig1, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1);
mluis 0:62d1edcc13d1 854 writeReg(LORARegModemConfig2, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2);
mluis 0:62d1edcc13d1 855 } else { // single or continuous rx mode
mluis 0:62d1edcc13d1 856 // configure LoRa modem (cfg1, cfg2)
mluis 0:62d1edcc13d1 857 configLoraModem();
mluis 0:62d1edcc13d1 858 // configure frequency
mluis 0:62d1edcc13d1 859 configChannel();
mluis 0:62d1edcc13d1 860 }
mluis 0:62d1edcc13d1 861 // set LNA gain
mluis 0:62d1edcc13d1 862 writeReg(RegLna, LNA_RX_GAIN);
mluis 0:62d1edcc13d1 863 // set max payload size
mluis 0:62d1edcc13d1 864 writeReg(LORARegPayloadMaxLength, 64);
mluis 0:62d1edcc13d1 865 // use inverted I/Q signal (prevent mote-to-mote communication)
mluis 0:62d1edcc13d1 866 writeReg(LORARegInvertIQ, readReg(LORARegInvertIQ)|(1<<6));
mluis 0:62d1edcc13d1 867 // set symbol timeout (for single rx)
mluis 0:62d1edcc13d1 868 writeReg(LORARegSymbTimeoutLsb, LMIC.rxsyms);
mluis 0:62d1edcc13d1 869 // set sync word
mluis 0:62d1edcc13d1 870 writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
mluis 0:62d1edcc13d1 871
mluis 0:62d1edcc13d1 872 // configure DIO mapping DIO0=RxDone DIO1=RxTout DIO2=NOP
mluis 0:62d1edcc13d1 873 writeReg(RegDioMapping1, MAP_DIO0_LORA_RXDONE|MAP_DIO1_LORA_RXTOUT|MAP_DIO2_LORA_NOP);
mluis 0:62d1edcc13d1 874 // clear all radio IRQ flags
mluis 0:62d1edcc13d1 875 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 876 // enable required radio IRQs
mluis 0:62d1edcc13d1 877 writeReg(LORARegIrqFlagsMask, ~rxlorairqmask[rxmode]);
mluis 0:62d1edcc13d1 878
mluis 0:62d1edcc13d1 879 // enable antenna switch for RX
mluis 0:62d1edcc13d1 880 hal_pin_rxtx(0);
mluis 0:62d1edcc13d1 881
mluis 0:62d1edcc13d1 882 // now instruct the radio to receive
mluis 0:62d1edcc13d1 883 if (rxmode == RXMODE_SINGLE) { // single rx
mluis 0:62d1edcc13d1 884 hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
mluis 1:d3b7bde3995c 885 opmode(OPMODE_RX_SINGLE);
mluis 1:d3b7bde3995c 886 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 887 rxStateIo = 1;
mluis 1:d3b7bde3995c 888 #endif
mluis 0:62d1edcc13d1 889 } else { // continous rx (scan or rssi)
mluis 1:d3b7bde3995c 890 opmode(OPMODE_RX);
mluis 1:d3b7bde3995c 891 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 892 rxStateIo = 1;
mluis 1:d3b7bde3995c 893 #endif
mluis 0:62d1edcc13d1 894 }
mluis 0:62d1edcc13d1 895 }
mluis 0:62d1edcc13d1 896
mluis 0:62d1edcc13d1 897 static void rxfsk (u1_t rxmode) {
mluis 0:62d1edcc13d1 898 // only single rx (no continuous scanning, no noise sampling)
mluis 0:62d1edcc13d1 899 ASSERT( rxmode == RXMODE_SINGLE );
mluis 0:62d1edcc13d1 900 // select FSK modem (from sleep mode)
mluis 0:62d1edcc13d1 901 //writeReg(RegOpMode, 0x00); // (not LoRa)
mluis 0:62d1edcc13d1 902 opmodeFSK();
mluis 0:62d1edcc13d1 903 ASSERT((readReg(RegOpMode) & OPMODE_LORA) == 0);
mluis 0:62d1edcc13d1 904 // enter standby mode (warm up))
mluis 0:62d1edcc13d1 905 opmode(OPMODE_STANDBY);
mluis 1:d3b7bde3995c 906 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 907 txStateIo = 0;
mluis 1:d3b7bde3995c 908 rxStateIo = 0;
mluis 1:d3b7bde3995c 909 #endif
mluis 0:62d1edcc13d1 910 // configure frequency
mluis 0:62d1edcc13d1 911 configChannel();
mluis 0:62d1edcc13d1 912 // set LNA gain
mluis 0:62d1edcc13d1 913 //writeReg(RegLna, 0x20|0x03); // max gain, boost enable
mluis 0:62d1edcc13d1 914 writeReg(RegLna, LNA_RX_GAIN);
mluis 0:62d1edcc13d1 915 // configure receiver
mluis 0:62d1edcc13d1 916 writeReg(FSKRegRxConfig, 0x1E); // AFC auto, AGC, trigger on preamble?!?
mluis 0:62d1edcc13d1 917 // set receiver bandwidth
mluis 0:62d1edcc13d1 918 writeReg(FSKRegRxBw, 0x0B); // 50kHz SSb
mluis 0:62d1edcc13d1 919 // set AFC bandwidth
mluis 0:62d1edcc13d1 920 writeReg(FSKRegAfcBw, 0x12); // 83.3kHz SSB
mluis 0:62d1edcc13d1 921 // set preamble detection
mluis 0:62d1edcc13d1 922 writeReg(FSKRegPreambleDetect, 0xAA); // enable, 2 bytes, 10 chip errors
mluis 0:62d1edcc13d1 923 // set sync config
mluis 0:62d1edcc13d1 924 writeReg(FSKRegSyncConfig, 0x12); // no auto restart, preamble 0xAA, enable, fill FIFO, 3 bytes sync
mluis 0:62d1edcc13d1 925 // set packet config
mluis 0:62d1edcc13d1 926 writeReg(FSKRegPacketConfig1, 0xD8); // var-length, whitening, crc, no auto-clear, no adr filter
mluis 0:62d1edcc13d1 927 writeReg(FSKRegPacketConfig2, 0x40); // packet mode
mluis 0:62d1edcc13d1 928 // set sync value
mluis 0:62d1edcc13d1 929 writeReg(FSKRegSyncValue1, 0xC1);
mluis 0:62d1edcc13d1 930 writeReg(FSKRegSyncValue2, 0x94);
mluis 0:62d1edcc13d1 931 writeReg(FSKRegSyncValue3, 0xC1);
mluis 0:62d1edcc13d1 932 // set preamble timeout
mluis 0:62d1edcc13d1 933 writeReg(FSKRegRxTimeout2, 0xFF);//(LMIC.rxsyms+1)/2);
mluis 0:62d1edcc13d1 934 // set bitrate
mluis 0:62d1edcc13d1 935 writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
mluis 0:62d1edcc13d1 936 writeReg(FSKRegBitrateLsb, 0x80);
mluis 0:62d1edcc13d1 937 // set frequency deviation
mluis 0:62d1edcc13d1 938 writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
mluis 0:62d1edcc13d1 939 writeReg(FSKRegFdevLsb, 0x99);
mluis 0:62d1edcc13d1 940
mluis 0:62d1edcc13d1 941 // configure DIO mapping DIO0=PayloadReady DIO1=NOP DIO2=TimeOut
mluis 0:62d1edcc13d1 942 writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TIMEOUT);
mluis 0:62d1edcc13d1 943
mluis 0:62d1edcc13d1 944 // enable antenna switch for RX
mluis 0:62d1edcc13d1 945 hal_pin_rxtx(0);
mluis 0:62d1edcc13d1 946
mluis 0:62d1edcc13d1 947 // now instruct the radio to receive
mluis 0:62d1edcc13d1 948 hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
mluis 0:62d1edcc13d1 949 opmode(OPMODE_RX); // no single rx mode available in FSK
mluis 1:d3b7bde3995c 950 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 951 rxStateIo = 1;
mluis 1:d3b7bde3995c 952 #endif
mluis 0:62d1edcc13d1 953 }
mluis 0:62d1edcc13d1 954
mluis 0:62d1edcc13d1 955 static void startrx (u1_t rxmode) {
mluis 0:62d1edcc13d1 956 ASSERT( (readReg(RegOpMode) & OPMODE_MASK) == OPMODE_SLEEP );
mluis 0:62d1edcc13d1 957 if(getSf(LMIC.rps) == FSK) { // FSK modem
mluis 0:62d1edcc13d1 958 rxfsk(rxmode);
mluis 0:62d1edcc13d1 959 } else { // LoRa modem
mluis 0:62d1edcc13d1 960 rxlora(rxmode);
mluis 0:62d1edcc13d1 961 }
mluis 0:62d1edcc13d1 962 // the radio will go back to STANDBY mode as soon as the RX is finished
mluis 0:62d1edcc13d1 963 // or timed out, and the corresponding IRQ will inform us about completion.
mluis 0:62d1edcc13d1 964 }
mluis 0:62d1edcc13d1 965
mluis 0:62d1edcc13d1 966 // get random seed from wideband noise rssi
mluis 1:d3b7bde3995c 967 void radio_init () {
mluis 0:62d1edcc13d1 968 hal_disableIRQs();
mluis 0:62d1edcc13d1 969
mluis 0:62d1edcc13d1 970 // manually reset radio
mluis 0:62d1edcc13d1 971 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 972 hal_pin_rst(0); // drive RST pin low
mluis 0:62d1edcc13d1 973 #else
mluis 0:62d1edcc13d1 974 hal_pin_rst(1); // drive RST pin high
mluis 0:62d1edcc13d1 975 #endif
mluis 0:62d1edcc13d1 976 hal_waitUntil(os_getTime()+ms2osticks(1)); // wait >100us
mluis 0:62d1edcc13d1 977 hal_pin_rst(2); // configure RST pin floating!
mluis 0:62d1edcc13d1 978 hal_waitUntil(os_getTime()+ms2osticks(5)); // wait 5ms
mluis 0:62d1edcc13d1 979
mluis 0:62d1edcc13d1 980 opmode(OPMODE_SLEEP);
mluis 1:d3b7bde3995c 981 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 982 txStateIo = 0;
mluis 1:d3b7bde3995c 983 rxStateIo = 0;
mluis 1:d3b7bde3995c 984 #endif
mluis 0:62d1edcc13d1 985 // some sanity checks, e.g., read version number
mluis 0:62d1edcc13d1 986 u1_t v = readReg(RegVersion);
mluis 0:62d1edcc13d1 987 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 988 ASSERT(v == 0x12 );
mluis 0:62d1edcc13d1 989 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 990 ASSERT(v == 0x22);
mluis 0:62d1edcc13d1 991 #else
mluis 0:62d1edcc13d1 992 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 993 #endif
mluis 0:62d1edcc13d1 994 // seed 15-byte randomness via noise rssi
mluis 0:62d1edcc13d1 995 rxlora(RXMODE_RSSI);
mluis 0:62d1edcc13d1 996 while( (readReg(RegOpMode) & OPMODE_MASK) != OPMODE_RX ); // continuous rx
mluis 0:62d1edcc13d1 997 for(int i=1; i<16; i++) {
mluis 0:62d1edcc13d1 998 for(int j=0; j<8; j++) {
mluis 0:62d1edcc13d1 999 u1_t b; // wait for two non-identical subsequent least-significant bits
mluis 0:62d1edcc13d1 1000 while( (b = readReg(LORARegRssiWideband) & 0x01) == (readReg(LORARegRssiWideband) & 0x01) );
mluis 0:62d1edcc13d1 1001 randbuf[i] = (randbuf[i] << 1) | b;
mluis 0:62d1edcc13d1 1002 }
mluis 0:62d1edcc13d1 1003 }
mluis 0:62d1edcc13d1 1004 randbuf[0] = 16; // set initial index
mluis 0:62d1edcc13d1 1005
mluis 1:d3b7bde3995c 1006 #ifdef CFG_sx1276mb1_board
mluis 0:62d1edcc13d1 1007 // chain calibration
mluis 0:62d1edcc13d1 1008 writeReg(RegPaConfig, 0);
mluis 0:62d1edcc13d1 1009
mluis 0:62d1edcc13d1 1010 // Launch Rx chain calibration for LF band
mluis 0:62d1edcc13d1 1011 writeReg(FSKRegImageCal, (readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_MASK)|RF_IMAGECAL_IMAGECAL_START);
mluis 0:62d1edcc13d1 1012 while((readReg(FSKRegImageCal)&RF_IMAGECAL_IMAGECAL_RUNNING) == RF_IMAGECAL_IMAGECAL_RUNNING){ ; }
mluis 0:62d1edcc13d1 1013
mluis 0:62d1edcc13d1 1014 // Sets a Frequency in HF band
mluis 0:62d1edcc13d1 1015 u4_t frf = 868000000;
mluis 0:62d1edcc13d1 1016 writeReg(RegFrfMsb, (u1_t)(frf>>16));
mluis 0:62d1edcc13d1 1017 writeReg(RegFrfMid, (u1_t)(frf>> 8));
mluis 0:62d1edcc13d1 1018 writeReg(RegFrfLsb, (u1_t)(frf>> 0));
mluis 0:62d1edcc13d1 1019
mluis 0:62d1edcc13d1 1020 // Launch Rx chain calibration for HF band
mluis 0:62d1edcc13d1 1021 writeReg(FSKRegImageCal, (readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_MASK)|RF_IMAGECAL_IMAGECAL_START);
mluis 0:62d1edcc13d1 1022 while((readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_RUNNING) == RF_IMAGECAL_IMAGECAL_RUNNING) { ; }
mluis 1:d3b7bde3995c 1023 #endif /* CFG_sx1276mb1_board */
mluis 0:62d1edcc13d1 1024
mluis 0:62d1edcc13d1 1025 opmode(OPMODE_SLEEP);
mluis 1:d3b7bde3995c 1026 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1027 txStateIo = 0;
mluis 1:d3b7bde3995c 1028 rxStateIo = 0;
mluis 1:d3b7bde3995c 1029 #endif
mluis 0:62d1edcc13d1 1030 hal_enableIRQs();
mluis 0:62d1edcc13d1 1031 }
mluis 0:62d1edcc13d1 1032
mluis 0:62d1edcc13d1 1033 // return next random byte derived from seed buffer
mluis 0:62d1edcc13d1 1034 // (buf[0] holds index of next byte to be returned)
mluis 1:d3b7bde3995c 1035 u1_t radio_rand1 () {
mluis 0:62d1edcc13d1 1036 u1_t i = randbuf[0];
mluis 0:62d1edcc13d1 1037 ASSERT( i != 0 );
mluis 0:62d1edcc13d1 1038 if( i==16 ) {
mluis 0:62d1edcc13d1 1039 os_aes(AES_ENC, randbuf, 16); // encrypt seed with any key
mluis 0:62d1edcc13d1 1040 i = 0;
mluis 0:62d1edcc13d1 1041 }
mluis 0:62d1edcc13d1 1042 u1_t v = randbuf[i++];
mluis 0:62d1edcc13d1 1043 randbuf[0] = i;
mluis 0:62d1edcc13d1 1044 return v;
mluis 0:62d1edcc13d1 1045 }
mluis 0:62d1edcc13d1 1046
mluis 1:d3b7bde3995c 1047 u1_t radio_rssi () {
mluis 0:62d1edcc13d1 1048 hal_disableIRQs();
mluis 0:62d1edcc13d1 1049 u1_t r = readReg(LORARegRssiValue);
mluis 0:62d1edcc13d1 1050 hal_enableIRQs();
mluis 0:62d1edcc13d1 1051 return r;
mluis 0:62d1edcc13d1 1052 }
mluis 0:62d1edcc13d1 1053
mluis 0:62d1edcc13d1 1054 static const u2_t LORA_RXDONE_FIXUP[] = {
mluis 0:62d1edcc13d1 1055 [FSK] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 1056 [SF7] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 1057 [SF8] = us2osticks(1648), // ( 54 ticks)
mluis 0:62d1edcc13d1 1058 [SF9] = us2osticks(3265), // ( 107 ticks)
mluis 0:62d1edcc13d1 1059 [SF10] = us2osticks(7049), // ( 231 ticks)
mluis 0:62d1edcc13d1 1060 [SF11] = us2osticks(13641), // ( 447 ticks)
mluis 0:62d1edcc13d1 1061 [SF12] = us2osticks(31189), // (1022 ticks)
mluis 0:62d1edcc13d1 1062 };
mluis 0:62d1edcc13d1 1063
mluis 0:62d1edcc13d1 1064 // called by hal ext IRQ handler
mluis 0:62d1edcc13d1 1065 // (radio goes to stanby mode after tx/rx operations)
mluis 0:62d1edcc13d1 1066 void radio_irq_handler (u1_t dio) {
mluis 0:62d1edcc13d1 1067 ostime_t now = os_getTime();
mluis 0:62d1edcc13d1 1068 if( (readReg(RegOpMode) & OPMODE_LORA) != 0) { // LORA modem
mluis 1:d3b7bde3995c 1069 u1_t flags = readReg(LORARegIrqFlags);
mluis 1:d3b7bde3995c 1070 if( flags & IRQ_LORA_TXDONE_MASK ) {
mluis 1:d3b7bde3995c 1071 // save exact tx time
mluis 1:d3b7bde3995c 1072 LMIC.txend = now - us2osticks(43); // TXDONE FIXUP
mluis 1:d3b7bde3995c 1073 } else if( flags & IRQ_LORA_RXDONE_MASK ) {
mluis 1:d3b7bde3995c 1074 // save exact rx time
mluis 1:d3b7bde3995c 1075 if(getBw(LMIC.rps) == BW125) {
mluis 1:d3b7bde3995c 1076 now -= LORA_RXDONE_FIXUP[getSf(LMIC.rps)];
mluis 1:d3b7bde3995c 1077 }
mluis 1:d3b7bde3995c 1078 LMIC.rxtime = now;
mluis 1:d3b7bde3995c 1079 // read the PDU and inform the MAC that we received something
mluis 1:d3b7bde3995c 1080 LMIC.dataLen = (readReg(LORARegModemConfig1) & SX1272_MC1_IMPLICIT_HEADER_MODE_ON) ?
mluis 1:d3b7bde3995c 1081 readReg(LORARegPayloadLength) : readReg(LORARegRxNbBytes);
mluis 1:d3b7bde3995c 1082 // set FIFO read address pointer
mluis 1:d3b7bde3995c 1083 writeReg(LORARegFifoAddrPtr, readReg(LORARegFifoRxCurrentAddr));
mluis 1:d3b7bde3995c 1084 // now read the FIFO
mluis 1:d3b7bde3995c 1085 readBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 1:d3b7bde3995c 1086 // read rx quality parameters
mluis 1:d3b7bde3995c 1087 LMIC.snr = readReg(LORARegPktSnrValue); // SNR [dB] * 4
mluis 1:d3b7bde3995c 1088 LMIC.rssi = readReg(LORARegPktRssiValue) - 125 + 64; // RSSI [dBm] (-196...+63)
mluis 1:d3b7bde3995c 1089 } else if( flags & IRQ_LORA_RXTOUT_MASK ) {
mluis 1:d3b7bde3995c 1090 // indicate timeout
mluis 1:d3b7bde3995c 1091 LMIC.dataLen = 0;
mluis 1:d3b7bde3995c 1092 }
mluis 0:62d1edcc13d1 1093 // mask all radio IRQs
mluis 0:62d1edcc13d1 1094 writeReg(LORARegIrqFlagsMask, 0xFF);
mluis 0:62d1edcc13d1 1095 // clear radio IRQ flags
mluis 0:62d1edcc13d1 1096 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 1097 } else { // FSK modem
mluis 1:d3b7bde3995c 1098 u1_t flags1 = readReg(FSKRegIrqFlags1);
mluis 1:d3b7bde3995c 1099 u1_t flags2 = readReg(FSKRegIrqFlags2);
mluis 1:d3b7bde3995c 1100 if( flags2 & IRQ_FSK2_PACKETSENT_MASK ) {
mluis 1:d3b7bde3995c 1101 // save exact tx time
mluis 1:d3b7bde3995c 1102 LMIC.txend = now;
mluis 0:62d1edcc13d1 1103 } else if( flags2 & IRQ_FSK2_PAYLOADREADY_MASK ) {
mluis 1:d3b7bde3995c 1104 // save exact rx time
mluis 1:d3b7bde3995c 1105 LMIC.rxtime = now;
mluis 1:d3b7bde3995c 1106 // read the PDU and inform the MAC that we received something
mluis 1:d3b7bde3995c 1107 LMIC.dataLen = readReg(FSKRegPayloadLength);
mluis 1:d3b7bde3995c 1108 // now read the FIFO
mluis 1:d3b7bde3995c 1109 readBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 1:d3b7bde3995c 1110 // read rx quality parameters
mluis 1:d3b7bde3995c 1111 LMIC.snr = 0; // determine snr
mluis 1:d3b7bde3995c 1112 LMIC.rssi = 0; // determine rssi
mluis 1:d3b7bde3995c 1113 } else if( flags1 & IRQ_FSK1_TIMEOUT_MASK ) {
mluis 1:d3b7bde3995c 1114 // indicate timeout
mluis 1:d3b7bde3995c 1115 LMIC.dataLen = 0;
mluis 1:d3b7bde3995c 1116 } else {
mluis 0:62d1edcc13d1 1117 while(1);
mluis 0:62d1edcc13d1 1118 }
mluis 0:62d1edcc13d1 1119 }
mluis 0:62d1edcc13d1 1120 // go from stanby to sleep
mluis 0:62d1edcc13d1 1121 opmode(OPMODE_SLEEP);
mluis 1:d3b7bde3995c 1122 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1123 txStateIo = 0;
mluis 1:d3b7bde3995c 1124 rxStateIo = 0;
mluis 1:d3b7bde3995c 1125 #endif
mluis 0:62d1edcc13d1 1126 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 1127 os_setCallback(&LMIC.osjob, LMIC.osjob.func);
mluis 0:62d1edcc13d1 1128 }
mluis 0:62d1edcc13d1 1129
mluis 0:62d1edcc13d1 1130 void os_radio (u1_t mode) {
mluis 0:62d1edcc13d1 1131 hal_disableIRQs();
mluis 0:62d1edcc13d1 1132 switch (mode) {
mluis 0:62d1edcc13d1 1133 case RADIO_RST:
mluis 0:62d1edcc13d1 1134 // put radio to sleep
mluis 0:62d1edcc13d1 1135 opmode(OPMODE_SLEEP);
mluis 1:d3b7bde3995c 1136 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1137 txStateIo = 0;
mluis 1:d3b7bde3995c 1138 rxStateIo = 0;
mluis 1:d3b7bde3995c 1139 #endif
mluis 0:62d1edcc13d1 1140 break;
mluis 0:62d1edcc13d1 1141
mluis 0:62d1edcc13d1 1142 case RADIO_TX:
mluis 1:d3b7bde3995c 1143 // transmit frame now
mluis 0:62d1edcc13d1 1144 starttx(); // buf=LMIC.frame, len=LMIC.dataLen
mluis 1:d3b7bde3995c 1145 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1146 txStateIo = 1;
mluis 1:d3b7bde3995c 1147 #endif
mluis 0:62d1edcc13d1 1148 break;
mluis 0:62d1edcc13d1 1149
mluis 0:62d1edcc13d1 1150 case RADIO_RX:
mluis 1:d3b7bde3995c 1151 // receive frame now (exactly at rxtime)
mluis 0:62d1edcc13d1 1152 startrx(RXMODE_SINGLE); // buf=LMIC.frame, time=LMIC.rxtime, timeout=LMIC.rxsyms
mluis 1:d3b7bde3995c 1153 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1154 rxStateIo = 1;
mluis 1:d3b7bde3995c 1155 #endif
mluis 0:62d1edcc13d1 1156 break;
mluis 0:62d1edcc13d1 1157
mluis 0:62d1edcc13d1 1158 case RADIO_RXON:
mluis 0:62d1edcc13d1 1159 // start scanning for beacon now
mluis 0:62d1edcc13d1 1160 startrx(RXMODE_SCAN); // buf=LMIC.frame
mluis 1:d3b7bde3995c 1161 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1162 rxStateIo = 1;
mluis 1:d3b7bde3995c 1163 #endif
mluis 0:62d1edcc13d1 1164 break;
mluis 0:62d1edcc13d1 1165 }
mluis 0:62d1edcc13d1 1166 hal_enableIRQs();
mluis 0:62d1edcc13d1 1167 }
mluis 0:62d1edcc13d1 1168
mluis 0:62d1edcc13d1 1169 #endif // USE_SMTC_RADIO_DRIVER