mpuうごくん?

Dependencies:   mbed

Fork of MPU6050IMU by Kris Winer

Revision:
1:cea9d83b8636
Parent:
0:65aa78c10981
Child:
3:b7223a307029
diff -r 65aa78c10981 -r cea9d83b8636 main.cpp
--- a/main.cpp	Sun May 25 04:51:50 2014 +0000
+++ b/main.cpp	Sun Jun 29 21:41:36 2014 +0000
@@ -1,4 +1,3 @@
-#include "mbed.h"
 
 /* MPU6050 Basic Example Code
  by: Kris Winer
@@ -27,9 +26,9 @@
  We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
  */
  
-//#include <Wire.h>
-//#include <Adafruit_GFX.h>
-//#include <Adafruit_PCD8544.h>
+#include "mbed.h"
+#include "MPU6050.h"
+#include "N5110.h"
 
 // Using NOKIA 5110 monochrome 84 x 48 pixel display
 // pin 9 - Serial clock out (SCLK)
@@ -39,750 +38,154 @@
 // pin 6 - LCD reset (RST)
 //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
 
-// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
-// Invensense Inc., www.invensense.com
-// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in 
-// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
-//
-#define XGOFFS_TC        0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD                 
-#define YGOFFS_TC        0x01                                                                          
-#define ZGOFFS_TC        0x02
-#define X_FINE_GAIN      0x03 // [7:0] fine gain
-#define Y_FINE_GAIN      0x04
-#define Z_FINE_GAIN      0x05
-#define XA_OFFSET_H      0x06 // User-defined trim values for accelerometer
-#define XA_OFFSET_L_TC   0x07
-#define YA_OFFSET_H      0x08
-#define YA_OFFSET_L_TC   0x09
-#define ZA_OFFSET_H      0x0A
-#define ZA_OFFSET_L_TC   0x0B
-#define SELF_TEST_X      0x0D
-#define SELF_TEST_Y      0x0E    
-#define SELF_TEST_Z      0x0F
-#define SELF_TEST_A      0x10
-#define XG_OFFS_USRH     0x13  // User-defined trim values for gyroscope; supported in MPU-6050?
-#define XG_OFFS_USRL     0x14
-#define YG_OFFS_USRH     0x15
-#define YG_OFFS_USRL     0x16
-#define ZG_OFFS_USRH     0x17
-#define ZG_OFFS_USRL     0x18
-#define SMPLRT_DIV       0x19
-#define CONFIG           0x1A
-#define GYRO_CONFIG      0x1B
-#define ACCEL_CONFIG     0x1C
-#define FF_THR           0x1D  // Free-fall
-#define FF_DUR           0x1E  // Free-fall
-#define MOT_THR          0x1F  // Motion detection threshold bits [7:0]
-#define MOT_DUR          0x20  // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
-#define ZMOT_THR         0x21  // Zero-motion detection threshold bits [7:0]
-#define ZRMOT_DUR        0x22  // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
-#define FIFO_EN          0x23
-#define I2C_MST_CTRL     0x24   
-#define I2C_SLV0_ADDR    0x25
-#define I2C_SLV0_REG     0x26
-#define I2C_SLV0_CTRL    0x27
-#define I2C_SLV1_ADDR    0x28
-#define I2C_SLV1_REG     0x29
-#define I2C_SLV1_CTRL    0x2A
-#define I2C_SLV2_ADDR    0x2B
-#define I2C_SLV2_REG     0x2C
-#define I2C_SLV2_CTRL    0x2D
-#define I2C_SLV3_ADDR    0x2E
-#define I2C_SLV3_REG     0x2F
-#define I2C_SLV3_CTRL    0x30
-#define I2C_SLV4_ADDR    0x31
-#define I2C_SLV4_REG     0x32
-#define I2C_SLV4_DO      0x33
-#define I2C_SLV4_CTRL    0x34
-#define I2C_SLV4_DI      0x35
-#define I2C_MST_STATUS   0x36
-#define INT_PIN_CFG      0x37
-#define INT_ENABLE       0x38
-#define DMP_INT_STATUS   0x39  // Check DMP interrupt
-#define INT_STATUS       0x3A
-#define ACCEL_XOUT_H     0x3B
-#define ACCEL_XOUT_L     0x3C
-#define ACCEL_YOUT_H     0x3D
-#define ACCEL_YOUT_L     0x3E
-#define ACCEL_ZOUT_H     0x3F
-#define ACCEL_ZOUT_L     0x40
-#define TEMP_OUT_H       0x41
-#define TEMP_OUT_L       0x42
-#define GYRO_XOUT_H      0x43
-#define GYRO_XOUT_L      0x44
-#define GYRO_YOUT_H      0x45
-#define GYRO_YOUT_L      0x46
-#define GYRO_ZOUT_H      0x47
-#define GYRO_ZOUT_L      0x48
-#define EXT_SENS_DATA_00 0x49
-#define EXT_SENS_DATA_01 0x4A
-#define EXT_SENS_DATA_02 0x4B
-#define EXT_SENS_DATA_03 0x4C
-#define EXT_SENS_DATA_04 0x4D
-#define EXT_SENS_DATA_05 0x4E
-#define EXT_SENS_DATA_06 0x4F
-#define EXT_SENS_DATA_07 0x50
-#define EXT_SENS_DATA_08 0x51
-#define EXT_SENS_DATA_09 0x52
-#define EXT_SENS_DATA_10 0x53
-#define EXT_SENS_DATA_11 0x54
-#define EXT_SENS_DATA_12 0x55
-#define EXT_SENS_DATA_13 0x56
-#define EXT_SENS_DATA_14 0x57
-#define EXT_SENS_DATA_15 0x58
-#define EXT_SENS_DATA_16 0x59
-#define EXT_SENS_DATA_17 0x5A
-#define EXT_SENS_DATA_18 0x5B
-#define EXT_SENS_DATA_19 0x5C
-#define EXT_SENS_DATA_20 0x5D
-#define EXT_SENS_DATA_21 0x5E
-#define EXT_SENS_DATA_22 0x5F
-#define EXT_SENS_DATA_23 0x60
-#define MOT_DETECT_STATUS 0x61
-#define I2C_SLV0_DO      0x63
-#define I2C_SLV1_DO      0x64
-#define I2C_SLV2_DO      0x65
-#define I2C_SLV3_DO      0x66
-#define I2C_MST_DELAY_CTRL 0x67
-#define SIGNAL_PATH_RESET  0x68
-#define MOT_DETECT_CTRL   0x69
-#define USER_CTRL        0x6A  // Bit 7 enable DMP, bit 3 reset DMP
-#define PWR_MGMT_1       0x6B // Device defaults to the SLEEP mode
-#define PWR_MGMT_2       0x6C
-#define DMP_BANK         0x6D  // Activates a specific bank in the DMP
-#define DMP_RW_PNT       0x6E  // Set read/write pointer to a specific start address in specified DMP bank
-#define DMP_REG          0x6F  // Register in DMP from which to read or to which to write
-#define DMP_REG_1        0x70
-#define DMP_REG_2        0x71
-#define FIFO_COUNTH      0x72
-#define FIFO_COUNTL      0x73
-#define FIFO_R_W         0x74
-#define WHO_AM_I_MPU6050 0x75 // Should return 0x68
+float sum = 0;
+uint32_t sumCount = 0;
+
+   MPU6050 mpu6050;
+   
+   Timer t;
+
+   Serial pc(USBTX, USBRX); // tx, rx
+
+   //        VCC,   SCE,  RST,  D/C,  MOSI,S CLK, LED
+   N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
+        
+int main()
+{
+  pc.baud(9600);  
 
-// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
-// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
-#define ADO 0
-#if ADO
-#define MPU6050_ADDRESS 0x69  // Device address when ADO = 1
-#else
-#define MPU6050_ADDRESS 0x68  // Device address when ADO = 0
-#endif
-
-// Set up I2C
-I2C i2c(PB_9, PB_8);
-//i2c.frequency(400000);  // use fast (400 kHz) I2C
-
-// Set up serial port
-Serial pc(PA_2, PA_3); // PA_2, PA_3 on STM32F01 Nucleo
-
-Timer t;
+  //Set up I2C
+  i2c.frequency(400000);  // use fast (400 kHz) I2C   
+  
+  t.start();        
+  
+  lcd.init();
+  lcd.setBrightness(0.05);
+  
+    
+  // Read the WHO_AM_I register, this is a good test of communication
+  uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
+  
+  if (whoami == 0x68) // WHO_AM_I should always be 0x68
+  {  
+    pc.printf("MPU6050 is online...");
+    wait(1);
+    lcd.clear();
+    lcd.printString("MPU6050 OK", 0, 0);
 
-// Set initial input parameters
-enum Ascale {
-  AFS_2G = 0,
-  AFS_4G,
-  AFS_8G,
-  AFS_16G
-};
-
-enum Gscale {
-  GFS_250DPS = 0,
-  GFS_500DPS,
-  GFS_1000DPS,
-  GFS_2000DPS
-};
-
-// Specify sensor full scale
-int Gscale = GFS_250DPS;
-int Ascale = AFS_2G;
-float aRes, gRes; // scale resolutions per LSB for the sensors
-  
-// Pin definitions
-int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
-char blinkOn = false;
-
-int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
-float ax, ay, az;       // Stores the real accel value in g's
-int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
-float gx, gy, gz;       // Stores the real gyro value in degrees per seconds
-float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
-int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
-float temperature;
-float SelfTest[6];
+    
+    mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+    pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
+    pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
+    pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
+    pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
+    pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
+    pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
+    wait(1);
 
-uint32_t delt_t = 0; // used to control display output rate
-uint32_t count = 0;  // used to control display output rate
-
-// parameters for 6 DoF sensor fusion calculations
-float PI = 3.141593;
-float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
-float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
-float GyroMeasDrift = PI * (0.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
-float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
-float pitch, yaw, roll;
-float deltat = 0.0f;                              // integration interval for both filter schemes
-uint32_t lastUpdate = 0, firstUpdate = 0;                          // used to calculate integration interval
-uint32_t Now = 0;                                 // used to calculate integration interval
-float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};            // vector to hold quaternion
-
-DigitalOut myled(LED1);
-
-//===================================================================================================================
-//====== Set of useful function to access acceleratio, gyroscope, and temperature data
-//===================================================================================================================
-
-    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
-{
-    i2c.write(address);
-    i2c.write(subAddress);
-    i2c.write(data);
-}
-
-    uint8_t readByte(uint8_t address, uint8_t subAddress)
-{
-    uint8_t data; // `data` will store the register data     
-    i2c.write(address);
-    i2c.write(subAddress);
-    data = i2c.read(1);                       // read the length byte and the 7 databytes
-    return data;                              // Return data read from slave register
-}
+    if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) 
+    {
+    mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+    mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
+    mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
 
-    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
-{  
-    i2c.write(address);
-    i2c.write(subAddress);
-    for (int ii = 0; ii < count; ii++) {
-        dest[ii] = i2c.read(1); 
-    } 
+    lcd.clear();
+    lcd.printString("MPU6050", 0, 0);
+    lcd.printString("pass self test", 0, 1);
+    lcd.printString("initializing", 0, 2);  
+    wait(2);
+       }
+    else
+    {
+    pc.printf("Device did not the pass self-test!\n\r");
  
-}
-void getGres() {
-  switch (Gscale)
-  {
-    // Possible gyro scales (and their register bit settings) are:
-    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
-        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-    case GFS_250DPS:
-          gRes = 250.0/32768.0;
-          break;
-    case GFS_500DPS:
-          gRes = 500.0/32768.0;
-          break;
-    case GFS_1000DPS:
-          gRes = 1000.0/32768.0;
-          break;
-    case GFS_2000DPS:
-          gRes = 2000.0/32768.0;
-          break;
+       lcd.clear();
+       lcd.printString("MPU6050", 0, 0);
+       lcd.printString("no pass", 0, 1);
+       lcd.printString("self test", 0, 2);      
+      }
+    }
+    else
+    {
+    pc.printf("Could not connect to MPU6050: \n\r");
+    pc.printf("%#x \n",  whoami);
+ 
+    lcd.clear();
+    lcd.printString("MPU6050", 0, 0);
+    lcd.printString("no connection", 0, 1);
+    lcd.printString("0x", 0, 2);  lcd.setXYAddress(20, 2); lcd.printChar(whoami);
+ 
+    while(1) ; // Loop forever if communication doesn't happen
   }
-}
-
-void getAres() {
-  switch (Ascale)
-  {
-    // Possible accelerometer scales (and their register bit settings) are:
-    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
-        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-    case AFS_2G:
-          aRes = 2.0/32768.0;
-          break;
-    case AFS_4G:
-          aRes = 4.0/32768.0;
-          break;
-    case AFS_8G:
-          aRes = 8.0/32768.0;
-          break;
-    case AFS_16G:
-          aRes = 16.0/32768.0;
-          break;
-  }
-}
-
-
-void readAccelData(int16_t * destination)
-{
-  uint8_t rawData[6];  // x/y/z accel register data stored here
-  readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
-  destination[0] = (int16_t)((rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
-  destination[1] = (int16_t)((rawData[2] << 8) | rawData[3]) ;  
-  destination[2] = (int16_t)((rawData[4] << 8) | rawData[5]) ; 
-}
-
-void readGyroData(int16_t * destination)
-{
-  uint8_t rawData[6];  // x/y/z gyro register data stored here
-  readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
-  destination[0] = (int16_t)((rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
-  destination[1] = (int16_t)((rawData[2] << 8) | rawData[3]) ;  
-  destination[2] = (int16_t)((rawData[4] << 8) | rawData[5]) ; 
-}
-
-int16_t readTempData()
-{
-  uint8_t rawData[2];  // x/y/z gyro register data stored here
-  readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
-  return ((int16_t)rawData[0]) << 8 | rawData[1] ;  // Turn the MSB and LSB into a 16-bit value
-}
 
 
 
-// Configure the motion detection control for low power accelerometer mode
-void LowPowerAccelOnlyMPU6050()
-{
-
-// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
-// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
-// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a 
-// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
-// consideration for these threshold evaluations; otherwise, the flags would be set all the time!
-  
-  uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
-
-  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
-    
-  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
-// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG,  c | 0x00);  // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
-
-  c = readByte(MPU6050_ADDRESS, CONFIG);
-  writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
-  writeByte(MPU6050_ADDRESS, CONFIG, c |  0x00);  // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
-    
-  c = readByte(MPU6050_ADDRESS, INT_ENABLE);
-  writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF);  // Clear all interrupts
-  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40);  // Enable motion threshold (bits 5) interrupt only
-  
-// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
-// for at least the counter duration
-  writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
-  writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
-  
-  wait(0.1);  // Add delay for accumulation of samples
-  
-  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c |  0x07);  // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
-   
-  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])  
-
-  c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
-
-}
-
-
-void initMPU6050()
-{  
- // Initialize MPU6050 device
- // reset device
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-  wait(0.1);
-   
- // wake up device
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
-  wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
-
- // get stable time source
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
-
- // Configure Gyro and Accelerometer
- // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
- // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
- // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
-  writeByte(MPU6050_ADDRESS, CONFIG, 0x03);  
- 
- // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
-  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
- 
- // Set gyroscope full scale range
- // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
-  uint8_t c =  readByte(MPU6050_ADDRESS, GYRO_CONFIG);
-  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
-  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
-  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
-   
- // Set accelerometer configuration
-  c =  readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
-
-  // Configure Interrupts and Bypass Enable
-  // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
-  // can join the I2C bus and all can be controlled by the Arduino as master
-   writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);    
-   writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
-}
-
-// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
-// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
-void calibrateMPU6050(float * dest1, float * dest2)
-{  
-  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
-  uint8_t ii, fifo_count, packet_count;
-  int16_t gyro_bias[3]  = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
-  
-// reset device, reset all registers, clear gyro and accelerometer bias registers
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-  wait(0.1);
-   
-// get stable time source
-// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); 
-  wait(0.2);
-  
-// Configure device for bias calculation
-  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
-  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
-  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
-  writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
-  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
-  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
-  wait(0.015);
-  
-// Configure MPU6050 gyro and accelerometer for bias calculation
-  writeByte(MPU6050_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
-  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
-  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
-  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
-  wait(0.2);
- 
-  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
-  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
-
-// Configure FIFO to capture accelerometer and gyro data for bias calculation
-  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
-  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 1024 bytes in MPU-6050)
-  wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
-
-// At end of sample accumulation, turn off FIFO sensor read
-  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
-  readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, data); // read FIFO sample count
-  fifo_count = ((uint16_t)data[0] << 8) | data[1];
-  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
-  
-  for (ii = 0; ii < packet_count; ii++) {
-    readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, data); // read data for averaging
-    accel_bias[0] += (((int16_t)data[0] << 8) | data[1]  ) ; // Divide sum of FIFO gyro data by number of samples
-    accel_bias[1] += (((int16_t)data[2] << 8) | data[3]  ) ;
-    accel_bias[2] += (((int16_t)data[4] << 8) | data[5]  ) - accelsensitivity; // Assumes device facing up!
-    gyro_bias[0]  += (((int16_t)data[6] << 8) | data[7]  ) ;
-    gyro_bias[1]  += (((int16_t)data[8] << 8) | data[9]  ) ;
-    gyro_bias[2]  += (((int16_t)data[10] << 8) | data[11]) ;
-}
-
-    accel_bias[0] /= packet_count;  // Normalize sums to get average count biases
-    accel_bias[1] /= packet_count;
-    accel_bias[2] /= packet_count;
-    gyro_bias[0]  /= packet_count;
-    gyro_bias[1]  /= packet_count;
-    gyro_bias[2]  /= packet_count;
-
-// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
-  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
-  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
-  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
-  data[3] = (-gyro_bias[1]/4)       & 0xFF;
-  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
-  data[5] = (-gyro_bias[2]/4)       & 0xFF;
-  
-// Push gyro biases to hardware registers
-//  writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); // might not be supported in MPU6050
-//  writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
-//  writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
-//  writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
-//  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
-//  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
- 
- dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
- dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
- dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
-
-// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
-// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
-// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
-// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
-// the accelerometer biases calculated above must be divided by 8.
-
-  int16_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
-  readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
-  accel_bias_reg[0] = ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[1] = ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[2] = ((int16_t)data[0] << 8) | data[1];
-  
-  int16_t mask = 0x0001; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
-  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
-  
-  for(ii = 0; ii < 3; ii++) {
-    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
-  }
+ while(1) {
   
-  // Construct total accelerometer bias, including calculated average accelerometer bias from above
-  accel_bias_reg[0] -= accel_bias[0]/8; // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
-  accel_bias_reg[1] -= accel_bias[1]/8;
-  accel_bias_reg[2] -= accel_bias[2]/8;
-  
-  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
-  data[1] = (accel_bias_reg[0])      & 0xFF;
-  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
-  data[3] = (accel_bias_reg[1])      & 0xFF;
-  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
-  data[5] = (accel_bias_reg[2])      & 0xFF;
-  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
- 
-  // Push accelerometer biases to hardware registers
-//  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); // might not be supported in MPU6050
-//  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
-//  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
-//  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
-//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
-//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
-
-// Output scaled accelerometer biases for manual subtraction in the main program
-    dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
-    dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
-    dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
-  }
-
-
-// Accelerometer and gyroscope self test; check calibration wrt factory settings
-void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
-{
-   uint8_t rawData[4];
-   uint8_t selfTest[6];
-   float factoryTrim[6];
-   
-   // Configure the accelerometer for self-test
-   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
-   writeByte(MPU6050_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
-   wait(0.25);  // Delay a while to let the device execute the self-test
-   rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
-   rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
-   rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
-   rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
-   // Extract the acceleration test results first
-   selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
-   selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
-   selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
-   // Extract the gyration test results first
-   selfTest[3] = rawData[0]  & 0x1F ; // XG_TEST result is a five-bit unsigned integer
-   selfTest[4] = rawData[1]  & 0x1F ; // YG_TEST result is a five-bit unsigned integer
-   selfTest[5] = rawData[2]  & 0x1F ; // ZG_TEST result is a five-bit unsigned integer   
-   // Process results to allow final comparison with factory set values
-   factoryTrim[0] = (4096.0*0.34)*(pow( (0.92/0.34) , ((selfTest[0] - 1.0)/30.0))); // FT[Xa] factory trim calculation
-   factoryTrim[1] = (4096.0*0.34)*(pow( (0.92/0.34) , ((selfTest[1] - 1.0)/30.0))); // FT[Ya] factory trim calculation
-   factoryTrim[2] = (4096.0*0.34)*(pow( (0.92/0.34) , ((selfTest[2] - 1.0)/30.0))); // FT[Za] factory trim calculation
-   factoryTrim[3] =  ( 25.0*131.0)*(pow( 1.046 , (selfTest[3] - 1.0) ));             // FT[Xg] factory trim calculation
-   factoryTrim[4] =  (-25.0*131.0)*(pow( 1.046 , (selfTest[4] - 1.0) ));             // FT[Yg] factory trim calculation
-   factoryTrim[5] =  ( 25.0*131.0)*(pow( 1.046 , (selfTest[5] - 1.0) ));             // FT[Zg] factory trim calculation
-   
- //  Output self-test results and factory trim calculation if desired
- //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
- //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
- //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
- //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
-
- // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
- // To get to percent, must multiply by 100 and subtract result from 100
-   for (int i = 0; i < 6; i++) {
-     destination[i] = 100.0 + 100.0*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
-   }
-   
-}
-
-
-// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
-// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
-// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
-// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
-// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
-// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
-        void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
-        {
-            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];         // short name local variable for readability
-            float norm;                                               // vector norm
-            float f1, f2, f3;                                         // objetive funcyion elements
-            float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
-            float qDot1, qDot2, qDot3, qDot4;
-            float hatDot1, hatDot2, hatDot3, hatDot4;
-            float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz;        // gyro bias error
-
-            // Auxiliary variables to avoid repeated arithmetic
-            float _halfq1 = 0.5f * q1;
-            float _halfq2 = 0.5f * q2;
-            float _halfq3 = 0.5f * q3;
-            float _halfq4 = 0.5f * q4;
-            float _2q1 = 2.0f * q1;
-            float _2q2 = 2.0f * q2;
-            float _2q3 = 2.0f * q3;
-            float _2q4 = 2.0f * q4;
-//            float _2q1q3 = 2.0f * q1 * q3;
-//            float _2q3q4 = 2.0f * q3 * q4;
-
-            // Normalise accelerometer measurement
-            norm = sqrt(ax * ax + ay * ay + az * az);
-            if (norm == 0.0f) return; // handle NaN
-            norm = 1.0f/norm;
-            ax *= norm;
-            ay *= norm;
-            az *= norm;
-            
-            // Compute the objective function and Jacobian
-            f1 = _2q2 * q4 - _2q1 * q3 - ax;
-            f2 = _2q1 * q2 + _2q3 * q4 - ay;
-            f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
-            J_11or24 = _2q3;
-            J_12or23 = _2q4;
-            J_13or22 = _2q1;
-            J_14or21 = _2q2;
-            J_32 = 2.0f * J_14or21;
-            J_33 = 2.0f * J_11or24;
-          
-            // Compute the gradient (matrix multiplication)
-            hatDot1 = J_14or21 * f2 - J_11or24 * f1;
-            hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
-            hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
-            hatDot4 = J_14or21 * f1 + J_11or24 * f2;
-            
-            // Normalize the gradient
-            norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
-            hatDot1 /= norm;
-            hatDot2 /= norm;
-            hatDot3 /= norm;
-            hatDot4 /= norm;
-            
-            // Compute estimated gyroscope biases
-            gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
-            gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
-            gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
-            
-            // Compute and remove gyroscope biases
-            gbiasx += gerrx * deltat * zeta;
-            gbiasy += gerry * deltat * zeta;
-            gbiasz += gerrz * deltat * zeta;
-            gx -= gbiasx;
-            gy -= gbiasy;
-            gz -= gbiasz;
-            
-            // Compute the quaternion derivative
-            qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
-            qDot2 =  _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
-            qDot3 =  _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
-            qDot4 =  _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
-
-            // Compute then integrate estimated quaternion derivative
-            q1 += (qDot1 -(beta * hatDot1)) * deltat;
-            q2 += (qDot2 -(beta * hatDot2)) * deltat;
-            q3 += (qDot3 -(beta * hatDot3)) * deltat;
-            q4 += (qDot4 -(beta * hatDot4)) * deltat;
-
-            // Normalize the quaternion
-            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
-            norm = 1.0f/norm;
-            q[0] = q1 * norm;
-            q[1] = q2 * norm;
-            q[2] = q3 * norm;
-            q[3] = q4 * norm;
-        }
-        
-        
-void setup()
-{
-    
-  // Read the WHO_AM_I register, this is a good test of communication
-  uint8_t c = readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
-
-  if (c == 0x68) // WHO_AM_I should always be 0x68
-  {  
-    pc.printf("MPU6050 is online...");
-    
-    MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
-    pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value");
-    pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value");
-    pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value");
-    pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value");
-    pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value");
-    pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value");
-
-    if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
-  
-    calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
-    initMPU6050(); pc.printf("MPU6050 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-   }
-   else
-   {
-    pc.printf("Could not connect to MPU6050: 0x");
-    pc.printf("%h", c);
-    while(1) ; // Loop forever if communication doesn't happen
-    }
-}
-}
-
-
-int main() 
-{
-       // If data ready bit set, all data registers have new data
-  if(readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
-    readAccelData(accelCount);  // Read the x/y/z adc values
-    getAres();
+  // If data ready bit set, all data registers have new data
+  if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+    mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+    mpu6050.getAres();
     
     // Now we'll calculate the accleration value into actual g's
     ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
     ay = (float)accelCount[1]*aRes - accelBias[1];   
     az = (float)accelCount[2]*aRes - accelBias[2];  
    
-    readGyroData(gyroCount);  // Read the x/y/z adc values
-    getGres();
+    mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+    mpu6050.getGres();
  
     // Calculate the gyro value into actual degrees per second
-    gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-    gy = (float)gyroCount[1]*gRes - gyroBias[1];  
-    gz = (float)gyroCount[2]*gRes - gyroBias[2];   
+    gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+    gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
+    gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
 
-    tempCount = readTempData();  // Read the x/y/z adc values
+    tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
     temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
    }  
    
     Now = t.read_us();
-    deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
+    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
     lastUpdate = Now;
+    
+    sum += deltat;
+    sumCount++;
+    
     if(lastUpdate - firstUpdate > 10000000.0f) {
-      beta = 0.04;  // decrease filter gain after stabilized
-      zeta = 0.015; // increaseyro bias drift gain after stabilized
+     beta = 0.04;  // decrease filter gain after stabilized
+     zeta = 0.015; // increasey bias drift gain after stabilized
     }
+    
    // Pass gyro rate as rad/s
-    MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+    mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
 
     // Serial print and/or display at 0.5 s rate independent of data rates
     delt_t = t.read_ms() - count;
     if (delt_t > 500) { // update LCD once per half-second independent of read rate
- //   DigitalOut(LED1);
- 
-    pc.printf("ax = "); pc.printf("%i", 1000*ax);  
-    pc.printf(" ay = "); pc.printf("%i", 1000*ay); 
-    pc.printf(" az = "); pc.printf("%i", 1000*az); pc.printf(" mg");
+
+    pc.printf("ax = %f", 1000*ax); 
+    pc.printf(" ay = %f", 1000*ay); 
+    pc.printf(" az = %f  mg\n\r", 1000*az); 
 
-    pc.printf("gx = "); pc.printf("%f", gx); 
-    pc.printf(" gy = "); pc.printf("%f", gy); 
-    pc.printf(" gz = "); pc.printf("%f", gz); pc.printf(" deg/s");
+    pc.printf("gx = %f", gx); 
+    pc.printf(" gy = %f", gy); 
+    pc.printf(" gz = %f  deg/s\n\r", gz); 
+    
+    pc.printf(" temperature = %f  C\n\r", temperature); 
     
-    pc.printf("q0 = "); pc.printf("%f", q[0]);
-    pc.printf(" qx = "); pc.printf("%f", q[1]); 
-    pc.printf(" qy = "); pc.printf("%f", q[2]); 
-    pc.printf(" qz = "); pc.printf("%f", q[3]);          
+    pc.printf("q0 = %f\n\r", q[0]);
+    pc.printf("q1 = %f\n\r", q[1]);
+    pc.printf("q2 = %f\n\r", q[2]);
+    pc.printf("q3 = %f\n\r", q[3]);      
+    
+    lcd.clear();
+    lcd.printString("MPU6050", 0, 0);
+    lcd.printString("x   y   z", 0, 1);
+    lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax));
+    lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay));
+    lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2);
+    
     
   // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
   // In this coordinate system, the positive z-axis is down toward Earth. 
@@ -800,21 +203,22 @@
     yaw   *= 180.0f / PI; 
     roll  *= 180.0f / PI;
 
-    pc.printf("Yaw, Pitch, Roll: ");
-    pc.printf("%f", yaw);
-    pc.printf(", ");
-    pc.printf("%f", pitch);
-    pc.printf(", ");
-    pc.printf("%f", roll);
+//    pc.printf("Yaw, Pitch, Roll: \n\r");
+//    pc.printf("%f", yaw);
+//    pc.printf(", ");
+//    pc.printf("%f", pitch);
+//    pc.printf(", ");
+//    pc.printf("%f\n\r", roll);
+//    pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
 
-    pc.printf("average rate = "); pc.printf("%f", (1.0f/deltat)); pc.printf(" Hz");
-    
-    
-    blinkOn = ~blinkOn;
-    count = t.read_ms();  
+     pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+     pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+ 
+    myled= !myled;
+    count = t.read_ms(); 
+    sum = 0;
+    sumCount = 0; 
 }
-    while(1) {
-        myled = !myled;
-        wait(1);
-    }
 }
+ 
+ }
\ No newline at end of file