mpuうごくん?

Dependencies:   mbed

Fork of MPU6050IMU by Kris Winer

Committer:
taurin
Date:
Wed Jan 06 12:04:32 2016 +0000
Revision:
3:b7223a307029
Parent:
1:cea9d83b8636
mpu?????

Who changed what in which revision?

UserRevisionLine numberNew contents of line
onehorse 0:65aa78c10981 1
onehorse 0:65aa78c10981 2 /* MPU6050 Basic Example Code
onehorse 0:65aa78c10981 3 by: Kris Winer
onehorse 0:65aa78c10981 4 date: May 1, 2014
onehorse 0:65aa78c10981 5 license: Beerware - Use this code however you'd like. If you
onehorse 0:65aa78c10981 6 find it useful you can buy me a beer some time.
onehorse 0:65aa78c10981 7
onehorse 0:65aa78c10981 8 Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
onehorse 0:65aa78c10981 9 parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
onehorse 0:65aa78c10981 10 No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
onehorse 0:65aa78c10981 11
onehorse 0:65aa78c10981 12 SDA and SCL should have external pull-up resistors (to 3.3V).
onehorse 0:65aa78c10981 13 10k resistors worked for me. They should be on the breakout
onehorse 0:65aa78c10981 14 board.
onehorse 0:65aa78c10981 15
onehorse 0:65aa78c10981 16 Hardware setup:
onehorse 0:65aa78c10981 17 MPU6050 Breakout --------- Arduino
onehorse 0:65aa78c10981 18 3.3V --------------------- 3.3V
onehorse 0:65aa78c10981 19 SDA ----------------------- A4
onehorse 0:65aa78c10981 20 SCL ----------------------- A5
onehorse 0:65aa78c10981 21 GND ---------------------- GND
onehorse 0:65aa78c10981 22
onehorse 0:65aa78c10981 23 Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
onehorse 0:65aa78c10981 24 Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
onehorse 0:65aa78c10981 25 We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
onehorse 0:65aa78c10981 26 We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
onehorse 0:65aa78c10981 27 */
onehorse 0:65aa78c10981 28
onehorse 1:cea9d83b8636 29 #include "mbed.h"
onehorse 1:cea9d83b8636 30 #include "MPU6050.h"
onehorse 0:65aa78c10981 31
onehorse 0:65aa78c10981 32 // Using NOKIA 5110 monochrome 84 x 48 pixel display
onehorse 0:65aa78c10981 33 // pin 9 - Serial clock out (SCLK)
onehorse 0:65aa78c10981 34 // pin 8 - Serial data out (DIN)
onehorse 0:65aa78c10981 35 // pin 7 - Data/Command select (D/C)
onehorse 0:65aa78c10981 36 // pin 5 - LCD chip select (CS)
onehorse 0:65aa78c10981 37 // pin 6 - LCD reset (RST)
onehorse 0:65aa78c10981 38 //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
onehorse 0:65aa78c10981 39
onehorse 1:cea9d83b8636 40 float sum = 0;
onehorse 1:cea9d83b8636 41 uint32_t sumCount = 0;
onehorse 1:cea9d83b8636 42
onehorse 1:cea9d83b8636 43 MPU6050 mpu6050;
onehorse 1:cea9d83b8636 44
onehorse 1:cea9d83b8636 45 Timer t;
onehorse 1:cea9d83b8636 46
onehorse 1:cea9d83b8636 47 Serial pc(USBTX, USBRX); // tx, rx
onehorse 1:cea9d83b8636 48
onehorse 1:cea9d83b8636 49 // VCC, SCE, RST, D/C, MOSI,S CLK, LED
onehorse 1:cea9d83b8636 50
onehorse 1:cea9d83b8636 51 int main()
onehorse 1:cea9d83b8636 52 {
onehorse 1:cea9d83b8636 53 pc.baud(9600);
onehorse 0:65aa78c10981 54
onehorse 1:cea9d83b8636 55 //Set up I2C
onehorse 1:cea9d83b8636 56 i2c.frequency(400000); // use fast (400 kHz) I2C
onehorse 1:cea9d83b8636 57 t.start();
onehorse 1:cea9d83b8636 58 // Read the WHO_AM_I register, this is a good test of communication
onehorse 1:cea9d83b8636 59 uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
taurin 3:b7223a307029 60 //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
onehorse 1:cea9d83b8636 61
onehorse 1:cea9d83b8636 62 if (whoami == 0x68) // WHO_AM_I should always be 0x68
onehorse 1:cea9d83b8636 63 {
taurin 3:b7223a307029 64 //pc.printf("MPU6050 is online...");
onehorse 1:cea9d83b8636 65 wait(1);
onehorse 1:cea9d83b8636 66
onehorse 1:cea9d83b8636 67 mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
taurin 3:b7223a307029 68 //pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
taurin 3:b7223a307029 69 //pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
taurin 3:b7223a307029 70 //pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
taurin 3:b7223a307029 71 //pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
taurin 3:b7223a307029 72 //pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
taurin 3:b7223a307029 73 //pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
onehorse 1:cea9d83b8636 74 wait(1);
onehorse 0:65aa78c10981 75
onehorse 1:cea9d83b8636 76 if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
onehorse 1:cea9d83b8636 77 {
onehorse 1:cea9d83b8636 78 mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
onehorse 1:cea9d83b8636 79 mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
taurin 3:b7223a307029 80 mpu6050.initMPU6050(); //pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
onehorse 0:65aa78c10981 81
onehorse 1:cea9d83b8636 82 wait(2);
onehorse 1:cea9d83b8636 83 }
onehorse 1:cea9d83b8636 84 else
onehorse 1:cea9d83b8636 85 {
taurin 3:b7223a307029 86 //pc.printf("Device did not the pass self-test!\n\r");
onehorse 0:65aa78c10981 87
onehorse 1:cea9d83b8636 88 }
onehorse 1:cea9d83b8636 89 }
onehorse 1:cea9d83b8636 90 else
onehorse 1:cea9d83b8636 91 {
taurin 3:b7223a307029 92 //pc.printf("Could not connect to MPU6050: \n\r");
taurin 3:b7223a307029 93 //pc.printf("%#x \n", whoami);
onehorse 1:cea9d83b8636 94 while(1) ; // Loop forever if communication doesn't happen
onehorse 0:65aa78c10981 95 }
onehorse 0:65aa78c10981 96
onehorse 0:65aa78c10981 97
onehorse 0:65aa78c10981 98
onehorse 1:cea9d83b8636 99 while(1) {
onehorse 0:65aa78c10981 100
onehorse 1:cea9d83b8636 101 // If data ready bit set, all data registers have new data
onehorse 1:cea9d83b8636 102 if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
onehorse 1:cea9d83b8636 103 mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
onehorse 1:cea9d83b8636 104 mpu6050.getAres();
onehorse 0:65aa78c10981 105
onehorse 0:65aa78c10981 106 // Now we'll calculate the accleration value into actual g's
onehorse 0:65aa78c10981 107 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
onehorse 0:65aa78c10981 108 ay = (float)accelCount[1]*aRes - accelBias[1];
onehorse 0:65aa78c10981 109 az = (float)accelCount[2]*aRes - accelBias[2];
onehorse 0:65aa78c10981 110
onehorse 1:cea9d83b8636 111 mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
onehorse 1:cea9d83b8636 112 mpu6050.getGres();
onehorse 0:65aa78c10981 113
onehorse 0:65aa78c10981 114 // Calculate the gyro value into actual degrees per second
onehorse 1:cea9d83b8636 115 gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
onehorse 1:cea9d83b8636 116 gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
onehorse 1:cea9d83b8636 117 gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
onehorse 0:65aa78c10981 118
onehorse 1:cea9d83b8636 119 tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
onehorse 0:65aa78c10981 120 temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
onehorse 0:65aa78c10981 121 }
onehorse 0:65aa78c10981 122
onehorse 0:65aa78c10981 123 Now = t.read_us();
onehorse 1:cea9d83b8636 124 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
onehorse 0:65aa78c10981 125 lastUpdate = Now;
onehorse 1:cea9d83b8636 126
onehorse 1:cea9d83b8636 127 sum += deltat;
onehorse 1:cea9d83b8636 128 sumCount++;
onehorse 1:cea9d83b8636 129
onehorse 0:65aa78c10981 130 if(lastUpdate - firstUpdate > 10000000.0f) {
onehorse 1:cea9d83b8636 131 beta = 0.04; // decrease filter gain after stabilized
onehorse 1:cea9d83b8636 132 zeta = 0.015; // increasey bias drift gain after stabilized
onehorse 0:65aa78c10981 133 }
onehorse 1:cea9d83b8636 134
onehorse 0:65aa78c10981 135 // Pass gyro rate as rad/s
onehorse 1:cea9d83b8636 136 mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
onehorse 0:65aa78c10981 137
onehorse 0:65aa78c10981 138 // Serial print and/or display at 0.5 s rate independent of data rates
onehorse 0:65aa78c10981 139 delt_t = t.read_ms() - count;
onehorse 0:65aa78c10981 140 if (delt_t > 500) { // update LCD once per half-second independent of read rate
onehorse 1:cea9d83b8636 141
taurin 3:b7223a307029 142 //pc.printf("ax = %f", 1000*ax);
taurin 3:b7223a307029 143 //pc.printf(" ay = %f", 1000*ay);
taurin 3:b7223a307029 144 //pc.printf(" az = %f mg\n\r", 1000*az);
onehorse 0:65aa78c10981 145
taurin 3:b7223a307029 146 //pc.printf("gx = %f", gx);
taurin 3:b7223a307029 147 //pc.printf(" gy = %f", gy);
taurin 3:b7223a307029 148 //pc.printf(" gz = %f deg/s\n\r", gz);
onehorse 0:65aa78c10981 149
taurin 3:b7223a307029 150 //pc.printf(" temperature = %f C\n\r", temperature);
onehorse 1:cea9d83b8636 151
taurin 3:b7223a307029 152 //pc.printf("q0 = %f\n\r", q[0]);
taurin 3:b7223a307029 153 //pc.printf("q1 = %f\n\r", q[1]);
taurin 3:b7223a307029 154 //pc.printf("q2 = %f\n\r", q[2]);
taurin 3:b7223a307029 155 //pc.printf("q3 = %f\n\r", q[3]);
onehorse 0:65aa78c10981 156
onehorse 0:65aa78c10981 157 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
onehorse 0:65aa78c10981 158 // In this coordinate system, the positive z-axis is down toward Earth.
onehorse 0:65aa78c10981 159 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
onehorse 0:65aa78c10981 160 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
onehorse 0:65aa78c10981 161 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
onehorse 0:65aa78c10981 162 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
onehorse 0:65aa78c10981 163 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
onehorse 0:65aa78c10981 164 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
onehorse 0:65aa78c10981 165 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
onehorse 0:65aa78c10981 166 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
onehorse 0:65aa78c10981 167 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
onehorse 0:65aa78c10981 168 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
onehorse 0:65aa78c10981 169 pitch *= 180.0f / PI;
onehorse 0:65aa78c10981 170 yaw *= 180.0f / PI;
onehorse 0:65aa78c10981 171 roll *= 180.0f / PI;
onehorse 0:65aa78c10981 172
onehorse 1:cea9d83b8636 173 // pc.printf("Yaw, Pitch, Roll: \n\r");
onehorse 1:cea9d83b8636 174 // pc.printf("%f", yaw);
onehorse 1:cea9d83b8636 175 // pc.printf(", ");
onehorse 1:cea9d83b8636 176 // pc.printf("%f", pitch);
onehorse 1:cea9d83b8636 177 // pc.printf(", ");
onehorse 1:cea9d83b8636 178 // pc.printf("%f\n\r", roll);
onehorse 1:cea9d83b8636 179 // pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
onehorse 0:65aa78c10981 180
onehorse 1:cea9d83b8636 181 pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
taurin 3:b7223a307029 182 //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
onehorse 1:cea9d83b8636 183
onehorse 1:cea9d83b8636 184 myled= !myled;
onehorse 1:cea9d83b8636 185 count = t.read_ms();
onehorse 1:cea9d83b8636 186 sum = 0;
onehorse 1:cea9d83b8636 187 sumCount = 0;
onehorse 0:65aa78c10981 188 }
onehorse 0:65aa78c10981 189 }
onehorse 1:cea9d83b8636 190
onehorse 1:cea9d83b8636 191 }