Panusorn Chinsakuljaroen
/
BTL432kc
imu for l432kc
Diff: BTL432KC.cpp
- Revision:
- 3:4a1bc31c360f
- Parent:
- 2:01ca44dd3908
- Child:
- 4:7b04752df27f
diff -r 01ca44dd3908 -r 4a1bc31c360f BTL432KC.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/BTL432KC.cpp Wed Dec 05 14:08:21 2018 +0000 @@ -0,0 +1,325 @@ +/* MPU9250 Basic Example Code + by: Kris Winer + date: April 1, 2014 + license: Beerware - Use this code however you'd like. If you + find it useful you can buy me a beer some time. + + Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, + getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to + allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and + Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. + + SDA and SCL should have external pull-up resistors (to 3.3V). + 10k resistors are on the EMSENSR-9250 breakout board. + + Hardware setup: + MPU9250 Breakout --------- Arduino + VDD ---------------------- 3.3V + VDDI --------------------- 3.3V + SDA ----------------------- A4 + SCL ----------------------- A5 + GND ---------------------- GND + + Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. + Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. + We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. + We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. + */ + +//#include "ST_F401_84MHZ.h" +//F401_init84 myinit(0); +#include "mbed.h" +#include "MPU9250.h" + +// Using NOKIA 5110 monochrome 84 x 48 pixel display +// pin 9 - Serial clock out (SCLK) +// pin 8 - Serial data out (DIN) +// pin 7 - Data/Command select (D/C) +// pin 5 - LCD chip select (CS) +// pin 6 - LCD reset (RST) +//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); + +float sum = 0; +uint32_t sumCount = 0; +char buffer[14]; + +MPU9250 mpu9250; + +Timer t; + +Serial serial(PA_9,PA_10); +Serial pc(USBTX, USBRX); // tx, rx + +// VCC, SCE, RST, D/C, MOSI,S CLK, LED + +//DigitalIn boardbtn(USER_BUTTON); +static float acc_xyz[3]={0,0,0}; +static float v_xyz[3]={0,0,0}; + float displacement_body[3]={0,0,0}; +static float displacement_world[3]={0,0,0}; +void AccelToVelocity(float ax,float ay,float az,float dt){ + static float old_acc[3]={0,0,0}; + static float old_v[3]={0,0,0}; + float delta_ax=ax-old_acc[0]; + float delta_ay=ay-old_acc[1]; + float delta_az=az-old_acc[2]; + old_acc[0]=ax; + old_acc[1]=ay; + old_acc[2]=az; + old_v[0]=v_xyz[0]-old_v[0]; + old_v[1]=v_xyz[1]-old_v[1]; + old_v[2]=v_xyz[2]-old_v[2]; + v_xyz[0]+=ax*dt; + v_xyz[1]+=ay*dt; + v_xyz[2]+=az*dt; + + + displacement_body[0]+=v_xyz[0]*dt; + displacement_body[1]+=v_xyz[1]*dt; + displacement_body[2]+=v_xyz[2]*dt; + // pc.printf("%f\n",dt); + /*displacement_body[0]+=fillter_vx*dt; + displacement_body[1]+=fillter_vy*dt; + displacement_body[2]+=fillter_vz*dt;*/ + + } +/*void VelocityToDisplacement(float dt){ + displacement_body[0]+=v_xyz[0]*dt; + displacement_body[1]+=v_xyz[1]*dt; + displacement_body[2]+=v_xyz[2]*dt; + + }*/ +int main() +{ + pc.baud(115200); + + //Set up I2C + i2c.frequency(400000); // use fast (400 kHz) I2C + +// pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); + + t.start(); + + + + + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 +// pc.printf("I AM 0x%x\n\r", whoami); +// pc.printf("I SHOULD BE 0x71\n\r"); + + if (whoami == 0x71) { // WHO_AM_I should always be 0x68 +// pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); +// pc.printf("MPU9250 is online...\n\r"); + +// sprintf(buffer, "0x%x", whoami); + + wait(1); + + mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration + mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values +/* pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); + pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); + pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); + pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); + pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); + pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);*/ +// if(boardbtn==0){ + // wait(2); + mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + pc.printf("x gyro bias = %f\n\r", gyroBias[0]); + pc.printf("y gyro bias = %f\n\r", gyroBias[1]); + pc.printf("z gyro bias = %f\n\r", gyroBias[2]); + pc.printf("x accel bias = %f\n\r", accelBias[0]); + pc.printf("y accel bias = %f\n\r", accelBias[1]); + pc.printf("z accel bias = %f\n\r", accelBias[2]); + wait(2); + +/* +// ----------------------------------------------------------------- + }else{ + gyroBias[0]=-1.244275; + gyroBias[1]=0.122137; + gyroBias[2]=-0.717557; + accelBias[0]=0.007996; // For Manual Calibate with button + accelBias[1]=0.021240; + accelBias[2]=-0.020508; + } +//------------------------------------------------------------------ +*/ + mpu9250.initMPU9250(); +// pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + mpu9250.initAK8963(magCalibration); +/* pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer + pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); + pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); + if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); + if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); + if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); + if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); + wait(1); +*/ + } else { + pc.printf("Could not connect to MPU9250: \n\r"); + pc.printf("%#x \n", whoami); + + + sprintf(buffer, "WHO_AM_I 0x%x", whoami); + + + while(1) ; // Loop forever if communication doesn't happen + + } + + mpu9250.getAres(); // Get accelerometer sensitivity + mpu9250.getGres(); // Get gyro sensitivity + mpu9250.getMres(); // Get magnetometer sensitivity +// pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); +// pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); +// pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); + magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated + magbias[1] = +120.; // User environmental x-axis correction in milliGauss + magbias[2] = +125.; // User environmental x-axis correction in milliGauss + + while(1) { + + // If intPin goes high, all data registers have new data + if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + + mpu9250.readAccelData(accelCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + + mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + + mpu9250.readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; + mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; + } + + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + + sum += deltat; + sumCount++; + +// if(lastUpdate - firstUpdate > 10000000.0f) { +// beta = 0.04; // decrease filter gain after stabilized +// zeta = 0.015; // increasey bias drift gain after stabilized +// } + + // Pass gyro rate as rad/s +// mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + + // Serial print and/or display at 0.5 s rate independent of data rates + delt_t = t.read_ms() - count; + if (delt_t > 100) { // update LCD once per half-second independent of read rate + + pc.printf("ax = %f", 1000*ax); + pc.printf(" ay = %f", 1000*ay); + pc.printf(" az = %f mg\n\r", 1000*az); + + // pc.printf("gx = %f", gx); + // pc.printf(" gy = %f", gy); + // pc.printf(" gz = %f deg/s\n\r", gz); + + // pc.printf("gx = %f", mx); + // pc.printf(" gy = %f", my); + // pc.printf(" gz = %f mG\n\r", mz); + + tempCount = mpu9250.readTempData(); // Read the adc values + temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade +// pc.printf(" temperature = %f C\n\r", temperature); +// +// pc.printf("q0 = %f\n\r", q[0]); +// pc.printf("q1 = %f\n\r", q[1]); +// pc.printf("q2 = %f\n\r", q[2]); +// pc.printf("q3 = %f\n\r", q[3]); + + /* lcd.clear(); + lcd.printString("MPU9250", 0, 0); + lcd.printString("x y z", 0, 1); + sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az)); + lcd.printString(buffer, 0, 2); + sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz); + lcd.printString(buffer, 0, 3); + sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz); + lcd.printString(buffer, 0, 4); + */ + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + yaw -= 85.0f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + roll *= 180.0f / PI; + + // pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); + // pc.printf("average rate = %f\n\r", (float) sumCount/sum); +// sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll); +// lcd.printString(buffer, 0, 4); +// sprintf(buffer, "rate = %f", (float) sumCount/sum); +// lcd.printString(buffer, 0, 5); + + + acc_xyz[0]=ax; + acc_xyz[1]=ay; + acc_xyz[2]=az; + float mag_a=sqrt(pow(acc_xyz[0],2)+pow(acc_xyz[1],2)+pow(acc_xyz[2],2)); + AccelToVelocity(mag_a*cos(yaw),mag_a*sin(yaw),mag_a*sin(roll),float(delt_t)/10);//deltat*1000000 + static float fillter_vx=0; + static float fillter_vy=0; + static float fillter_vz=0; + fillter_vx=v_xyz[0]*0.5+fillter_vx*0.5; + fillter_vy=v_xyz[1]*0.5+fillter_vy*0.5; + fillter_vz=v_xyz[2]*0.5+fillter_vz*0.5; + //VelocityToDisplacement(float(delt_t)); + //pc.printf("%f\n",sqrt(displacement_body[0]*displacement_body[0])); + //pc.printf("%f %f\n",displacement_body[0],displacement_body[1]); + // displacement_world[0]+=sqrt(pow(displacement_body[0],2)+pow(displacement_body[1],2)+pow(displacement_body[2],2)) + // pc.printf("%f %f \n",v_xyz[0],v_xyz[1]); + // pc.printf("%f %f %f\n",fillter_vx,fillter_vy,fillter_vz); + myled= !myled; + count = t.read_ms(); + if(count > 1<<21) { + t.start(); // start the timer over again if ~30 minutes has passed + count = 0; + deltat= 0; + lastUpdate = t.read_us(); + } + sum = 0; + sumCount = 0; +//----------------------------------------------------------------------------------------- + + if(serial.writeable()) { + serial.printf("%f_%f_%f \n",ax,ay,az); + pc.printf("%f_%f_%f_g%f_g%f_g%f_ \n",ax,ay,az,gx,gy,gz); + + } + } + + + } + +} + \ No newline at end of file