Fork of Erik's DS1820 library working on OS6
Dependents: DS1820-example DS1820mitWebserver DS1820ohneWebserver
DS1820.cpp
- Committer:
- star297
- Date:
- 2020-12-29
- Revision:
- 0:a43dcf6ca539
File content as of revision 0:a43dcf6ca539:
#include "DS1820.h"
#ifdef TARGET_STM
//STM targets use opendrain mode since their switching between input and output is slow
#define ONEWIRE_INPUT(pin) pin->write(1)
#define ONEWIRE_OUTPUT(pin)
#define ONEWIRE_INIT(pin) pin->output(); pin->mode(OpenDrain)
#else
#define ONEWIRE_INPUT(pin) pin->input()
#define ONEWIRE_OUTPUT(pin) pin->output()
#define ONEWIRE_INIT(pin)
#endif
#ifdef TARGET_NORDIC
//NORDIC targets (NRF) use software delays since their ticker uses a 32kHz clock
static uint32_t loops_per_us = 0;
#define INIT_DELAY init_soft_delay()
#define ONEWIRE_DELAY_US(value) for(int cnt = 0; cnt < (value * loops_per_us) >> 5; cnt++) {__NOP(); __NOP(); __NOP();}
void init_soft_delay( void ) {
if (loops_per_us == 0) {
loops_per_us = 1;
Timer timey;
timey.start();
ONEWIRE_DELAY_US(320000);
timey.stop();
loops_per_us = (320000 + timey.read_us() / 2) / timey.read_us();
}
}
#else
#define INIT_DELAY
#define ONEWIRE_DELAY_US(value) wait_us(value)
#endif
LinkedList2<node> DS1820::probes;
DS1820::DS1820 (PinName data_pin, PinName power_pin, bool power_polarity) : _datapin(data_pin), _parasitepin(power_pin) {
int byte_counter;
_power_polarity = power_polarity;
_power_mosfet = power_pin != NC;
for(byte_counter=0;byte_counter<9;byte_counter++)
RAM[byte_counter] = 0x00;
ONEWIRE_INIT((&_datapin));
INIT_DELAY;
if (!unassignedProbe(&_datapin, _ROM))
error("No unassigned DS1820 found!\n");
else {
_datapin.input();
probes.append(this);
_parasite_power = !read_power_supply();
}
}
DS1820::~DS1820 (void) {
node *tmp;
for(int i=1; i<=probes.length(); i++)
{
tmp = probes.pop(i);
if (tmp->data == this)
probes.remove(i);
}
}
bool DS1820::onewire_reset(DigitalInOut *pin) {
// This will return false if no devices are present on the data bus
bool presence=false;
ONEWIRE_OUTPUT(pin);
pin->write(0); // bring low for 500 us
ONEWIRE_DELAY_US(500);
ONEWIRE_INPUT(pin); // let the data line float high
ONEWIRE_DELAY_US(90); // wait 90us
if (pin->read()==0) // see if any devices are pulling the data line low
presence=true;
ONEWIRE_DELAY_US(410);
return presence;
}
void DS1820::onewire_bit_out (DigitalInOut *pin, bool bit_data) {
ONEWIRE_OUTPUT(pin);
pin->write(0);
ONEWIRE_DELAY_US(3); // DXP modified from 5
if (bit_data) {
pin->write(1); // bring data line high
ONEWIRE_DELAY_US(55);
} else {
ONEWIRE_DELAY_US(55); // keep data line low
pin->write(1);
ONEWIRE_DELAY_US(10); // DXP added to allow bus to float high before next bit_out
}
}
void DS1820::onewire_byte_out(char data) { // output data character (least sig bit first).
int n;
for (n=0; n<8; n++) {
onewire_bit_out(&this->_datapin, data & 0x01);
data = data >> 1; // now the next bit is in the least sig bit position.
}
}
bool DS1820::onewire_bit_in(DigitalInOut *pin) {
bool answer;
ONEWIRE_OUTPUT(pin);
pin->write(0);
ONEWIRE_DELAY_US(3); // DXP modofied from 5
ONEWIRE_INPUT(pin);
ONEWIRE_DELAY_US(6); // DXP modified from 5
answer = pin->read();
ONEWIRE_DELAY_US(45); // DXP modified from 50
return answer;
}
char DS1820::onewire_byte_in() { // read byte, least sig byte first
char answer = 0x00;
int i;
for (i=0; i<8; i++) {
answer = answer >> 1; // shift over to make room for the next bit
if (onewire_bit_in(&this->_datapin))
answer = answer | 0x80; // if the data port is high, make this bit a 1
}
return answer;
}
bool DS1820::unassignedProbe(PinName pin) {
DigitalInOut _pin(pin);
ONEWIRE_INIT((&_pin));
INIT_DELAY;
char ROM_address[8];
return search_ROM_routine(&_pin, 0xF0, ROM_address);
}
bool DS1820::unassignedProbe(DigitalInOut *pin, char *ROM_address) {
return search_ROM_routine(pin, 0xF0, ROM_address);
}
bool DS1820::search_ROM_routine(DigitalInOut *pin, char command, char *ROM_address) {
bool DS1820_done_flag = false;
int DS1820_last_descrepancy = 0;
char DS1820_search_ROM[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int descrepancy_marker, ROM_bit_index;
bool return_value, Bit_A, Bit_B;
char byte_counter, bit_mask;
return_value=false;
while (!DS1820_done_flag) {
if (!onewire_reset(pin)) {
return false;
} else {
ROM_bit_index=1;
descrepancy_marker=0;
char command_shift = command;
for (int n=0; n<8; n++) { // Search ROM command or Search Alarm command
onewire_bit_out(pin, command_shift & 0x01);
command_shift = command_shift >> 1; // now the next bit is in the least sig bit position.
}
byte_counter = 0;
bit_mask = 0x01;
while (ROM_bit_index<=64) {
Bit_A = onewire_bit_in(pin);
Bit_B = onewire_bit_in(pin);
if (Bit_A & Bit_B) {
descrepancy_marker = 0; // data read error, this should never happen
ROM_bit_index = 0xFF;
} else {
if (Bit_A | Bit_B) {
// Set ROM bit to Bit_A
if (Bit_A) {
DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] | bit_mask; // Set ROM bit to one
} else {
DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] & ~bit_mask; // Set ROM bit to zero
}
} else {
// both bits A and B are low, so there are two or more devices present
if ( ROM_bit_index == DS1820_last_descrepancy ) {
DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] | bit_mask; // Set ROM bit to one
} else {
if ( ROM_bit_index > DS1820_last_descrepancy ) {
DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] & ~bit_mask; // Set ROM bit to zero
descrepancy_marker = ROM_bit_index;
} else {
if (( DS1820_search_ROM[byte_counter] & bit_mask) == 0x00 )
descrepancy_marker = ROM_bit_index;
}
}
}
onewire_bit_out (pin, DS1820_search_ROM[byte_counter] & bit_mask);
ROM_bit_index++;
if (bit_mask & 0x80) {
byte_counter++;
bit_mask = 0x01;
} else {
bit_mask = bit_mask << 1;
}
}
}
DS1820_last_descrepancy = descrepancy_marker;
if (ROM_bit_index != 0xFF) {
int i = 1;
node *list_container;
while(1) {
list_container = probes.pop(i);
if (list_container == NULL) { //End of list, or empty list
if (ROM_checksum_error(DS1820_search_ROM)) { // Check the CRC
return false;
}
for(byte_counter=0;byte_counter<8;byte_counter++)
ROM_address[byte_counter] = DS1820_search_ROM[byte_counter];
return true;
} else { //Otherwise, check if ROM is already known
bool equal = true;
DS1820 *pointer = (DS1820*) list_container->data;
char *ROM_compare = pointer->_ROM;
for(byte_counter=0;byte_counter<8;byte_counter++) {
if ( ROM_compare[byte_counter] != DS1820_search_ROM[byte_counter])
equal = false;
}
if (equal)
break;
else
i++;
}
}
}
}
if (DS1820_last_descrepancy == 0)
DS1820_done_flag = true;
}
return return_value;
}
void DS1820::match_ROM() {
// Used to select a specific device
int i;
onewire_reset(&this->_datapin);
onewire_byte_out( 0x55); //Match ROM command
for (i=0;i<8;i++) {
onewire_byte_out(_ROM[i]);
}
}
void DS1820::skip_ROM() {
onewire_reset(&this->_datapin);
onewire_byte_out(0xCC); // Skip ROM command
}
bool DS1820::ROM_checksum_error(char *_ROM_address) {
char _CRC=0x00;
int i;
for(i=0;i<7;i++) // Only going to shift the lower 7 bytes
_CRC = CRC_byte(_CRC, _ROM_address[i]);
// After 7 bytes CRC should equal the 8th byte (ROM CRC)
return (_CRC!=_ROM_address[7]); // will return true if there is a CRC checksum mis-match
}
bool DS1820::RAM_checksum_error() {
char _CRC=0x00;
int i;
for(i=0;i<8;i++) // Only going to shift the lower 8 bytes
_CRC = CRC_byte(_CRC, RAM[i]);
// After 8 bytes CRC should equal the 9th byte (RAM CRC)
return (_CRC!=RAM[8]); // will return true if there is a CRC checksum mis-match
}
char DS1820::CRC_byte (char _CRC, char byte ) {
int j;
for(j=0;j<8;j++) {
if ((byte & 0x01 ) ^ (_CRC & 0x01)) {
// DATA ^ LSB CRC = 1
_CRC = _CRC>>1;
// Set the MSB to 1
_CRC = _CRC | 0x80;
// Check bit 3
if (_CRC & 0x04) {
_CRC = _CRC & 0xFB; // Bit 3 is set, so clear it
} else {
_CRC = _CRC | 0x04; // Bit 3 is clear, so set it
}
// Check bit 4
if (_CRC & 0x08) {
_CRC = _CRC & 0xF7; // Bit 4 is set, so clear it
} else {
_CRC = _CRC | 0x08; // Bit 4 is clear, so set it
}
} else {
// DATA ^ LSB CRC = 0
_CRC = _CRC>>1;
// clear MSB
_CRC = _CRC & 0x7F;
// No need to check bits, with DATA ^ LSB CRC = 0, they will remain unchanged
}
byte = byte>>1;
}
return _CRC;
}
int DS1820::convertTemperature(bool wait, devices device) {
// Convert temperature into scratchpad RAM for all devices at once
int delay_time = 750000; // Default delay time
char resolution;
if (device==all_devices)
skip_ROM(); // Skip ROM command, will convert for ALL devices
else {
match_ROM();
if ((FAMILY_CODE == FAMILY_CODE_DS18B20 ) || (FAMILY_CODE == FAMILY_CODE_DS1822 )) {
resolution = RAM[4] & 0x60;
if (resolution == 0x00) // 9 bits
delay_time = 94000;
if (resolution == 0x20) // 10 bits
delay_time = 188000;
if (resolution == 0x40) // 11 bits. Note 12bits uses the 750ms default
delay_time = 375000;
}
}
onewire_byte_out( 0x44); // perform temperature conversion
if (_parasite_power) {
if (_power_mosfet) {
_parasitepin = _power_polarity; // Parasite power strong pullup
wait_us(delay_time);
_parasitepin = !_power_polarity;
delay_time = 0;
} else {
_datapin.output();
_datapin.write(1);
wait_us(delay_time);
_datapin.input();
}
} else {
if (wait) {
wait_us(delay_time);
delay_time = 0;
}
}
return delay_time;
}
void DS1820::read_RAM() {
// This will copy the DS1820's 9 bytes of RAM data
// into the objects RAM array. Functions that use
// RAM values will automaticly call this procedure.
int i;
match_ROM(); // Select this device
onewire_byte_out( 0xBE); //Read Scratchpad command
for(i=0;i<9;i++) {
RAM[i] = onewire_byte_in();
}
// if (!RAM_checksum_error())
// crcerr = 1;
}
bool DS1820::setResolution(unsigned int resolution) {
bool answer = false;
resolution = resolution - 9;
if (resolution < 4) {
resolution = resolution<<5; // align the bits
RAM[4] = (RAM[4] & 0x60) | resolution; // mask out old data, insert new
write_scratchpad ((RAM[2]<<8) + RAM[3]);
write_scratchpad (DS1820::this_device); // Need to test if this is required
answer = true;
}
return answer;
}
void DS1820::write_scratchpad(int data) {
RAM[3] = data;
RAM[2] = data>>8;
match_ROM();
onewire_byte_out(0x4E); // Copy scratchpad into DS1820 ram memory
onewire_byte_out(RAM[2]); // T(H)
onewire_byte_out(RAM[3]); // T(L)
if ((FAMILY_CODE == FAMILY_CODE_DS18B20 ) || (FAMILY_CODE == FAMILY_CODE_DS1822 )) {
onewire_byte_out(RAM[4]); // Configuration register
}
}
float DS1820::temperature(char scale) {
// The data specs state that count_per_degree should be 0x10 (16), I found my devices
// to have a count_per_degree of 0x4B (75). With the standard resolution of 1/2 deg C
// this allowed an expanded resolution of 1/150th of a deg C. I wouldn't rely on this
// being super acurate, but it does allow for a smooth display in the 1/10ths of a
// deg C or F scales.
float answer, remaining_count, count_per_degree;
int reading;
read_RAM();
if (RAM_checksum_error())
// Indicate we got a CRC error
answer = invalid_conversion;
else {
reading = (RAM[1] << 8) + RAM[0];
if (reading & 0x8000) { // negative degrees C
reading = 0-((reading ^ 0xffff) + 1); // 2's comp then convert to signed int
}
answer = reading +0.0; // convert to floating point
if ((FAMILY_CODE == FAMILY_CODE_DS18B20 ) || (FAMILY_CODE == FAMILY_CODE_DS1822 )) {
answer = answer / 16.0f;
}
else {
remaining_count = RAM[6];
count_per_degree = RAM[7];
answer = floor(answer/2.0f) - 0.25f + (count_per_degree - remaining_count) / count_per_degree;
}
if (scale=='F' or scale=='f')
// Convert to deg F
answer = answer * 9.0f / 5.0f + 32.0f;
}
return answer;
}
bool DS1820::read_power_supply(devices device) {
// This will return true if the device (or all devices) are Vcc powered
// This will return false if the device (or ANY device) is parasite powered
if (device==all_devices)
skip_ROM(); // Skip ROM command, will poll for any device using parasite power
else
match_ROM();
onewire_byte_out(0xB4); // Read power supply command
return onewire_bit_in(&this->_datapin);
}