mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_NORDIC/TARGET_NRF5/i2c_api.c
- Committer:
- sivasuren
- Date:
- 2016-11-25
- Revision:
- 150:da61ba4e9755
- Parent:
- 149:156823d33999
File content as of revision 150:da61ba4e9755:
/* * Copyright (c) 2013 Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA * integrated circuit in a product or a software update for such product, must reproduce * the above copyright notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be * used to endorse or promote products derived from this software without specific prior * written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary or object form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "i2c_api.h" #if DEVICE_I2C #include "mbed_assert.h" #include "mbed_error.h" #include "nrf_drv_twi.h" #include "app_util_platform.h" #if DEVICE_I2C_ASYNCH #define TWI_IDX(obj) ((obj)->i2c.twi_idx) #else #define TWI_IDX(obj) ((obj)->twi_idx) #endif #define TWI_INFO(obj) (&m_twi_info[TWI_IDX(obj)]) typedef struct { bool initialized; nrf_drv_twi_config_t config; volatile bool transfer_finished; #if DEVICE_I2C_ASYNCH volatile uint32_t events; void (*handler)(void); uint32_t event_mask; #endif } twi_info_t; static twi_info_t m_twi_info[TWI_COUNT]; static nrf_drv_twi_t const m_twi_instances[TWI_COUNT] = { #if TWI0_ENABLED NRF_DRV_TWI_INSTANCE(0), #endif #if TWI1_ENABLED NRF_DRV_TWI_INSTANCE(1), #endif }; static void twi_event_handler(nrf_drv_twi_evt_t const *event, void *context) { twi_info_t * twi_info = TWI_INFO((i2c_t *)context); twi_info->transfer_finished = true; #if DEVICE_I2C_ASYNCH switch (event->type) { case NRF_DRV_TWI_EVT_DONE: twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE; break; case NRF_DRV_TWI_EVT_ADDRESS_NACK: twi_info->events |= I2C_EVENT_ERROR_NO_SLAVE; break; case NRF_DRV_TWI_EVT_DATA_NACK: twi_info->events |= I2C_EVENT_ERROR; break; } if (twi_info->handler) { twi_info->handler(); } #endif // DEVICE_I2C_ASYNCH } static uint8_t twi_address(int i2c_address) { // The TWI driver requires 7-bit slave address (without R/W bit). return (i2c_address >> 1); } void i2c_init(i2c_t *obj, PinName sda, PinName scl) { int i; for (i = 0; i < TWI_COUNT; ++i) { if (m_twi_info[i].initialized && m_twi_info[i].config.sda == (uint32_t)sda && m_twi_info[i].config.scl == (uint32_t)scl) { TWI_IDX(obj) = i; TWI_INFO(obj)->config.frequency = NRF_TWI_FREQ_100K; i2c_reset(obj); return; } } nrf_drv_twi_config_t const config = { .scl = scl, .sda = sda, .frequency = NRF_TWI_FREQ_100K, .interrupt_priority = APP_IRQ_PRIORITY_LOW, }; for (i = 0; i < TWI_COUNT; ++i) { if (!m_twi_info[i].initialized) { nrf_drv_twi_t const *twi = &m_twi_instances[i]; ret_code_t ret_code = nrf_drv_twi_init(twi, &config, twi_event_handler, obj); if (ret_code == NRF_SUCCESS) { TWI_IDX(obj) = i; TWI_INFO(obj)->initialized = true; TWI_INFO(obj)->config = config; nrf_drv_twi_enable(twi); return; } } } // No available peripheral error("No available I2C peripheral\r\n"); } void i2c_reset(i2c_t *obj) { twi_info_t *twi_info = TWI_INFO(obj); nrf_drv_twi_t const *twi = &m_twi_instances[TWI_IDX(obj)]; nrf_drv_twi_uninit(twi); nrf_drv_twi_init(twi, &twi_info->config, twi_event_handler, obj); nrf_drv_twi_enable(twi); } int i2c_start(i2c_t *obj) { (void)obj; return -1; // Not implemented. } int i2c_stop(i2c_t *obj) { (void)obj; return -1; // Not implemented. } void i2c_frequency(i2c_t *obj, int hz) { twi_info_t *twi_info = TWI_INFO(obj); nrf_drv_twi_t const *twi = &m_twi_instances[TWI_IDX(obj)]; if (hz < 250000) { twi_info->config.frequency = NRF_TWI_FREQ_100K; } else if (hz < 400000) { twi_info->config.frequency = NRF_TWI_FREQ_250K; } else { twi_info->config.frequency = NRF_TWI_FREQ_400K; } nrf_twi_frequency_set(twi->reg.p_twi, twi_info->config.frequency); } int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) { (void)stop; twi_info_t *twi_info = TWI_INFO(obj); nrf_drv_twi_t const *twi = &m_twi_instances[TWI_IDX(obj)]; twi_info->transfer_finished = false; ret_code_t ret_code = nrf_drv_twi_rx(twi, twi_address(address), (uint8_t *)data, length); if (ret_code != NRF_SUCCESS) { return 0; } while (!twi_info->transfer_finished) {} return nrf_drv_twi_data_count_get(twi); } int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) { twi_info_t *twi_info = TWI_INFO(obj); nrf_drv_twi_t const *twi = &m_twi_instances[TWI_IDX(obj)]; twi_info->transfer_finished = false; ret_code_t ret_code = nrf_drv_twi_tx(twi, twi_address(address), (uint8_t const *)data, length, (stop == 0)); if (ret_code != NRF_SUCCESS) { return 0; } while (!twi_info->transfer_finished) {} return nrf_drv_twi_data_count_get(twi); } int i2c_byte_read(i2c_t *obj, int last) { (void)obj; (void)last; return -1; // Not implemented. } int i2c_byte_write(i2c_t *obj, int data) { (void)obj; (void)data; return -1; // Not implemented. } #if DEVICE_I2C_ASYNCH void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint) { (void)stop; (void)hint; if (i2c_active(obj)) { return; } if ((tx_length == 0) && (rx_length == 0)) { return; } twi_info_t *twi_info = TWI_INFO(obj); twi_info->events = 0; twi_info->handler = (void (*)(void))handler; twi_info->event_mask = event; uint8_t twi_addr = twi_address(address); nrf_drv_twi_t const *twi = &m_twi_instances[TWI_IDX(obj)]; if ((tx_length > 0) && (rx_length == 0)) { nrf_drv_twi_xfer_desc_t const xfer = NRF_DRV_TWI_XFER_DESC_TX(twi_addr, (uint8_t *)tx, tx_length); nrf_drv_twi_xfer(twi, &xfer, stop ? 0 : NRF_DRV_TWI_FLAG_TX_NO_STOP); } else if ((tx_length == 0) && (rx_length > 0)) { nrf_drv_twi_xfer_desc_t const xfer = NRF_DRV_TWI_XFER_DESC_RX(twi_addr, rx, rx_length); nrf_drv_twi_xfer(twi, &xfer, 0); } else if ((tx_length > 0) && (rx_length > 0)) { nrf_drv_twi_xfer_desc_t const xfer = NRF_DRV_TWI_XFER_DESC_TXRX(twi_addr, (uint8_t *)tx, tx_length, rx, rx_length); nrf_drv_twi_xfer(twi, &xfer, 0); } } uint32_t i2c_irq_handler_asynch(i2c_t *obj) { twi_info_t *twi_info = TWI_INFO(obj); return (twi_info->events & twi_info->event_mask); } uint8_t i2c_active(i2c_t *obj) { nrf_drv_twi_t const *twi = &m_twi_instances[TWI_IDX(obj)]; return nrf_drv_twi_is_busy(twi); } void i2c_abort_asynch(i2c_t *obj) { i2c_reset(obj); } #endif // DEVICE_I2C_ASYNCH #endif // DEVICE_I2C