IBL LoRaWAN implementation

Dependents:   Simple-LoRaWAN

Fork of LMiC by Semtech

Committer:
mluis
Date:
Thu Nov 26 12:46:56 2015 +0000
Revision:
3:519c71d29a06
Parent:
1:d3b7bde3995c
Child:
4:85b2b647cb64
Adapted radio.cpp to new version of SX1276Lib radio driver; Small corrections on lmic.c/lmic.h

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mluis 0:62d1edcc13d1 1 /*******************************************************************************
mluis 1:d3b7bde3995c 2 * Copyright (c) 2014-2015 IBM Corporation.
mluis 0:62d1edcc13d1 3 * All rights reserved. This program and the accompanying materials
mluis 0:62d1edcc13d1 4 * are made available under the terms of the Eclipse Public License v1.0
mluis 0:62d1edcc13d1 5 * which accompanies this distribution, and is available at
mluis 0:62d1edcc13d1 6 * http://www.eclipse.org/legal/epl-v10.html
mluis 0:62d1edcc13d1 7 *
mluis 0:62d1edcc13d1 8 * Contributors:
mluis 0:62d1edcc13d1 9 * IBM Zurich Research Lab - initial API, implementation and documentation
mluis 0:62d1edcc13d1 10 * Semtech Apps Team - Modified to support the MBED sx1276 driver
mluis 0:62d1edcc13d1 11 * library.
mluis 0:62d1edcc13d1 12 * Possibility to use original or Semtech's MBED
mluis 0:62d1edcc13d1 13 * radio driver. The selection is done by setting
mluis 0:62d1edcc13d1 14 * USE_SMTC_RADIO_DRIVER preprocessing directive
mluis 0:62d1edcc13d1 15 * in lmic.h
mluis 0:62d1edcc13d1 16 *******************************************************************************/
mluis 1:d3b7bde3995c 17
mluis 0:62d1edcc13d1 18 #include "lmic.h"
mluis 0:62d1edcc13d1 19
mluis 0:62d1edcc13d1 20 #if USE_SMTC_RADIO_DRIVER
mluis 0:62d1edcc13d1 21 #include "sx1276-hal.h"
mluis 0:62d1edcc13d1 22
mluis 0:62d1edcc13d1 23 /*!
mluis 1:d3b7bde3995c 24 * Syncword for lora networks
mluis 0:62d1edcc13d1 25 */
mluis 1:d3b7bde3995c 26 #define LORA_MAC_SYNCWORD 0x34
mluis 0:62d1edcc13d1 27
mluis 0:62d1edcc13d1 28 /*
mluis 0:62d1edcc13d1 29 * Callback functions prototypes
mluis 0:62d1edcc13d1 30 */
mluis 0:62d1edcc13d1 31 /*!
mluis 0:62d1edcc13d1 32 * @brief Function to be executed on Radio Tx Done event
mluis 0:62d1edcc13d1 33 */
mluis 0:62d1edcc13d1 34 void OnTxDone( void );
mluis 0:62d1edcc13d1 35
mluis 0:62d1edcc13d1 36 /*!
mluis 0:62d1edcc13d1 37 * @brief Function to be executed on Radio Rx Done event
mluis 0:62d1edcc13d1 38 */
mluis 0:62d1edcc13d1 39 void OnRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
mluis 0:62d1edcc13d1 40
mluis 0:62d1edcc13d1 41 /*!
mluis 0:62d1edcc13d1 42 * @brief Function executed on Radio Tx Timeout event
mluis 0:62d1edcc13d1 43 */
mluis 0:62d1edcc13d1 44 void OnTxTimeout( void );
mluis 0:62d1edcc13d1 45
mluis 0:62d1edcc13d1 46 /*!
mluis 0:62d1edcc13d1 47 * @brief Function executed on Radio Rx Timeout event
mluis 0:62d1edcc13d1 48 */
mluis 0:62d1edcc13d1 49 void OnRxTimeout( void );
mluis 0:62d1edcc13d1 50
mluis 0:62d1edcc13d1 51 /*!
mluis 0:62d1edcc13d1 52 * @brief Function executed on Radio Rx Error event
mluis 0:62d1edcc13d1 53 */
mluis 0:62d1edcc13d1 54 void OnRxError( void );
mluis 0:62d1edcc13d1 55
mluis 0:62d1edcc13d1 56 /*!
mluis 0:62d1edcc13d1 57 * @brief Function executed on Radio Fhss Change Channel event
mluis 0:62d1edcc13d1 58 */
mluis 0:62d1edcc13d1 59 void OnFhssChangeChannel( uint8_t channelIndex );
mluis 0:62d1edcc13d1 60
mluis 0:62d1edcc13d1 61 /*!
mluis 0:62d1edcc13d1 62 * @brief Function executed on CAD Done event
mluis 0:62d1edcc13d1 63 */
mluis 0:62d1edcc13d1 64 void OnCadDone( void );
mluis 0:62d1edcc13d1 65
mluis 3:519c71d29a06 66 /*!
mluis 3:519c71d29a06 67 * Radio events function pointer
mluis 3:519c71d29a06 68 */
mluis 3:519c71d29a06 69 static RadioEvents_t RadioEvents;
mluis 3:519c71d29a06 70
mluis 0:62d1edcc13d1 71 /*
mluis 0:62d1edcc13d1 72 * Radio object declraration
mluis 0:62d1edcc13d1 73 */
mluis 3:519c71d29a06 74 SX1276MB1xAS Radio( NULL );
mluis 0:62d1edcc13d1 75
mluis 0:62d1edcc13d1 76 static const u2_t LORA_RXDONE_FIXUP[] = {
mluis 0:62d1edcc13d1 77 [FSK] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 78 [SF7] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 79 [SF8] = us2osticks(1648), // ( 54 ticks)
mluis 0:62d1edcc13d1 80 [SF9] = us2osticks(3265), // ( 107 ticks)
mluis 0:62d1edcc13d1 81 [SF10] = us2osticks(7049), // ( 231 ticks)
mluis 0:62d1edcc13d1 82 [SF11] = us2osticks(13641), // ( 447 ticks)
mluis 0:62d1edcc13d1 83 [SF12] = us2osticks(31189), // (1022 ticks)
mluis 0:62d1edcc13d1 84 };
mluis 0:62d1edcc13d1 85
mluis 0:62d1edcc13d1 86 void OnTxDone( void )
mluis 0:62d1edcc13d1 87 {
mluis 0:62d1edcc13d1 88 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 89 // save exact tx time
mluis 1:d3b7bde3995c 90 LMIC.txend = now - us2osticks( RADIO_WAKEUP_TIME ); // TXDONE FIXUP
mluis 0:62d1edcc13d1 91
mluis 0:62d1edcc13d1 92 // go from stanby to sleep
mluis 0:62d1edcc13d1 93 Radio.Sleep( );
mluis 0:62d1edcc13d1 94 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 95 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 96 }
mluis 0:62d1edcc13d1 97
mluis 0:62d1edcc13d1 98 void OnRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
mluis 0:62d1edcc13d1 99 {
mluis 0:62d1edcc13d1 100 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 101 // save exact rx time
mluis 1:d3b7bde3995c 102 if( getBw( LMIC.rps ) == BW125 )
mluis 1:d3b7bde3995c 103 {
mluis 1:d3b7bde3995c 104 now -= LORA_RXDONE_FIXUP[getSf( LMIC.rps )];
mluis 1:d3b7bde3995c 105 }
mluis 1:d3b7bde3995c 106 LMIC.rxtime = now;
mluis 0:62d1edcc13d1 107 // read the PDU and inform the MAC that we received something
mluis 0:62d1edcc13d1 108 LMIC.dataLen = size;
mluis 0:62d1edcc13d1 109 // now read the FIFO
mluis 0:62d1edcc13d1 110 memcpy( LMIC.frame, payload, size );
mluis 0:62d1edcc13d1 111 // read rx quality parameters
mluis 1:d3b7bde3995c 112 LMIC.snr = snr; // SNR [dB] * 4
mluis 1:d3b7bde3995c 113 LMIC.rssi = rssi; // RSSI [dBm] (-196...+63)
mluis 0:62d1edcc13d1 114
mluis 0:62d1edcc13d1 115 // go from stanby to sleep
mluis 0:62d1edcc13d1 116 Radio.Sleep( );
mluis 0:62d1edcc13d1 117 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 118 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 119 }
mluis 0:62d1edcc13d1 120
mluis 0:62d1edcc13d1 121 void OnTxTimeout( void )
mluis 0:62d1edcc13d1 122 {
mluis 0:62d1edcc13d1 123 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 124
mluis 0:62d1edcc13d1 125 // indicate error
mluis 1:d3b7bde3995c 126 LMIC.dataLen = 0;
mluis 1:d3b7bde3995c 127
mluis 0:62d1edcc13d1 128 // go from stanby to sleep
mluis 0:62d1edcc13d1 129 Radio.Sleep( );
mluis 0:62d1edcc13d1 130 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 131 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 132 }
mluis 0:62d1edcc13d1 133
mluis 0:62d1edcc13d1 134 void OnRxTimeout( void )
mluis 0:62d1edcc13d1 135 {
mluis 0:62d1edcc13d1 136 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 137 // indicate timeout
mluis 0:62d1edcc13d1 138 LMIC.dataLen = 0;
mluis 0:62d1edcc13d1 139
mluis 0:62d1edcc13d1 140 // go from stanby to sleep
mluis 0:62d1edcc13d1 141 Radio.Sleep( );
mluis 0:62d1edcc13d1 142 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 143 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 144 }
mluis 0:62d1edcc13d1 145
mluis 0:62d1edcc13d1 146 void OnRxError( void )
mluis 0:62d1edcc13d1 147 {
mluis 0:62d1edcc13d1 148 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 149
mluis 0:62d1edcc13d1 150 // indicate error
mluis 0:62d1edcc13d1 151 LMIC.dataLen = 0;
mluis 0:62d1edcc13d1 152
mluis 0:62d1edcc13d1 153 // go from stanby to sleep
mluis 0:62d1edcc13d1 154 Radio.Sleep( );
mluis 0:62d1edcc13d1 155 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 156 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 157 }
mluis 0:62d1edcc13d1 158
mluis 0:62d1edcc13d1 159 /*!
mluis 0:62d1edcc13d1 160 * LMIC API implementation
mluis 0:62d1edcc13d1 161 */
mluis 0:62d1edcc13d1 162 // RADIO STATE
mluis 0:62d1edcc13d1 163 // (initialized by radio_init( ), used by radio_rand1( ))
mluis 0:62d1edcc13d1 164 static u1_t randbuf[16];
mluis 0:62d1edcc13d1 165
mluis 0:62d1edcc13d1 166 // get random seed from wideband noise rssi
mluis 0:62d1edcc13d1 167 void radio_init( void )
mluis 0:62d1edcc13d1 168 {
mluis 0:62d1edcc13d1 169 hal_disableIRQs( );
mluis 3:519c71d29a06 170
mluis 3:519c71d29a06 171 // Initialize Radio driver
mluis 3:519c71d29a06 172 RadioEvents.TxDone = OnTxDone;
mluis 3:519c71d29a06 173 RadioEvents.RxDone = OnRxDone;
mluis 3:519c71d29a06 174 RadioEvents.RxError = OnRxError;
mluis 3:519c71d29a06 175 RadioEvents.TxTimeout = OnTxTimeout;
mluis 3:519c71d29a06 176 RadioEvents.RxTimeout = OnRxTimeout;
mluis 3:519c71d29a06 177 Radio.Init( &RadioEvents );
mluis 0:62d1edcc13d1 178
mluis 0:62d1edcc13d1 179 // seed 15-byte randomness via noise rssi
mluis 0:62d1edcc13d1 180 // Set LoRa modem ON
mluis 0:62d1edcc13d1 181 Radio.SetModem( MODEM_LORA );
mluis 0:62d1edcc13d1 182 // Disable LoRa modem interrupts
mluis 0:62d1edcc13d1 183 Radio.Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
mluis 0:62d1edcc13d1 184 RFLR_IRQFLAGS_RXDONE |
mluis 0:62d1edcc13d1 185 RFLR_IRQFLAGS_PAYLOADCRCERROR |
mluis 0:62d1edcc13d1 186 RFLR_IRQFLAGS_VALIDHEADER |
mluis 0:62d1edcc13d1 187 RFLR_IRQFLAGS_TXDONE |
mluis 0:62d1edcc13d1 188 RFLR_IRQFLAGS_CADDONE |
mluis 0:62d1edcc13d1 189 RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
mluis 0:62d1edcc13d1 190 RFLR_IRQFLAGS_CADDETECTED );
mluis 0:62d1edcc13d1 191
mluis 0:62d1edcc13d1 192 // Set radio in continuous reception
mluis 0:62d1edcc13d1 193 Radio.Rx( 0 );
mluis 0:62d1edcc13d1 194
mluis 0:62d1edcc13d1 195 for( int i = 1; i < 16; i++ )
mluis 0:62d1edcc13d1 196 {
mluis 0:62d1edcc13d1 197 for( int j = 0; j < 8; j++ )
mluis 0:62d1edcc13d1 198 {
mluis 0:62d1edcc13d1 199 u1_t b; // wait for two non-identical subsequent least-significant bits
mluis 0:62d1edcc13d1 200 while( ( b = Radio.Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) == ( Radio.Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) );
mluis 0:62d1edcc13d1 201 randbuf[i] = ( randbuf[i] << 1 ) | b;
mluis 0:62d1edcc13d1 202 }
mluis 0:62d1edcc13d1 203 }
mluis 0:62d1edcc13d1 204 randbuf[0] = 16; // set initial index
mluis 0:62d1edcc13d1 205
mluis 0:62d1edcc13d1 206 // Change LoRa modem SyncWord
mluis 0:62d1edcc13d1 207 Radio.Write( REG_LR_SYNCWORD, LORA_MAC_SYNCWORD );
mluis 0:62d1edcc13d1 208
mluis 0:62d1edcc13d1 209 Radio.Sleep( );
mluis 0:62d1edcc13d1 210
mluis 0:62d1edcc13d1 211 hal_enableIRQs( );
mluis 0:62d1edcc13d1 212 }
mluis 0:62d1edcc13d1 213
mluis 0:62d1edcc13d1 214 // return next random byte derived from seed buffer
mluis 0:62d1edcc13d1 215 // (buf[0] holds index of next byte to be returned)
mluis 0:62d1edcc13d1 216 u1_t radio_rand1( void )
mluis 0:62d1edcc13d1 217 {
mluis 0:62d1edcc13d1 218 u1_t i = randbuf[0];
mluis 0:62d1edcc13d1 219 ASSERT( i != 0 );
mluis 0:62d1edcc13d1 220 if( i == 16 )
mluis 0:62d1edcc13d1 221 {
mluis 0:62d1edcc13d1 222 os_aes( AES_ENC, randbuf, 16 ); // encrypt seed with any key
mluis 0:62d1edcc13d1 223 i = 0;
mluis 0:62d1edcc13d1 224 }
mluis 0:62d1edcc13d1 225 u1_t v = randbuf[i++];
mluis 0:62d1edcc13d1 226 randbuf[0] = i;
mluis 0:62d1edcc13d1 227 return v;
mluis 0:62d1edcc13d1 228 }
mluis 0:62d1edcc13d1 229
mluis 0:62d1edcc13d1 230 void os_radio( u1_t mode )
mluis 0:62d1edcc13d1 231 {
mluis 0:62d1edcc13d1 232 hal_disableIRQs( );
mluis 0:62d1edcc13d1 233 switch( mode )
mluis 0:62d1edcc13d1 234 {
mluis 0:62d1edcc13d1 235 case RADIO_RST:
mluis 0:62d1edcc13d1 236 // put radio to sleep
mluis 0:62d1edcc13d1 237 Radio.Sleep( );
mluis 0:62d1edcc13d1 238 break;
mluis 0:62d1edcc13d1 239
mluis 0:62d1edcc13d1 240 case RADIO_TX:
mluis 0:62d1edcc13d1 241 // transmit frame now
mluis 0:62d1edcc13d1 242 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 243
mluis 0:62d1edcc13d1 244 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 245 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 246 { // FSK modem
mluis 0:62d1edcc13d1 247 Radio.SetTxConfig( MODEM_FSK, LMIC.txpow, 25e3, 0, 50e3, 0, 5, false, true, 0, 0, false, 3e6 );
mluis 0:62d1edcc13d1 248 }
mluis 0:62d1edcc13d1 249 else
mluis 0:62d1edcc13d1 250 { // LoRa modem
mluis 0:62d1edcc13d1 251
mluis 1:d3b7bde3995c 252 Radio.SetTxConfig( MODEM_LORA, LMIC.txpow, 0, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 8, getIh( LMIC.rps ) ? true : false, ( getNocrc( LMIC.rps ) == 0 ) ? true : false, 0, 0, false, 3e6 );
mluis 0:62d1edcc13d1 253 }
mluis 0:62d1edcc13d1 254
mluis 0:62d1edcc13d1 255 //starttx( ); // buf=LMIC.frame, len=LMIC.dataLen
mluis 0:62d1edcc13d1 256 Radio.Send( LMIC.frame, LMIC.dataLen );
mluis 0:62d1edcc13d1 257 break;
mluis 0:62d1edcc13d1 258
mluis 0:62d1edcc13d1 259 case RADIO_RX:
mluis 0:62d1edcc13d1 260 // receive frame now (exactly at rxtime)
mluis 0:62d1edcc13d1 261 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 262
mluis 0:62d1edcc13d1 263 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 264 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 265 { // FSK modem
mluis 0:62d1edcc13d1 266 //Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, false );
mluis 0:62d1edcc13d1 267 Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, true );
mluis 0:62d1edcc13d1 268 }
mluis 0:62d1edcc13d1 269 else
mluis 0:62d1edcc13d1 270 { // LoRa modem
mluis 1:d3b7bde3995c 271 if( ( getSf( LMIC.rps ) <= SF9 ) && ( LMIC.rxsyms < 8 ) )
mluis 1:d3b7bde3995c 272 {
mluis 1:d3b7bde3995c 273 Radio.SetRxConfig( MODEM_LORA, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 0, 8, LMIC.rxsyms + 3, getIh( LMIC.rps ) ? true : false, getIh( LMIC.rps ), ( getNocrc( LMIC.rps ) == 0 ) ? true : false, 0, 0, true, false );
mluis 1:d3b7bde3995c 274 }
mluis 1:d3b7bde3995c 275 else
mluis 1:d3b7bde3995c 276 {
mluis 1:d3b7bde3995c 277 Radio.SetRxConfig( MODEM_LORA, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 0, 8, LMIC.rxsyms, getIh( LMIC.rps ) ? true : false, getIh( LMIC.rps ), ( getNocrc( LMIC.rps ) == 0 ) ? true : false, 0, 0, true, false );
mluis 1:d3b7bde3995c 278 }
mluis 0:62d1edcc13d1 279 }
mluis 0:62d1edcc13d1 280
mluis 0:62d1edcc13d1 281 // now instruct the radio to receive
mluis 0:62d1edcc13d1 282 hal_waitUntil( LMIC.rxtime ); // busy wait until exact rx time
mluis 0:62d1edcc13d1 283
mluis 0:62d1edcc13d1 284 //startrx( RXMODE_SINGLE ); // buf = LMIC.frame, time = LMIC.rxtime, timeout=LMIC.rxsyms
mluis 0:62d1edcc13d1 285 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 286 { // FSK modem
mluis 0:62d1edcc13d1 287 Radio.Rx( 50e3 ); // Max Rx window 50 ms
mluis 0:62d1edcc13d1 288 }
mluis 0:62d1edcc13d1 289 else
mluis 0:62d1edcc13d1 290 { // LoRa modem
mluis 0:62d1edcc13d1 291 Radio.Rx( 3e6 ); // Max Rx window 3 seconds
mluis 0:62d1edcc13d1 292 }
mluis 0:62d1edcc13d1 293 break;
mluis 0:62d1edcc13d1 294
mluis 0:62d1edcc13d1 295 case RADIO_RXON:
mluis 0:62d1edcc13d1 296 // start scanning for beacon now
mluis 0:62d1edcc13d1 297
mluis 0:62d1edcc13d1 298 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 299
mluis 0:62d1edcc13d1 300 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 301 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 302 { // FSK modem
mluis 0:62d1edcc13d1 303 Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, true );
mluis 0:62d1edcc13d1 304 }
mluis 0:62d1edcc13d1 305 else
mluis 0:62d1edcc13d1 306 { // LoRa modem
mluis 1:d3b7bde3995c 307 Radio.SetRxConfig( MODEM_LORA, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 0, 8, LMIC.rxsyms, getIh( LMIC.rps ) ? true : false, getIh( LMIC.rps ), ( getNocrc( LMIC.rps ) == 0 ) ? true : false, 0, 0, true, true );
mluis 0:62d1edcc13d1 308 }
mluis 0:62d1edcc13d1 309
mluis 1:d3b7bde3995c 310 //startrx( RXMODE_SCAN ); // buf = LMIC.frame
mluis 0:62d1edcc13d1 311 Radio.Rx( 0 );
mluis 0:62d1edcc13d1 312 break;
mluis 0:62d1edcc13d1 313 }
mluis 0:62d1edcc13d1 314 hal_enableIRQs( );
mluis 0:62d1edcc13d1 315 }
mluis 0:62d1edcc13d1 316
mluis 0:62d1edcc13d1 317 #else
mluis 0:62d1edcc13d1 318
mluis 0:62d1edcc13d1 319 // ----------------------------------------
mluis 0:62d1edcc13d1 320 // Registers Mapping
mluis 0:62d1edcc13d1 321 #define RegFifo 0x00 // common
mluis 0:62d1edcc13d1 322 #define RegOpMode 0x01 // common
mluis 0:62d1edcc13d1 323 #define FSKRegBitrateMsb 0x02
mluis 0:62d1edcc13d1 324 #define FSKRegBitrateLsb 0x03
mluis 0:62d1edcc13d1 325 #define FSKRegFdevMsb 0x04
mluis 0:62d1edcc13d1 326 #define FSKRegFdevLsb 0x05
mluis 0:62d1edcc13d1 327 #define RegFrfMsb 0x06 // common
mluis 0:62d1edcc13d1 328 #define RegFrfMid 0x07 // common
mluis 0:62d1edcc13d1 329 #define RegFrfLsb 0x08 // common
mluis 0:62d1edcc13d1 330 #define RegPaConfig 0x09 // common
mluis 0:62d1edcc13d1 331 #define RegPaRamp 0x0A // common
mluis 0:62d1edcc13d1 332 #define RegOcp 0x0B // common
mluis 0:62d1edcc13d1 333 #define RegLna 0x0C // common
mluis 0:62d1edcc13d1 334 #define FSKRegRxConfig 0x0D
mluis 0:62d1edcc13d1 335 #define LORARegFifoAddrPtr 0x0D
mluis 0:62d1edcc13d1 336 #define FSKRegRssiConfig 0x0E
mluis 0:62d1edcc13d1 337 #define LORARegFifoTxBaseAddr 0x0E
mluis 0:62d1edcc13d1 338 #define FSKRegRssiCollision 0x0F
mluis 0:62d1edcc13d1 339 #define LORARegFifoRxBaseAddr 0x0F
mluis 0:62d1edcc13d1 340 #define FSKRegRssiThresh 0x10
mluis 0:62d1edcc13d1 341 #define LORARegFifoRxCurrentAddr 0x10
mluis 0:62d1edcc13d1 342 #define FSKRegRssiValue 0x11
mluis 0:62d1edcc13d1 343 #define LORARegIrqFlagsMask 0x11
mluis 0:62d1edcc13d1 344 #define FSKRegRxBw 0x12
mluis 0:62d1edcc13d1 345 #define LORARegIrqFlags 0x12
mluis 0:62d1edcc13d1 346 #define FSKRegAfcBw 0x13
mluis 0:62d1edcc13d1 347 #define LORARegRxNbBytes 0x13
mluis 0:62d1edcc13d1 348 #define FSKRegOokPeak 0x14
mluis 0:62d1edcc13d1 349 #define LORARegRxHeaderCntValueMsb 0x14
mluis 0:62d1edcc13d1 350 #define FSKRegOokFix 0x15
mluis 0:62d1edcc13d1 351 #define LORARegRxHeaderCntValueLsb 0x15
mluis 0:62d1edcc13d1 352 #define FSKRegOokAvg 0x16
mluis 0:62d1edcc13d1 353 #define LORARegRxPacketCntValueMsb 0x16
mluis 0:62d1edcc13d1 354 #define LORARegRxpacketCntValueLsb 0x17
mluis 0:62d1edcc13d1 355 #define LORARegModemStat 0x18
mluis 0:62d1edcc13d1 356 #define LORARegPktSnrValue 0x19
mluis 0:62d1edcc13d1 357 #define FSKRegAfcFei 0x1A
mluis 0:62d1edcc13d1 358 #define LORARegPktRssiValue 0x1A
mluis 0:62d1edcc13d1 359 #define FSKRegAfcMsb 0x1B
mluis 0:62d1edcc13d1 360 #define LORARegRssiValue 0x1B
mluis 0:62d1edcc13d1 361 #define FSKRegAfcLsb 0x1C
mluis 0:62d1edcc13d1 362 #define LORARegHopChannel 0x1C
mluis 0:62d1edcc13d1 363 #define FSKRegFeiMsb 0x1D
mluis 0:62d1edcc13d1 364 #define LORARegModemConfig1 0x1D
mluis 0:62d1edcc13d1 365 #define FSKRegFeiLsb 0x1E
mluis 0:62d1edcc13d1 366 #define LORARegModemConfig2 0x1E
mluis 0:62d1edcc13d1 367 #define FSKRegPreambleDetect 0x1F
mluis 0:62d1edcc13d1 368 #define LORARegSymbTimeoutLsb 0x1F
mluis 0:62d1edcc13d1 369 #define FSKRegRxTimeout1 0x20
mluis 0:62d1edcc13d1 370 #define LORARegPreambleMsb 0x20
mluis 0:62d1edcc13d1 371 #define FSKRegRxTimeout2 0x21
mluis 0:62d1edcc13d1 372 #define LORARegPreambleLsb 0x21
mluis 0:62d1edcc13d1 373 #define FSKRegRxTimeout3 0x22
mluis 0:62d1edcc13d1 374 #define LORARegPayloadLength 0x22
mluis 0:62d1edcc13d1 375 #define FSKRegRxDelay 0x23
mluis 0:62d1edcc13d1 376 #define LORARegPayloadMaxLength 0x23
mluis 0:62d1edcc13d1 377 #define FSKRegOsc 0x24
mluis 0:62d1edcc13d1 378 #define LORARegHopPeriod 0x24
mluis 0:62d1edcc13d1 379 #define FSKRegPreambleMsb 0x25
mluis 0:62d1edcc13d1 380 #define LORARegFifoRxByteAddr 0x25
mluis 0:62d1edcc13d1 381 #define LORARegModemConfig3 0x26
mluis 0:62d1edcc13d1 382 #define FSKRegPreambleLsb 0x26
mluis 0:62d1edcc13d1 383 #define FSKRegSyncConfig 0x27
mluis 0:62d1edcc13d1 384 #define LORARegFeiMsb 0x28
mluis 0:62d1edcc13d1 385 #define FSKRegSyncValue1 0x28
mluis 0:62d1edcc13d1 386 #define LORAFeiMib 0x29
mluis 0:62d1edcc13d1 387 #define FSKRegSyncValue2 0x29
mluis 0:62d1edcc13d1 388 #define LORARegFeiLsb 0x2A
mluis 0:62d1edcc13d1 389 #define FSKRegSyncValue3 0x2A
mluis 0:62d1edcc13d1 390 #define FSKRegSyncValue4 0x2B
mluis 0:62d1edcc13d1 391 #define LORARegRssiWideband 0x2C
mluis 0:62d1edcc13d1 392 #define FSKRegSyncValue5 0x2C
mluis 0:62d1edcc13d1 393 #define FSKRegSyncValue6 0x2D
mluis 0:62d1edcc13d1 394 #define FSKRegSyncValue7 0x2E
mluis 0:62d1edcc13d1 395 #define FSKRegSyncValue8 0x2F
mluis 0:62d1edcc13d1 396 #define FSKRegPacketConfig1 0x30
mluis 0:62d1edcc13d1 397 #define FSKRegPacketConfig2 0x31
mluis 0:62d1edcc13d1 398 #define LORARegDetectOptimize 0x31
mluis 0:62d1edcc13d1 399 #define FSKRegPayloadLength 0x32
mluis 0:62d1edcc13d1 400 #define FSKRegNodeAdrs 0x33
mluis 0:62d1edcc13d1 401 #define LORARegInvertIQ 0x33
mluis 0:62d1edcc13d1 402 #define FSKRegBroadcastAdrs 0x34
mluis 0:62d1edcc13d1 403 #define FSKRegFifoThresh 0x35
mluis 0:62d1edcc13d1 404 #define FSKRegSeqConfig1 0x36
mluis 0:62d1edcc13d1 405 #define FSKRegSeqConfig2 0x37
mluis 0:62d1edcc13d1 406 #define LORARegDetectionThreshold 0x37
mluis 0:62d1edcc13d1 407 #define FSKRegTimerResol 0x38
mluis 0:62d1edcc13d1 408 #define FSKRegTimer1Coef 0x39
mluis 0:62d1edcc13d1 409 #define LORARegSyncWord 0x39
mluis 0:62d1edcc13d1 410 #define FSKRegTimer2Coef 0x3A
mluis 0:62d1edcc13d1 411 #define FSKRegImageCal 0x3B
mluis 0:62d1edcc13d1 412 #define FSKRegTemp 0x3C
mluis 0:62d1edcc13d1 413 #define FSKRegLowBat 0x3D
mluis 0:62d1edcc13d1 414 #define FSKRegIrqFlags1 0x3E
mluis 0:62d1edcc13d1 415 #define FSKRegIrqFlags2 0x3F
mluis 0:62d1edcc13d1 416 #define RegDioMapping1 0x40 // common
mluis 0:62d1edcc13d1 417 #define RegDioMapping2 0x41 // common
mluis 0:62d1edcc13d1 418 #define RegVersion 0x42 // common
mluis 0:62d1edcc13d1 419 // #define RegAgcRef 0x43 // common
mluis 0:62d1edcc13d1 420 // #define RegAgcThresh1 0x44 // common
mluis 0:62d1edcc13d1 421 // #define RegAgcThresh2 0x45 // common
mluis 0:62d1edcc13d1 422 // #define RegAgcThresh3 0x46 // common
mluis 0:62d1edcc13d1 423 // #define RegPllHop 0x4B // common
mluis 0:62d1edcc13d1 424 // #define RegTcxo 0x58 // common
mluis 0:62d1edcc13d1 425 #define RegPaDac 0x5A // common
mluis 0:62d1edcc13d1 426 // #define RegPll 0x5C // common
mluis 0:62d1edcc13d1 427 // #define RegPllLowPn 0x5E // common
mluis 0:62d1edcc13d1 428 // #define RegFormerTemp 0x6C // common
mluis 0:62d1edcc13d1 429 // #define RegBitRateFrac 0x70 // common
mluis 0:62d1edcc13d1 430
mluis 0:62d1edcc13d1 431 // ----------------------------------------
mluis 0:62d1edcc13d1 432 // spread factors and mode for RegModemConfig2
mluis 0:62d1edcc13d1 433 #define SX1272_MC2_FSK 0x00
mluis 0:62d1edcc13d1 434 #define SX1272_MC2_SF7 0x70
mluis 0:62d1edcc13d1 435 #define SX1272_MC2_SF8 0x80
mluis 0:62d1edcc13d1 436 #define SX1272_MC2_SF9 0x90
mluis 0:62d1edcc13d1 437 #define SX1272_MC2_SF10 0xA0
mluis 0:62d1edcc13d1 438 #define SX1272_MC2_SF11 0xB0
mluis 0:62d1edcc13d1 439 #define SX1272_MC2_SF12 0xC0
mluis 0:62d1edcc13d1 440 // bandwidth for RegModemConfig1
mluis 0:62d1edcc13d1 441 #define SX1272_MC1_BW_125 0x00
mluis 0:62d1edcc13d1 442 #define SX1272_MC1_BW_250 0x40
mluis 0:62d1edcc13d1 443 #define SX1272_MC1_BW_500 0x80
mluis 0:62d1edcc13d1 444 // coding rate for RegModemConfig1
mluis 0:62d1edcc13d1 445 #define SX1272_MC1_CR_4_5 0x08
mluis 0:62d1edcc13d1 446 #define SX1272_MC1_CR_4_6 0x10
mluis 0:62d1edcc13d1 447 #define SX1272_MC1_CR_4_7 0x18
mluis 0:62d1edcc13d1 448 #define SX1272_MC1_CR_4_8 0x20
mluis 0:62d1edcc13d1 449 #define SX1272_MC1_IMPLICIT_HEADER_MODE_ON 0x04 // required for receive
mluis 0:62d1edcc13d1 450 #define SX1272_MC1_RX_PAYLOAD_CRCON 0x02
mluis 0:62d1edcc13d1 451 #define SX1272_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for SF11 and SF12
mluis 0:62d1edcc13d1 452 // transmit power configuration for RegPaConfig
mluis 0:62d1edcc13d1 453 #define SX1272_PAC_PA_SELECT_PA_BOOST 0x80
mluis 0:62d1edcc13d1 454 #define SX1272_PAC_PA_SELECT_RFIO_PIN 0x00
mluis 0:62d1edcc13d1 455
mluis 0:62d1edcc13d1 456
mluis 0:62d1edcc13d1 457 // sx1276 RegModemConfig1
mluis 0:62d1edcc13d1 458 #define SX1276_MC1_BW_125 0x70
mluis 0:62d1edcc13d1 459 #define SX1276_MC1_BW_250 0x80
mluis 0:62d1edcc13d1 460 #define SX1276_MC1_BW_500 0x90
mluis 0:62d1edcc13d1 461 #define SX1276_MC1_CR_4_5 0x02
mluis 0:62d1edcc13d1 462 #define SX1276_MC1_CR_4_6 0x04
mluis 0:62d1edcc13d1 463 #define SX1276_MC1_CR_4_7 0x06
mluis 0:62d1edcc13d1 464 #define SX1276_MC1_CR_4_8 0x08
mluis 0:62d1edcc13d1 465
mluis 0:62d1edcc13d1 466 #define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01
mluis 0:62d1edcc13d1 467
mluis 0:62d1edcc13d1 468 // sx1276 RegModemConfig2
mluis 0:62d1edcc13d1 469 #define SX1276_MC2_RX_PAYLOAD_CRCON 0x04
mluis 0:62d1edcc13d1 470
mluis 0:62d1edcc13d1 471 // sx1276 RegModemConfig3
mluis 0:62d1edcc13d1 472 #define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08
mluis 0:62d1edcc13d1 473 #define SX1276_MC3_AGCAUTO 0x04
mluis 0:62d1edcc13d1 474
mluis 0:62d1edcc13d1 475 // preamble for lora networks (nibbles swapped)
mluis 1:d3b7bde3995c 476 #define LORA_MAC_PREAMBLE 0x34
mluis 0:62d1edcc13d1 477
mluis 0:62d1edcc13d1 478 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
mluis 0:62d1edcc13d1 479 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 480 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
mluis 0:62d1edcc13d1 481 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 482 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
mluis 0:62d1edcc13d1 483 #endif
mluis 0:62d1edcc13d1 484
mluis 0:62d1edcc13d1 485
mluis 0:62d1edcc13d1 486
mluis 0:62d1edcc13d1 487 // ----------------------------------------
mluis 0:62d1edcc13d1 488 // Constants for radio registers
mluis 0:62d1edcc13d1 489 #define OPMODE_LORA 0x80
mluis 0:62d1edcc13d1 490 #define OPMODE_MASK 0x07
mluis 0:62d1edcc13d1 491 #define OPMODE_SLEEP 0x00
mluis 0:62d1edcc13d1 492 #define OPMODE_STANDBY 0x01
mluis 0:62d1edcc13d1 493 #define OPMODE_FSTX 0x02
mluis 0:62d1edcc13d1 494 #define OPMODE_TX 0x03
mluis 0:62d1edcc13d1 495 #define OPMODE_FSRX 0x04
mluis 0:62d1edcc13d1 496 #define OPMODE_RX 0x05
mluis 0:62d1edcc13d1 497 #define OPMODE_RX_SINGLE 0x06
mluis 0:62d1edcc13d1 498 #define OPMODE_CAD 0x07
mluis 0:62d1edcc13d1 499
mluis 0:62d1edcc13d1 500 // ----------------------------------------
mluis 0:62d1edcc13d1 501 // Bits masking the corresponding IRQs from the radio
mluis 0:62d1edcc13d1 502 #define IRQ_LORA_RXTOUT_MASK 0x80
mluis 0:62d1edcc13d1 503 #define IRQ_LORA_RXDONE_MASK 0x40
mluis 0:62d1edcc13d1 504 #define IRQ_LORA_CRCERR_MASK 0x20
mluis 0:62d1edcc13d1 505 #define IRQ_LORA_HEADER_MASK 0x10
mluis 0:62d1edcc13d1 506 #define IRQ_LORA_TXDONE_MASK 0x08
mluis 0:62d1edcc13d1 507 #define IRQ_LORA_CDDONE_MASK 0x04
mluis 0:62d1edcc13d1 508 #define IRQ_LORA_FHSSCH_MASK 0x02
mluis 0:62d1edcc13d1 509 #define IRQ_LORA_CDDETD_MASK 0x01
mluis 0:62d1edcc13d1 510
mluis 0:62d1edcc13d1 511 #define IRQ_FSK1_MODEREADY_MASK 0x80
mluis 0:62d1edcc13d1 512 #define IRQ_FSK1_RXREADY_MASK 0x40
mluis 0:62d1edcc13d1 513 #define IRQ_FSK1_TXREADY_MASK 0x20
mluis 0:62d1edcc13d1 514 #define IRQ_FSK1_PLLLOCK_MASK 0x10
mluis 0:62d1edcc13d1 515 #define IRQ_FSK1_RSSI_MASK 0x08
mluis 0:62d1edcc13d1 516 #define IRQ_FSK1_TIMEOUT_MASK 0x04
mluis 0:62d1edcc13d1 517 #define IRQ_FSK1_PREAMBLEDETECT_MASK 0x02
mluis 0:62d1edcc13d1 518 #define IRQ_FSK1_SYNCADDRESSMATCH_MASK 0x01
mluis 0:62d1edcc13d1 519 #define IRQ_FSK2_FIFOFULL_MASK 0x80
mluis 0:62d1edcc13d1 520 #define IRQ_FSK2_FIFOEMPTY_MASK 0x40
mluis 0:62d1edcc13d1 521 #define IRQ_FSK2_FIFOLEVEL_MASK 0x20
mluis 0:62d1edcc13d1 522 #define IRQ_FSK2_FIFOOVERRUN_MASK 0x10
mluis 0:62d1edcc13d1 523 #define IRQ_FSK2_PACKETSENT_MASK 0x08
mluis 0:62d1edcc13d1 524 #define IRQ_FSK2_PAYLOADREADY_MASK 0x04
mluis 0:62d1edcc13d1 525 #define IRQ_FSK2_CRCOK_MASK 0x02
mluis 0:62d1edcc13d1 526 #define IRQ_FSK2_LOWBAT_MASK 0x01
mluis 0:62d1edcc13d1 527
mluis 0:62d1edcc13d1 528 // ----------------------------------------
mluis 0:62d1edcc13d1 529 // DIO function mappings D0D1D2D3
mluis 0:62d1edcc13d1 530 #define MAP_DIO0_LORA_RXDONE 0x00 // 00------
mluis 0:62d1edcc13d1 531 #define MAP_DIO0_LORA_TXDONE 0x40 // 01------
mluis 0:62d1edcc13d1 532 #define MAP_DIO1_LORA_RXTOUT 0x00 // --00----
mluis 0:62d1edcc13d1 533 #define MAP_DIO1_LORA_NOP 0x30 // --11----
mluis 0:62d1edcc13d1 534 #define MAP_DIO2_LORA_NOP 0xC0 // ----11--
mluis 0:62d1edcc13d1 535
mluis 0:62d1edcc13d1 536 #define MAP_DIO0_FSK_READY 0x00 // 00------ (packet sent / payload ready)
mluis 0:62d1edcc13d1 537 #define MAP_DIO1_FSK_NOP 0x30 // --11----
mluis 0:62d1edcc13d1 538 #define MAP_DIO2_FSK_TXNOP 0x04 // ----01--
mluis 0:62d1edcc13d1 539 #define MAP_DIO2_FSK_TIMEOUT 0x08 // ----10--
mluis 0:62d1edcc13d1 540
mluis 0:62d1edcc13d1 541
mluis 0:62d1edcc13d1 542 // FSK IMAGECAL defines
mluis 0:62d1edcc13d1 543 #define RF_IMAGECAL_AUTOIMAGECAL_MASK 0x7F
mluis 0:62d1edcc13d1 544 #define RF_IMAGECAL_AUTOIMAGECAL_ON 0x80
mluis 0:62d1edcc13d1 545 #define RF_IMAGECAL_AUTOIMAGECAL_OFF 0x00 // Default
mluis 0:62d1edcc13d1 546
mluis 0:62d1edcc13d1 547 #define RF_IMAGECAL_IMAGECAL_MASK 0xBF
mluis 0:62d1edcc13d1 548 #define RF_IMAGECAL_IMAGECAL_START 0x40
mluis 0:62d1edcc13d1 549
mluis 0:62d1edcc13d1 550 #define RF_IMAGECAL_IMAGECAL_RUNNING 0x20
mluis 0:62d1edcc13d1 551 #define RF_IMAGECAL_IMAGECAL_DONE 0x00 // Default
mluis 0:62d1edcc13d1 552
mluis 0:62d1edcc13d1 553
mluis 0:62d1edcc13d1 554 // RADIO STATE
mluis 0:62d1edcc13d1 555 // (initialized by radio_init(), used by radio_rand1())
mluis 0:62d1edcc13d1 556 static u1_t randbuf[16];
mluis 0:62d1edcc13d1 557
mluis 0:62d1edcc13d1 558
mluis 0:62d1edcc13d1 559 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 560 #define LNA_RX_GAIN (0x20|0x1)
mluis 0:62d1edcc13d1 561 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 562 #define LNA_RX_GAIN (0x20|0x03)
mluis 0:62d1edcc13d1 563 #else
mluis 0:62d1edcc13d1 564 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 565 #endif
mluis 0:62d1edcc13d1 566
mluis 1:d3b7bde3995c 567 #define RADIO_DBG
mluis 1:d3b7bde3995c 568 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 569 DigitalOut txStateIo( PB_8 );
mluis 1:d3b7bde3995c 570 DigitalOut rxStateIo( PB_9 );
mluis 1:d3b7bde3995c 571 #endif
mluis 1:d3b7bde3995c 572
mluis 0:62d1edcc13d1 573 static void writeReg (u1_t addr, u1_t data ) {
mluis 0:62d1edcc13d1 574 hal_pin_nss(0);
mluis 0:62d1edcc13d1 575 hal_spi(addr | 0x80);
mluis 0:62d1edcc13d1 576 hal_spi(data);
mluis 0:62d1edcc13d1 577 hal_pin_nss(1);
mluis 0:62d1edcc13d1 578 }
mluis 0:62d1edcc13d1 579
mluis 0:62d1edcc13d1 580 static u1_t readReg (u1_t addr) {
mluis 0:62d1edcc13d1 581 hal_pin_nss(0);
mluis 0:62d1edcc13d1 582 hal_spi(addr & 0x7F);
mluis 0:62d1edcc13d1 583 u1_t val = hal_spi(0x00);
mluis 0:62d1edcc13d1 584 hal_pin_nss(1);
mluis 0:62d1edcc13d1 585 return val;
mluis 0:62d1edcc13d1 586 }
mluis 0:62d1edcc13d1 587
mluis 0:62d1edcc13d1 588 static void writeBuf (u1_t addr, xref2u1_t buf, u1_t len) {
mluis 0:62d1edcc13d1 589 hal_pin_nss(0);
mluis 0:62d1edcc13d1 590 hal_spi(addr | 0x80);
mluis 0:62d1edcc13d1 591 for (u1_t i=0; i<len; i++) {
mluis 0:62d1edcc13d1 592 hal_spi(buf[i]);
mluis 0:62d1edcc13d1 593 }
mluis 0:62d1edcc13d1 594 hal_pin_nss(1);
mluis 0:62d1edcc13d1 595 }
mluis 0:62d1edcc13d1 596
mluis 0:62d1edcc13d1 597 static void readBuf (u1_t addr, xref2u1_t buf, u1_t len) {
mluis 0:62d1edcc13d1 598 hal_pin_nss(0);
mluis 0:62d1edcc13d1 599 hal_spi(addr & 0x7F);
mluis 0:62d1edcc13d1 600 for (u1_t i=0; i<len; i++) {
mluis 0:62d1edcc13d1 601 buf[i] = hal_spi(0x00);
mluis 0:62d1edcc13d1 602 }
mluis 0:62d1edcc13d1 603 hal_pin_nss(1);
mluis 0:62d1edcc13d1 604 }
mluis 0:62d1edcc13d1 605
mluis 0:62d1edcc13d1 606 static void opmode (u1_t mode) {
mluis 0:62d1edcc13d1 607 writeReg(RegOpMode, (readReg(RegOpMode) & ~OPMODE_MASK) | mode);
mluis 0:62d1edcc13d1 608 }
mluis 0:62d1edcc13d1 609
mluis 1:d3b7bde3995c 610 static void opmodeLora() {
mluis 0:62d1edcc13d1 611 u1_t u = OPMODE_LORA;
mluis 0:62d1edcc13d1 612 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 613 u |= 0x8; // TBD: sx1276 high freq
mluis 0:62d1edcc13d1 614 #endif
mluis 0:62d1edcc13d1 615 writeReg(RegOpMode, u);
mluis 0:62d1edcc13d1 616 }
mluis 0:62d1edcc13d1 617
mluis 1:d3b7bde3995c 618 static void opmodeFSK() {
mluis 0:62d1edcc13d1 619 u1_t u = 0;
mluis 0:62d1edcc13d1 620 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 621 u |= 0x8; // TBD: sx1276 high freq
mluis 0:62d1edcc13d1 622 #endif
mluis 0:62d1edcc13d1 623 writeReg(RegOpMode, u);
mluis 0:62d1edcc13d1 624 }
mluis 0:62d1edcc13d1 625
mluis 0:62d1edcc13d1 626 // configure LoRa modem (cfg1, cfg2)
mluis 1:d3b7bde3995c 627 static void configLoraModem () {
mluis 0:62d1edcc13d1 628 sf_t sf = getSf(LMIC.rps);
mluis 0:62d1edcc13d1 629
mluis 0:62d1edcc13d1 630 #ifdef CFG_sx1276_radio
mluis 1:d3b7bde3995c 631 u1_t mc1 = 0, mc2 = 0, mc3 = 0;
mluis 0:62d1edcc13d1 632
mluis 1:d3b7bde3995c 633 switch (getBw(LMIC.rps)) {
mluis 1:d3b7bde3995c 634 case BW125: mc1 |= SX1276_MC1_BW_125; break;
mluis 1:d3b7bde3995c 635 case BW250: mc1 |= SX1276_MC1_BW_250; break;
mluis 1:d3b7bde3995c 636 case BW500: mc1 |= SX1276_MC1_BW_500; break;
mluis 1:d3b7bde3995c 637 default:
mluis 1:d3b7bde3995c 638 ASSERT(0);
mluis 1:d3b7bde3995c 639 }
mluis 1:d3b7bde3995c 640 switch( getCr(LMIC.rps) ) {
mluis 1:d3b7bde3995c 641 case CR_4_5: mc1 |= SX1276_MC1_CR_4_5; break;
mluis 1:d3b7bde3995c 642 case CR_4_6: mc1 |= SX1276_MC1_CR_4_6; break;
mluis 1:d3b7bde3995c 643 case CR_4_7: mc1 |= SX1276_MC1_CR_4_7; break;
mluis 1:d3b7bde3995c 644 case CR_4_8: mc1 |= SX1276_MC1_CR_4_8; break;
mluis 1:d3b7bde3995c 645 default:
mluis 1:d3b7bde3995c 646 ASSERT(0);
mluis 1:d3b7bde3995c 647 }
mluis 0:62d1edcc13d1 648
mluis 1:d3b7bde3995c 649 if (getIh(LMIC.rps)) {
mluis 1:d3b7bde3995c 650 mc1 |= SX1276_MC1_IMPLICIT_HEADER_MODE_ON;
mluis 1:d3b7bde3995c 651 writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
mluis 1:d3b7bde3995c 652 }
mluis 1:d3b7bde3995c 653 // set ModemConfig1
mluis 1:d3b7bde3995c 654 writeReg(LORARegModemConfig1, mc1);
mluis 0:62d1edcc13d1 655
mluis 1:d3b7bde3995c 656 mc2 = (SX1272_MC2_SF7 + ((sf-1)<<4));
mluis 1:d3b7bde3995c 657 if (getNocrc(LMIC.rps) == 0) {
mluis 1:d3b7bde3995c 658 mc2 |= SX1276_MC2_RX_PAYLOAD_CRCON;
mluis 1:d3b7bde3995c 659 }
mluis 1:d3b7bde3995c 660 writeReg(LORARegModemConfig2, mc2);
mluis 1:d3b7bde3995c 661
mluis 1:d3b7bde3995c 662 mc3 = SX1276_MC3_AGCAUTO;
mluis 1:d3b7bde3995c 663 if ((sf == SF11 || sf == SF12) && getBw(LMIC.rps) == BW125) {
mluis 1:d3b7bde3995c 664 mc3 |= SX1276_MC3_LOW_DATA_RATE_OPTIMIZE;
mluis 1:d3b7bde3995c 665 }
mluis 1:d3b7bde3995c 666 writeReg(LORARegModemConfig3, mc3);
mluis 0:62d1edcc13d1 667 #elif CFG_sx1272_radio
mluis 1:d3b7bde3995c 668 u1_t mc1 = (getBw(LMIC.rps)<<6);
mluis 0:62d1edcc13d1 669
mluis 1:d3b7bde3995c 670 switch( getCr(LMIC.rps) ) {
mluis 1:d3b7bde3995c 671 case CR_4_5: mc1 |= SX1272_MC1_CR_4_5; break;
mluis 1:d3b7bde3995c 672 case CR_4_6: mc1 |= SX1272_MC1_CR_4_6; break;
mluis 1:d3b7bde3995c 673 case CR_4_7: mc1 |= SX1272_MC1_CR_4_7; break;
mluis 1:d3b7bde3995c 674 case CR_4_8: mc1 |= SX1272_MC1_CR_4_8; break;
mluis 1:d3b7bde3995c 675 }
mluis 1:d3b7bde3995c 676
mluis 1:d3b7bde3995c 677 if ((sf == SF11 || sf == SF12) && getBw(LMIC.rps) == BW125) {
mluis 1:d3b7bde3995c 678 mc1 |= SX1272_MC1_LOW_DATA_RATE_OPTIMIZE;
mluis 1:d3b7bde3995c 679 }
mluis 1:d3b7bde3995c 680
mluis 1:d3b7bde3995c 681 if (getNocrc(LMIC.rps) == 0) {
mluis 1:d3b7bde3995c 682 mc1 |= SX1272_MC1_RX_PAYLOAD_CRCON;
mluis 1:d3b7bde3995c 683 }
mluis 1:d3b7bde3995c 684
mluis 1:d3b7bde3995c 685 if (getIh(LMIC.rps)) {
mluis 1:d3b7bde3995c 686 mc1 |= SX1272_MC1_IMPLICIT_HEADER_MODE_ON;
mluis 1:d3b7bde3995c 687 writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
mluis 1:d3b7bde3995c 688 }
mluis 1:d3b7bde3995c 689 // set ModemConfig1
mluis 1:d3b7bde3995c 690 writeReg(LORARegModemConfig1, mc1);
mluis 1:d3b7bde3995c 691
mluis 1:d3b7bde3995c 692 // set ModemConfig2 (sf, AgcAutoOn=1 SymbTimeoutHi=00)
mluis 1:d3b7bde3995c 693 writeReg(LORARegModemConfig2, (SX1272_MC2_SF7 + ((sf-1)<<4)) | 0x04);
mluis 0:62d1edcc13d1 694 #else
mluis 0:62d1edcc13d1 695 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 696 #endif /* CFG_sx1272_radio */
mluis 0:62d1edcc13d1 697 }
mluis 0:62d1edcc13d1 698
mluis 1:d3b7bde3995c 699 static void configChannel () {
mluis 0:62d1edcc13d1 700 // set frequency: FQ = (FRF * 32 Mhz) / (2 ^ 19)
mluis 0:62d1edcc13d1 701 u8_t frf = ((u8_t)LMIC.freq << 19) / 32000000;
mluis 0:62d1edcc13d1 702 writeReg(RegFrfMsb, (u1_t)(frf>>16));
mluis 0:62d1edcc13d1 703 writeReg(RegFrfMid, (u1_t)(frf>> 8));
mluis 0:62d1edcc13d1 704 writeReg(RegFrfLsb, (u1_t)(frf>> 0));
mluis 0:62d1edcc13d1 705 }
mluis 0:62d1edcc13d1 706
mluis 0:62d1edcc13d1 707
mluis 0:62d1edcc13d1 708
mluis 1:d3b7bde3995c 709 static void configPower () {
mluis 0:62d1edcc13d1 710 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 711 // no boost used for now
mluis 0:62d1edcc13d1 712 s1_t pw = (s1_t)LMIC.txpow;
mluis 1:d3b7bde3995c 713 if(pw >= 17) {
mluis 1:d3b7bde3995c 714 pw = 15;
mluis 1:d3b7bde3995c 715 } else if(pw < 2) {
mluis 1:d3b7bde3995c 716 pw = 2;
mluis 0:62d1edcc13d1 717 }
mluis 0:62d1edcc13d1 718 // check board type for BOOST pin
mluis 1:d3b7bde3995c 719 writeReg(RegPaConfig, (u1_t)(0x80|(pw&0xf)));
mluis 0:62d1edcc13d1 720 writeReg(RegPaDac, readReg(RegPaDac)|0x4);
mluis 0:62d1edcc13d1 721
mluis 0:62d1edcc13d1 722 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 723 // set PA config (2-17 dBm using PA_BOOST)
mluis 0:62d1edcc13d1 724 s1_t pw = (s1_t)LMIC.txpow;
mluis 0:62d1edcc13d1 725 if(pw > 17) {
mluis 1:d3b7bde3995c 726 pw = 17;
mluis 0:62d1edcc13d1 727 } else if(pw < 2) {
mluis 1:d3b7bde3995c 728 pw = 2;
mluis 0:62d1edcc13d1 729 }
mluis 0:62d1edcc13d1 730 writeReg(RegPaConfig, (u1_t)(0x80|(pw-2)));
mluis 0:62d1edcc13d1 731 #else
mluis 0:62d1edcc13d1 732 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 733 #endif /* CFG_sx1272_radio */
mluis 0:62d1edcc13d1 734 }
mluis 0:62d1edcc13d1 735
mluis 1:d3b7bde3995c 736 static void txfsk () {
mluis 0:62d1edcc13d1 737 // select FSK modem (from sleep mode)
mluis 0:62d1edcc13d1 738 writeReg(RegOpMode, 0x10); // FSK, BT=0.5
mluis 0:62d1edcc13d1 739 ASSERT(readReg(RegOpMode) == 0x10);
mluis 0:62d1edcc13d1 740 // enter standby mode (required for FIFO loading))
mluis 0:62d1edcc13d1 741 opmode(OPMODE_STANDBY);
mluis 1:d3b7bde3995c 742 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 743 txStateIo = 0;
mluis 1:d3b7bde3995c 744 rxStateIo = 0;
mluis 1:d3b7bde3995c 745 #endif
mluis 0:62d1edcc13d1 746 // set bitrate
mluis 0:62d1edcc13d1 747 writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
mluis 0:62d1edcc13d1 748 writeReg(FSKRegBitrateLsb, 0x80);
mluis 0:62d1edcc13d1 749 // set frequency deviation
mluis 0:62d1edcc13d1 750 writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
mluis 0:62d1edcc13d1 751 writeReg(FSKRegFdevLsb, 0x99);
mluis 0:62d1edcc13d1 752 // frame and packet handler settings
mluis 0:62d1edcc13d1 753 writeReg(FSKRegPreambleMsb, 0x00);
mluis 0:62d1edcc13d1 754 writeReg(FSKRegPreambleLsb, 0x05);
mluis 0:62d1edcc13d1 755 writeReg(FSKRegSyncConfig, 0x12);
mluis 0:62d1edcc13d1 756 writeReg(FSKRegPacketConfig1, 0xD0);
mluis 0:62d1edcc13d1 757 writeReg(FSKRegPacketConfig2, 0x40);
mluis 0:62d1edcc13d1 758 writeReg(FSKRegSyncValue1, 0xC1);
mluis 0:62d1edcc13d1 759 writeReg(FSKRegSyncValue2, 0x94);
mluis 0:62d1edcc13d1 760 writeReg(FSKRegSyncValue3, 0xC1);
mluis 0:62d1edcc13d1 761 // configure frequency
mluis 0:62d1edcc13d1 762 configChannel();
mluis 0:62d1edcc13d1 763 // configure output power
mluis 0:62d1edcc13d1 764 configPower();
mluis 0:62d1edcc13d1 765
mluis 0:62d1edcc13d1 766 // set the IRQ mapping DIO0=PacketSent DIO1=NOP DIO2=NOP
mluis 0:62d1edcc13d1 767 writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TXNOP);
mluis 0:62d1edcc13d1 768
mluis 0:62d1edcc13d1 769 // initialize the payload size and address pointers
mluis 0:62d1edcc13d1 770 writeReg(FSKRegPayloadLength, LMIC.dataLen+1); // (insert length byte into payload))
mluis 0:62d1edcc13d1 771
mluis 0:62d1edcc13d1 772 // download length byte and buffer to the radio FIFO
mluis 0:62d1edcc13d1 773 writeReg(RegFifo, LMIC.dataLen);
mluis 0:62d1edcc13d1 774 writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 0:62d1edcc13d1 775
mluis 0:62d1edcc13d1 776 // enable antenna switch for TX
mluis 0:62d1edcc13d1 777 hal_pin_rxtx(1);
mluis 0:62d1edcc13d1 778
mluis 0:62d1edcc13d1 779 // now we actually start the transmission
mluis 0:62d1edcc13d1 780 opmode(OPMODE_TX);
mluis 1:d3b7bde3995c 781 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 782 txStateIo = 1;
mluis 1:d3b7bde3995c 783 #endif
mluis 0:62d1edcc13d1 784 }
mluis 0:62d1edcc13d1 785
mluis 1:d3b7bde3995c 786 static void txlora () {
mluis 0:62d1edcc13d1 787 // select LoRa modem (from sleep mode)
mluis 0:62d1edcc13d1 788 //writeReg(RegOpMode, OPMODE_LORA);
mluis 0:62d1edcc13d1 789 opmodeLora();
mluis 0:62d1edcc13d1 790 ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
mluis 0:62d1edcc13d1 791
mluis 0:62d1edcc13d1 792 // enter standby mode (required for FIFO loading))
mluis 0:62d1edcc13d1 793 opmode(OPMODE_STANDBY);
mluis 1:d3b7bde3995c 794 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 795 txStateIo = 0;
mluis 1:d3b7bde3995c 796 rxStateIo = 0;
mluis 1:d3b7bde3995c 797 #endif
mluis 0:62d1edcc13d1 798 // configure LoRa modem (cfg1, cfg2)
mluis 0:62d1edcc13d1 799 configLoraModem();
mluis 0:62d1edcc13d1 800 // configure frequency
mluis 0:62d1edcc13d1 801 configChannel();
mluis 0:62d1edcc13d1 802 // configure output power
mluis 0:62d1edcc13d1 803 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA ramp-up time 50 uSec
mluis 0:62d1edcc13d1 804 configPower();
mluis 0:62d1edcc13d1 805 // set sync word
mluis 0:62d1edcc13d1 806 writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
mluis 0:62d1edcc13d1 807
mluis 0:62d1edcc13d1 808 // set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP
mluis 0:62d1edcc13d1 809 writeReg(RegDioMapping1, MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LORA_NOP);
mluis 0:62d1edcc13d1 810 // clear all radio IRQ flags
mluis 0:62d1edcc13d1 811 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 812 // mask all IRQs but TxDone
mluis 0:62d1edcc13d1 813 writeReg(LORARegIrqFlagsMask, ~IRQ_LORA_TXDONE_MASK);
mluis 0:62d1edcc13d1 814
mluis 0:62d1edcc13d1 815 // initialize the payload size and address pointers
mluis 0:62d1edcc13d1 816 writeReg(LORARegFifoTxBaseAddr, 0x00);
mluis 0:62d1edcc13d1 817 writeReg(LORARegFifoAddrPtr, 0x00);
mluis 0:62d1edcc13d1 818 writeReg(LORARegPayloadLength, LMIC.dataLen);
mluis 0:62d1edcc13d1 819
mluis 0:62d1edcc13d1 820 // download buffer to the radio FIFO
mluis 0:62d1edcc13d1 821 writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 0:62d1edcc13d1 822
mluis 0:62d1edcc13d1 823 // enable antenna switch for TX
mluis 0:62d1edcc13d1 824 hal_pin_rxtx(1);
mluis 0:62d1edcc13d1 825
mluis 0:62d1edcc13d1 826 // now we actually start the transmission
mluis 0:62d1edcc13d1 827 opmode(OPMODE_TX);
mluis 0:62d1edcc13d1 828 }
mluis 0:62d1edcc13d1 829
mluis 0:62d1edcc13d1 830 // start transmitter (buf=LMIC.frame, len=LMIC.dataLen)
mluis 1:d3b7bde3995c 831 static void starttx () {
mluis 0:62d1edcc13d1 832 ASSERT( (readReg(RegOpMode) & OPMODE_MASK) == OPMODE_SLEEP );
mluis 0:62d1edcc13d1 833 if(getSf(LMIC.rps) == FSK) { // FSK modem
mluis 0:62d1edcc13d1 834 txfsk();
mluis 0:62d1edcc13d1 835 } else { // LoRa modem
mluis 0:62d1edcc13d1 836 txlora();
mluis 0:62d1edcc13d1 837 }
mluis 0:62d1edcc13d1 838 // the radio will go back to STANDBY mode as soon as the TX is finished
mluis 0:62d1edcc13d1 839 // the corresponding IRQ will inform us about completion.
mluis 0:62d1edcc13d1 840 }
mluis 0:62d1edcc13d1 841
mluis 0:62d1edcc13d1 842 enum { RXMODE_SINGLE, RXMODE_SCAN, RXMODE_RSSI };
mluis 0:62d1edcc13d1 843
mluis 0:62d1edcc13d1 844 static const u1_t rxlorairqmask[] = {
mluis 0:62d1edcc13d1 845 [RXMODE_SINGLE] = IRQ_LORA_RXDONE_MASK|IRQ_LORA_RXTOUT_MASK,
mluis 0:62d1edcc13d1 846 [RXMODE_SCAN] = IRQ_LORA_RXDONE_MASK,
mluis 0:62d1edcc13d1 847 [RXMODE_RSSI] = 0x00,
mluis 0:62d1edcc13d1 848 };
mluis 0:62d1edcc13d1 849
mluis 0:62d1edcc13d1 850 // start LoRa receiver (time=LMIC.rxtime, timeout=LMIC.rxsyms, result=LMIC.frame[LMIC.dataLen])
mluis 0:62d1edcc13d1 851 static void rxlora (u1_t rxmode) {
mluis 0:62d1edcc13d1 852 // select LoRa modem (from sleep mode)
mluis 0:62d1edcc13d1 853 opmodeLora();
mluis 0:62d1edcc13d1 854 ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
mluis 0:62d1edcc13d1 855 // enter standby mode (warm up))
mluis 0:62d1edcc13d1 856 opmode(OPMODE_STANDBY);
mluis 1:d3b7bde3995c 857 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 858 txStateIo = 0;
mluis 1:d3b7bde3995c 859 rxStateIo = 0;
mluis 1:d3b7bde3995c 860 #endif
mluis 0:62d1edcc13d1 861 // don't use MAC settings at startup
mluis 0:62d1edcc13d1 862 if(rxmode == RXMODE_RSSI) { // use fixed settings for rssi scan
mluis 0:62d1edcc13d1 863 writeReg(LORARegModemConfig1, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1);
mluis 0:62d1edcc13d1 864 writeReg(LORARegModemConfig2, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2);
mluis 0:62d1edcc13d1 865 } else { // single or continuous rx mode
mluis 0:62d1edcc13d1 866 // configure LoRa modem (cfg1, cfg2)
mluis 0:62d1edcc13d1 867 configLoraModem();
mluis 0:62d1edcc13d1 868 // configure frequency
mluis 0:62d1edcc13d1 869 configChannel();
mluis 0:62d1edcc13d1 870 }
mluis 0:62d1edcc13d1 871 // set LNA gain
mluis 0:62d1edcc13d1 872 writeReg(RegLna, LNA_RX_GAIN);
mluis 0:62d1edcc13d1 873 // set max payload size
mluis 0:62d1edcc13d1 874 writeReg(LORARegPayloadMaxLength, 64);
mluis 0:62d1edcc13d1 875 // use inverted I/Q signal (prevent mote-to-mote communication)
mluis 0:62d1edcc13d1 876 writeReg(LORARegInvertIQ, readReg(LORARegInvertIQ)|(1<<6));
mluis 0:62d1edcc13d1 877 // set symbol timeout (for single rx)
mluis 0:62d1edcc13d1 878 writeReg(LORARegSymbTimeoutLsb, LMIC.rxsyms);
mluis 0:62d1edcc13d1 879 // set sync word
mluis 0:62d1edcc13d1 880 writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
mluis 0:62d1edcc13d1 881
mluis 0:62d1edcc13d1 882 // configure DIO mapping DIO0=RxDone DIO1=RxTout DIO2=NOP
mluis 0:62d1edcc13d1 883 writeReg(RegDioMapping1, MAP_DIO0_LORA_RXDONE|MAP_DIO1_LORA_RXTOUT|MAP_DIO2_LORA_NOP);
mluis 0:62d1edcc13d1 884 // clear all radio IRQ flags
mluis 0:62d1edcc13d1 885 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 886 // enable required radio IRQs
mluis 0:62d1edcc13d1 887 writeReg(LORARegIrqFlagsMask, ~rxlorairqmask[rxmode]);
mluis 0:62d1edcc13d1 888
mluis 0:62d1edcc13d1 889 // enable antenna switch for RX
mluis 0:62d1edcc13d1 890 hal_pin_rxtx(0);
mluis 0:62d1edcc13d1 891
mluis 0:62d1edcc13d1 892 // now instruct the radio to receive
mluis 0:62d1edcc13d1 893 if (rxmode == RXMODE_SINGLE) { // single rx
mluis 0:62d1edcc13d1 894 hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
mluis 1:d3b7bde3995c 895 opmode(OPMODE_RX_SINGLE);
mluis 1:d3b7bde3995c 896 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 897 rxStateIo = 1;
mluis 1:d3b7bde3995c 898 #endif
mluis 0:62d1edcc13d1 899 } else { // continous rx (scan or rssi)
mluis 1:d3b7bde3995c 900 opmode(OPMODE_RX);
mluis 1:d3b7bde3995c 901 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 902 rxStateIo = 1;
mluis 1:d3b7bde3995c 903 #endif
mluis 0:62d1edcc13d1 904 }
mluis 0:62d1edcc13d1 905 }
mluis 0:62d1edcc13d1 906
mluis 0:62d1edcc13d1 907 static void rxfsk (u1_t rxmode) {
mluis 0:62d1edcc13d1 908 // only single rx (no continuous scanning, no noise sampling)
mluis 0:62d1edcc13d1 909 ASSERT( rxmode == RXMODE_SINGLE );
mluis 0:62d1edcc13d1 910 // select FSK modem (from sleep mode)
mluis 0:62d1edcc13d1 911 //writeReg(RegOpMode, 0x00); // (not LoRa)
mluis 0:62d1edcc13d1 912 opmodeFSK();
mluis 0:62d1edcc13d1 913 ASSERT((readReg(RegOpMode) & OPMODE_LORA) == 0);
mluis 0:62d1edcc13d1 914 // enter standby mode (warm up))
mluis 0:62d1edcc13d1 915 opmode(OPMODE_STANDBY);
mluis 1:d3b7bde3995c 916 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 917 txStateIo = 0;
mluis 1:d3b7bde3995c 918 rxStateIo = 0;
mluis 1:d3b7bde3995c 919 #endif
mluis 0:62d1edcc13d1 920 // configure frequency
mluis 0:62d1edcc13d1 921 configChannel();
mluis 0:62d1edcc13d1 922 // set LNA gain
mluis 0:62d1edcc13d1 923 //writeReg(RegLna, 0x20|0x03); // max gain, boost enable
mluis 0:62d1edcc13d1 924 writeReg(RegLna, LNA_RX_GAIN);
mluis 0:62d1edcc13d1 925 // configure receiver
mluis 0:62d1edcc13d1 926 writeReg(FSKRegRxConfig, 0x1E); // AFC auto, AGC, trigger on preamble?!?
mluis 0:62d1edcc13d1 927 // set receiver bandwidth
mluis 0:62d1edcc13d1 928 writeReg(FSKRegRxBw, 0x0B); // 50kHz SSb
mluis 0:62d1edcc13d1 929 // set AFC bandwidth
mluis 0:62d1edcc13d1 930 writeReg(FSKRegAfcBw, 0x12); // 83.3kHz SSB
mluis 0:62d1edcc13d1 931 // set preamble detection
mluis 0:62d1edcc13d1 932 writeReg(FSKRegPreambleDetect, 0xAA); // enable, 2 bytes, 10 chip errors
mluis 0:62d1edcc13d1 933 // set sync config
mluis 0:62d1edcc13d1 934 writeReg(FSKRegSyncConfig, 0x12); // no auto restart, preamble 0xAA, enable, fill FIFO, 3 bytes sync
mluis 0:62d1edcc13d1 935 // set packet config
mluis 0:62d1edcc13d1 936 writeReg(FSKRegPacketConfig1, 0xD8); // var-length, whitening, crc, no auto-clear, no adr filter
mluis 0:62d1edcc13d1 937 writeReg(FSKRegPacketConfig2, 0x40); // packet mode
mluis 0:62d1edcc13d1 938 // set sync value
mluis 0:62d1edcc13d1 939 writeReg(FSKRegSyncValue1, 0xC1);
mluis 0:62d1edcc13d1 940 writeReg(FSKRegSyncValue2, 0x94);
mluis 0:62d1edcc13d1 941 writeReg(FSKRegSyncValue3, 0xC1);
mluis 0:62d1edcc13d1 942 // set preamble timeout
mluis 0:62d1edcc13d1 943 writeReg(FSKRegRxTimeout2, 0xFF);//(LMIC.rxsyms+1)/2);
mluis 0:62d1edcc13d1 944 // set bitrate
mluis 0:62d1edcc13d1 945 writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
mluis 0:62d1edcc13d1 946 writeReg(FSKRegBitrateLsb, 0x80);
mluis 0:62d1edcc13d1 947 // set frequency deviation
mluis 0:62d1edcc13d1 948 writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
mluis 0:62d1edcc13d1 949 writeReg(FSKRegFdevLsb, 0x99);
mluis 0:62d1edcc13d1 950
mluis 0:62d1edcc13d1 951 // configure DIO mapping DIO0=PayloadReady DIO1=NOP DIO2=TimeOut
mluis 0:62d1edcc13d1 952 writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TIMEOUT);
mluis 0:62d1edcc13d1 953
mluis 0:62d1edcc13d1 954 // enable antenna switch for RX
mluis 0:62d1edcc13d1 955 hal_pin_rxtx(0);
mluis 0:62d1edcc13d1 956
mluis 0:62d1edcc13d1 957 // now instruct the radio to receive
mluis 0:62d1edcc13d1 958 hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
mluis 0:62d1edcc13d1 959 opmode(OPMODE_RX); // no single rx mode available in FSK
mluis 1:d3b7bde3995c 960 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 961 rxStateIo = 1;
mluis 1:d3b7bde3995c 962 #endif
mluis 0:62d1edcc13d1 963 }
mluis 0:62d1edcc13d1 964
mluis 0:62d1edcc13d1 965 static void startrx (u1_t rxmode) {
mluis 0:62d1edcc13d1 966 ASSERT( (readReg(RegOpMode) & OPMODE_MASK) == OPMODE_SLEEP );
mluis 0:62d1edcc13d1 967 if(getSf(LMIC.rps) == FSK) { // FSK modem
mluis 0:62d1edcc13d1 968 rxfsk(rxmode);
mluis 0:62d1edcc13d1 969 } else { // LoRa modem
mluis 0:62d1edcc13d1 970 rxlora(rxmode);
mluis 0:62d1edcc13d1 971 }
mluis 0:62d1edcc13d1 972 // the radio will go back to STANDBY mode as soon as the RX is finished
mluis 0:62d1edcc13d1 973 // or timed out, and the corresponding IRQ will inform us about completion.
mluis 0:62d1edcc13d1 974 }
mluis 0:62d1edcc13d1 975
mluis 0:62d1edcc13d1 976 // get random seed from wideband noise rssi
mluis 1:d3b7bde3995c 977 void radio_init () {
mluis 0:62d1edcc13d1 978 hal_disableIRQs();
mluis 0:62d1edcc13d1 979
mluis 0:62d1edcc13d1 980 // manually reset radio
mluis 0:62d1edcc13d1 981 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 982 hal_pin_rst(0); // drive RST pin low
mluis 0:62d1edcc13d1 983 #else
mluis 0:62d1edcc13d1 984 hal_pin_rst(1); // drive RST pin high
mluis 0:62d1edcc13d1 985 #endif
mluis 0:62d1edcc13d1 986 hal_waitUntil(os_getTime()+ms2osticks(1)); // wait >100us
mluis 0:62d1edcc13d1 987 hal_pin_rst(2); // configure RST pin floating!
mluis 0:62d1edcc13d1 988 hal_waitUntil(os_getTime()+ms2osticks(5)); // wait 5ms
mluis 0:62d1edcc13d1 989
mluis 0:62d1edcc13d1 990 opmode(OPMODE_SLEEP);
mluis 1:d3b7bde3995c 991 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 992 txStateIo = 0;
mluis 1:d3b7bde3995c 993 rxStateIo = 0;
mluis 1:d3b7bde3995c 994 #endif
mluis 0:62d1edcc13d1 995 // some sanity checks, e.g., read version number
mluis 0:62d1edcc13d1 996 u1_t v = readReg(RegVersion);
mluis 0:62d1edcc13d1 997 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 998 ASSERT(v == 0x12 );
mluis 0:62d1edcc13d1 999 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 1000 ASSERT(v == 0x22);
mluis 0:62d1edcc13d1 1001 #else
mluis 0:62d1edcc13d1 1002 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 1003 #endif
mluis 0:62d1edcc13d1 1004 // seed 15-byte randomness via noise rssi
mluis 0:62d1edcc13d1 1005 rxlora(RXMODE_RSSI);
mluis 0:62d1edcc13d1 1006 while( (readReg(RegOpMode) & OPMODE_MASK) != OPMODE_RX ); // continuous rx
mluis 0:62d1edcc13d1 1007 for(int i=1; i<16; i++) {
mluis 0:62d1edcc13d1 1008 for(int j=0; j<8; j++) {
mluis 0:62d1edcc13d1 1009 u1_t b; // wait for two non-identical subsequent least-significant bits
mluis 0:62d1edcc13d1 1010 while( (b = readReg(LORARegRssiWideband) & 0x01) == (readReg(LORARegRssiWideband) & 0x01) );
mluis 0:62d1edcc13d1 1011 randbuf[i] = (randbuf[i] << 1) | b;
mluis 0:62d1edcc13d1 1012 }
mluis 0:62d1edcc13d1 1013 }
mluis 0:62d1edcc13d1 1014 randbuf[0] = 16; // set initial index
mluis 0:62d1edcc13d1 1015
mluis 1:d3b7bde3995c 1016 #ifdef CFG_sx1276mb1_board
mluis 0:62d1edcc13d1 1017 // chain calibration
mluis 0:62d1edcc13d1 1018 writeReg(RegPaConfig, 0);
mluis 0:62d1edcc13d1 1019
mluis 0:62d1edcc13d1 1020 // Launch Rx chain calibration for LF band
mluis 0:62d1edcc13d1 1021 writeReg(FSKRegImageCal, (readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_MASK)|RF_IMAGECAL_IMAGECAL_START);
mluis 0:62d1edcc13d1 1022 while((readReg(FSKRegImageCal)&RF_IMAGECAL_IMAGECAL_RUNNING) == RF_IMAGECAL_IMAGECAL_RUNNING){ ; }
mluis 0:62d1edcc13d1 1023
mluis 0:62d1edcc13d1 1024 // Sets a Frequency in HF band
mluis 0:62d1edcc13d1 1025 u4_t frf = 868000000;
mluis 0:62d1edcc13d1 1026 writeReg(RegFrfMsb, (u1_t)(frf>>16));
mluis 0:62d1edcc13d1 1027 writeReg(RegFrfMid, (u1_t)(frf>> 8));
mluis 0:62d1edcc13d1 1028 writeReg(RegFrfLsb, (u1_t)(frf>> 0));
mluis 0:62d1edcc13d1 1029
mluis 0:62d1edcc13d1 1030 // Launch Rx chain calibration for HF band
mluis 0:62d1edcc13d1 1031 writeReg(FSKRegImageCal, (readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_MASK)|RF_IMAGECAL_IMAGECAL_START);
mluis 0:62d1edcc13d1 1032 while((readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_RUNNING) == RF_IMAGECAL_IMAGECAL_RUNNING) { ; }
mluis 1:d3b7bde3995c 1033 #endif /* CFG_sx1276mb1_board */
mluis 0:62d1edcc13d1 1034
mluis 0:62d1edcc13d1 1035 opmode(OPMODE_SLEEP);
mluis 1:d3b7bde3995c 1036 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1037 txStateIo = 0;
mluis 1:d3b7bde3995c 1038 rxStateIo = 0;
mluis 1:d3b7bde3995c 1039 #endif
mluis 0:62d1edcc13d1 1040 hal_enableIRQs();
mluis 0:62d1edcc13d1 1041 }
mluis 0:62d1edcc13d1 1042
mluis 0:62d1edcc13d1 1043 // return next random byte derived from seed buffer
mluis 0:62d1edcc13d1 1044 // (buf[0] holds index of next byte to be returned)
mluis 1:d3b7bde3995c 1045 u1_t radio_rand1 () {
mluis 0:62d1edcc13d1 1046 u1_t i = randbuf[0];
mluis 0:62d1edcc13d1 1047 ASSERT( i != 0 );
mluis 0:62d1edcc13d1 1048 if( i==16 ) {
mluis 0:62d1edcc13d1 1049 os_aes(AES_ENC, randbuf, 16); // encrypt seed with any key
mluis 0:62d1edcc13d1 1050 i = 0;
mluis 0:62d1edcc13d1 1051 }
mluis 0:62d1edcc13d1 1052 u1_t v = randbuf[i++];
mluis 0:62d1edcc13d1 1053 randbuf[0] = i;
mluis 0:62d1edcc13d1 1054 return v;
mluis 0:62d1edcc13d1 1055 }
mluis 0:62d1edcc13d1 1056
mluis 1:d3b7bde3995c 1057 u1_t radio_rssi () {
mluis 0:62d1edcc13d1 1058 hal_disableIRQs();
mluis 0:62d1edcc13d1 1059 u1_t r = readReg(LORARegRssiValue);
mluis 0:62d1edcc13d1 1060 hal_enableIRQs();
mluis 0:62d1edcc13d1 1061 return r;
mluis 0:62d1edcc13d1 1062 }
mluis 0:62d1edcc13d1 1063
mluis 0:62d1edcc13d1 1064 static const u2_t LORA_RXDONE_FIXUP[] = {
mluis 0:62d1edcc13d1 1065 [FSK] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 1066 [SF7] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 1067 [SF8] = us2osticks(1648), // ( 54 ticks)
mluis 0:62d1edcc13d1 1068 [SF9] = us2osticks(3265), // ( 107 ticks)
mluis 0:62d1edcc13d1 1069 [SF10] = us2osticks(7049), // ( 231 ticks)
mluis 0:62d1edcc13d1 1070 [SF11] = us2osticks(13641), // ( 447 ticks)
mluis 0:62d1edcc13d1 1071 [SF12] = us2osticks(31189), // (1022 ticks)
mluis 0:62d1edcc13d1 1072 };
mluis 0:62d1edcc13d1 1073
mluis 0:62d1edcc13d1 1074 // called by hal ext IRQ handler
mluis 0:62d1edcc13d1 1075 // (radio goes to stanby mode after tx/rx operations)
mluis 0:62d1edcc13d1 1076 void radio_irq_handler (u1_t dio) {
mluis 0:62d1edcc13d1 1077 ostime_t now = os_getTime();
mluis 0:62d1edcc13d1 1078 if( (readReg(RegOpMode) & OPMODE_LORA) != 0) { // LORA modem
mluis 1:d3b7bde3995c 1079 u1_t flags = readReg(LORARegIrqFlags);
mluis 1:d3b7bde3995c 1080 if( flags & IRQ_LORA_TXDONE_MASK ) {
mluis 1:d3b7bde3995c 1081 // save exact tx time
mluis 1:d3b7bde3995c 1082 LMIC.txend = now - us2osticks(43); // TXDONE FIXUP
mluis 1:d3b7bde3995c 1083 } else if( flags & IRQ_LORA_RXDONE_MASK ) {
mluis 1:d3b7bde3995c 1084 // save exact rx time
mluis 1:d3b7bde3995c 1085 if(getBw(LMIC.rps) == BW125) {
mluis 1:d3b7bde3995c 1086 now -= LORA_RXDONE_FIXUP[getSf(LMIC.rps)];
mluis 1:d3b7bde3995c 1087 }
mluis 1:d3b7bde3995c 1088 LMIC.rxtime = now;
mluis 1:d3b7bde3995c 1089 // read the PDU and inform the MAC that we received something
mluis 1:d3b7bde3995c 1090 LMIC.dataLen = (readReg(LORARegModemConfig1) & SX1272_MC1_IMPLICIT_HEADER_MODE_ON) ?
mluis 1:d3b7bde3995c 1091 readReg(LORARegPayloadLength) : readReg(LORARegRxNbBytes);
mluis 1:d3b7bde3995c 1092 // set FIFO read address pointer
mluis 1:d3b7bde3995c 1093 writeReg(LORARegFifoAddrPtr, readReg(LORARegFifoRxCurrentAddr));
mluis 1:d3b7bde3995c 1094 // now read the FIFO
mluis 1:d3b7bde3995c 1095 readBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 1:d3b7bde3995c 1096 // read rx quality parameters
mluis 1:d3b7bde3995c 1097 LMIC.snr = readReg(LORARegPktSnrValue); // SNR [dB] * 4
mluis 1:d3b7bde3995c 1098 LMIC.rssi = readReg(LORARegPktRssiValue) - 125 + 64; // RSSI [dBm] (-196...+63)
mluis 1:d3b7bde3995c 1099 } else if( flags & IRQ_LORA_RXTOUT_MASK ) {
mluis 1:d3b7bde3995c 1100 // indicate timeout
mluis 1:d3b7bde3995c 1101 LMIC.dataLen = 0;
mluis 1:d3b7bde3995c 1102 }
mluis 0:62d1edcc13d1 1103 // mask all radio IRQs
mluis 0:62d1edcc13d1 1104 writeReg(LORARegIrqFlagsMask, 0xFF);
mluis 0:62d1edcc13d1 1105 // clear radio IRQ flags
mluis 0:62d1edcc13d1 1106 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 1107 } else { // FSK modem
mluis 1:d3b7bde3995c 1108 u1_t flags1 = readReg(FSKRegIrqFlags1);
mluis 1:d3b7bde3995c 1109 u1_t flags2 = readReg(FSKRegIrqFlags2);
mluis 1:d3b7bde3995c 1110 if( flags2 & IRQ_FSK2_PACKETSENT_MASK ) {
mluis 1:d3b7bde3995c 1111 // save exact tx time
mluis 1:d3b7bde3995c 1112 LMIC.txend = now;
mluis 0:62d1edcc13d1 1113 } else if( flags2 & IRQ_FSK2_PAYLOADREADY_MASK ) {
mluis 1:d3b7bde3995c 1114 // save exact rx time
mluis 1:d3b7bde3995c 1115 LMIC.rxtime = now;
mluis 1:d3b7bde3995c 1116 // read the PDU and inform the MAC that we received something
mluis 1:d3b7bde3995c 1117 LMIC.dataLen = readReg(FSKRegPayloadLength);
mluis 1:d3b7bde3995c 1118 // now read the FIFO
mluis 1:d3b7bde3995c 1119 readBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 1:d3b7bde3995c 1120 // read rx quality parameters
mluis 1:d3b7bde3995c 1121 LMIC.snr = 0; // determine snr
mluis 1:d3b7bde3995c 1122 LMIC.rssi = 0; // determine rssi
mluis 1:d3b7bde3995c 1123 } else if( flags1 & IRQ_FSK1_TIMEOUT_MASK ) {
mluis 1:d3b7bde3995c 1124 // indicate timeout
mluis 1:d3b7bde3995c 1125 LMIC.dataLen = 0;
mluis 1:d3b7bde3995c 1126 } else {
mluis 0:62d1edcc13d1 1127 while(1);
mluis 0:62d1edcc13d1 1128 }
mluis 0:62d1edcc13d1 1129 }
mluis 0:62d1edcc13d1 1130 // go from stanby to sleep
mluis 0:62d1edcc13d1 1131 opmode(OPMODE_SLEEP);
mluis 1:d3b7bde3995c 1132 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1133 txStateIo = 0;
mluis 1:d3b7bde3995c 1134 rxStateIo = 0;
mluis 1:d3b7bde3995c 1135 #endif
mluis 0:62d1edcc13d1 1136 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 1137 os_setCallback(&LMIC.osjob, LMIC.osjob.func);
mluis 0:62d1edcc13d1 1138 }
mluis 0:62d1edcc13d1 1139
mluis 0:62d1edcc13d1 1140 void os_radio (u1_t mode) {
mluis 0:62d1edcc13d1 1141 hal_disableIRQs();
mluis 0:62d1edcc13d1 1142 switch (mode) {
mluis 0:62d1edcc13d1 1143 case RADIO_RST:
mluis 0:62d1edcc13d1 1144 // put radio to sleep
mluis 0:62d1edcc13d1 1145 opmode(OPMODE_SLEEP);
mluis 1:d3b7bde3995c 1146 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1147 txStateIo = 0;
mluis 1:d3b7bde3995c 1148 rxStateIo = 0;
mluis 1:d3b7bde3995c 1149 #endif
mluis 0:62d1edcc13d1 1150 break;
mluis 0:62d1edcc13d1 1151
mluis 0:62d1edcc13d1 1152 case RADIO_TX:
mluis 1:d3b7bde3995c 1153 // transmit frame now
mluis 0:62d1edcc13d1 1154 starttx(); // buf=LMIC.frame, len=LMIC.dataLen
mluis 1:d3b7bde3995c 1155 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1156 txStateIo = 1;
mluis 1:d3b7bde3995c 1157 #endif
mluis 0:62d1edcc13d1 1158 break;
mluis 0:62d1edcc13d1 1159
mluis 0:62d1edcc13d1 1160 case RADIO_RX:
mluis 1:d3b7bde3995c 1161 // receive frame now (exactly at rxtime)
mluis 0:62d1edcc13d1 1162 startrx(RXMODE_SINGLE); // buf=LMIC.frame, time=LMIC.rxtime, timeout=LMIC.rxsyms
mluis 1:d3b7bde3995c 1163 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1164 rxStateIo = 1;
mluis 1:d3b7bde3995c 1165 #endif
mluis 0:62d1edcc13d1 1166 break;
mluis 0:62d1edcc13d1 1167
mluis 0:62d1edcc13d1 1168 case RADIO_RXON:
mluis 0:62d1edcc13d1 1169 // start scanning for beacon now
mluis 0:62d1edcc13d1 1170 startrx(RXMODE_SCAN); // buf=LMIC.frame
mluis 1:d3b7bde3995c 1171 #if defined(RADIO_DBG)
mluis 1:d3b7bde3995c 1172 rxStateIo = 1;
mluis 1:d3b7bde3995c 1173 #endif
mluis 0:62d1edcc13d1 1174 break;
mluis 0:62d1edcc13d1 1175 }
mluis 0:62d1edcc13d1 1176 hal_enableIRQs();
mluis 0:62d1edcc13d1 1177 }
mluis 0:62d1edcc13d1 1178
mluis 0:62d1edcc13d1 1179 #endif // USE_SMTC_RADIO_DRIVER